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This study establishes that the effective thermal conductivity keff of crystalline nanoporous silicon

is strongly affected not only by the porosity fv and the system’s length Lz but also by the pore

interfacial area concentration Ai. The thermal conductivity of crystalline nanoporous silicon was

predicted using non-equilibrium molecular dynamics simulations. The Stillinger-Weber potential

for silicon was used to simulate the interatomic interactions. Spherical pores organized in a simple

cubic lattice were introduced in a crystalline silicon matrix by removing atoms within selected

regions of the simulation cell. Effects of the (i) system length ranging from 13 to 130 nm, (ii) pore

diameter varying between 1.74 and 5.86 nm, and (iii) porosity ranging from 8% to 38%, on thermal

conductivity were investigated. A physics-based model was also developed by combining kinetic

theory and the coherent potential approximation. The effective thermal conductivity was proportional

to (1� 1.5fv) and inversely proportional to the sum (Ai=4þ 1=Lz). This model was in excellent

agreement with the thermal conductivity of nanoporous silicon predicted by molecular dynamics

simulations for spherical pores (present study) as well as for cylindrical pores and vacancy defects

reported in the literature. These results will be useful in designing nanostructured materials with

desired thermal conductivity by tuning their morphology. VC 2011 American Institute of Physics.

[doi:10.1063/1.3638054]

I. INTRODUCTION

Porous silicon has been the subject of intense studies

due to its wide range of applications. For example, porous

silicon has been used in optoelectronics for its photolumines-

cence properties.1 Optoelectronic devices generate heat by

Joule heating and by photon absorption. Thus, knowing the

thermal conductivity of porous silicon is important for

proper thermal management of these devices.2 In addition,

porous silicon has been used as thermal insulator and sensor

in microsystem technology thanks to its low thermal conduc-

tivity and rigid solid structure.3 More recently, nanoporous

silicon was also found promising in high energetic MEMS

devices.4–10 The presence of nanosize pores creates very

large internal surface area. Combining with oxygen source

and heat input, strong exothermic reactions take place within

the nanoporous silicon which could be used for microthrus-

ters, microinitiators, and gas generation for actuators.9 Here

also, the thermal conductivity of nanoporous silicon is essen-

tial to the design and operation of these MEMS devices.

Moreover, porous silicon is a potentially efficient ther-

moelectric material for energy harvesting applications.11,12

Thermoelectric materials utilize the Seebeck effect to

directly convert a temperature gradient directly into electric-

ity. Their performance is described by the figure of merit ZT
given by ZT¼rTS2=k, where T is absolute temperature, r
and k are the electrical and thermal conductivities, respec-

tively. The Seebeck coefficient S depends on the temperature

and on the material.13 Good thermoelectric materials feature

high electrical conductivity and high Seebeck coefficient but

low thermal conductivity. However, it is difficult to find

such materials due to the interdependence among r, S, and

k.13 As a thermoelectric material, bulk dense crystalline Si is

considered inefficient with ZT around 0.003 at room temper-

ature.12 However, according to recent simulations, well-

ordered nanoporous silicon with pore diameter between 0.6

and 1.2 nm and porosity between 12% and 30% may feature

ZT of about 1.0 at 300 K.12 This significant increase in ZT
was attributed to the large reduction in k accompanied by

only moderate changes in r and S.11,12 Practically, a ZT
value of about 3.0 could lead to efficient solid state energy

conversion.13 Thus, the thermal conductivity of nanoporous

silicon needs to be tuned in order to further improve its fig-

ure of merit. It is therefore, important to first understand and

predict thermal transport in nanoporous crystalline silicon.

II. BACKGROUND

A. Molecular dynamics simulations

Molecular dynamics (MD) simulations solve the New-

ton’s equation of motion of individual atoms whose interac-

tions are governed by an empirical interatomic potential.

Two main approaches have been developed to predict

thermal conductivity using MD simulations, namely (i) the

equilibrium Green-Kubo approach and (ii) the direct non-

equilibrium molecular dynamics (NEMD) approach.14 These

two approaches have been described in detail in the

literature.14–19 MD simulations are increasingly used to

investigate physical phenomena controlling energy transport

in both bulk dense and nanostructured materials. In particu-

lar, Lee et al.11 investigated the transverse thermal conduc-

tivity of nanoporous silicon with periodically arrangeda)Electronic mail: pilon@seas.ucla.edu.
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cylindrical pores at 300 K using MD simulations. The

authors performed equilibrium MD simulations using the

Einstein relation20 similar to the Green-Kubo relation.16,17

Note that the simulation cell contained only one cylindrical

pore and the atoms at the surface of the pore were passivated

with hydrogen atoms. The thermal conductivity predicted by

this equilibrium method corresponds to the bulk property.

The porosity and pore diameter ranged from 7% to 38% and

from 0.63 to 2.26 nm, respectively. The Tersoff type poten-

tial was used to model interatomic Si-Si and Si-H interac-

tions.21 This potential overestimated the thermal

conductivity of dense crystalline Si by about 80% compared

with experimental measurements at 300 K.11 The authors

indicated that the predicted thermal conductivity of nanopo-

rous Si at 300 K was more than two orders of magnitude

smaller than that of dense crystalline silicon.11 They also

showed that the thermal conductivity of porous silicon (i)

decreased with increasing pore diameter for a given pore

spacing, and (ii) increased with increasing pore spacing for a

given pore diameter.11

Moreover, the NEMD simulations can predict the ther-

mal conductivity from the temperature gradient and heat flux

flowing through a simulation system. It is ideal for investi-

gating finite size effect for structures such as thin films and

superlattices.14,18 This method had previously been imple-

mented to predict the thermal conductivity of dense solid

materials such as silicon,18 quartz,22 dense and nanoporous

amorphous silica.23–25 Recently, Lee et al.26 investigated the

effect of randomly dispersed vacancy defects on the thermal

conductivity of crystalline silicon using NEMD simulations

with the Tersoff potential. The authors considered tetrahe-

dral, hexahedral, and dodecahedral-like vacancy clusters

with vacancy concentration (i.e., porosity) ranging from

0.15% to 1.5%.26 Considering the induced strain fields, their

effective diameters were estimated as 1.33, 1.50, and

1.70 nm, respectively. Note that each vacancy cluster con-

tained only 4 to 12 atoms and the maximum vacancy concen-

tration simulated did not exceed 1.5%. The thermal

conductivity at 300 K was found to decrease by 95% with

porosity of 1.5%. It was not affected by the size of the clus-

ters above the vacancy concentration of 1%.26

B. Physical modeling

The thermal conductivity of nanoporous crystalline mate-

rials was reported to depend on both the porosity and the pore

size.2,11,27–29 Alvarez et al.28 studied the influence of porosity

and pore size on the thermal conductivity of crystalline porous

silicon using the phonon hydrodynamics approach. The

authors considered monodisperse spherical pores randomly

dispersed in a three-dimensional crystalline silicon matrix.

They expressed the effective thermal conductivity as,28

keff ¼ km
1

1

f ftð Þ
þ 18ft

l=dp

� �2

1þ 2A0 l=dp

� � 1þ 3ffiffiffi
2
p ffiffiffiffi

ft
p� � ; (1)

where km is the thermal conductivity of dense matrix

material, fv is the porosity, dp is the pore diameter, l is the

dominant phonon mean free path (MFP) in bulk dense silicon,

f(fv)¼ (1� fv)
3 based on percolation theory,30,31 and A0 is a

function of l=dp expressed by Millikan32 as A0 ¼ 0.864þ 0.29

exp(�0.625dp=l). The authors compared predictions of Eq.

(1) with experimental results at room temperature for electro-

chemically etched porous silicon with porosity ranging from

40% to 90% and vertical cylindrical pores with radius ranging

from 1 to 100 nm.28 Good agreement was found by taking the

dominant phonon MFP l for silicon at 300 K as 40 nm.28

However, this value was smaller than that of about 300 nm

suggested in the literature.33,34 This latter value was derived

by considering the phonon dispersion and assuming that only

the acoustic phonons contributed to heat transfer.33,34

As previously discussed, Lee et al.11 investigated the

transverse thermal conductivity of nanoporous silicon with

cylindrical pores at room temperature using MD simulations.

The authors also correlated their results with the ballistic-

diffusive model developed by Prasher27 for two-dimensional

systems and expressed as,27

keff ¼ km
1

1

f ftð Þ
þ a

ffiffiffiffi
ft
p

F ftð Þ
1

dp

; (2)

where FðftÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4ft=p

p
ðsin�1

ffiffiffiffiffiffiffiffiffiffiffi
4ft=p

p
� p=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ft=p

p
and f ðftÞ ¼ ð1� ftÞð1þ bf c

t Þ. The three empirical fitting pa-

rameters a, b, and c were fitted against MD simulation results

for keff as a¼ 50.9, b¼ 1821.1, and c¼ 1.9, respectively.11

The present study aims to predict the thermal conductiv-

ity of crystalline nanoporous silicon using NEMD simula-

tions. Multiple spherical pores organized in a simple cubic

lattice were introduced into a crystalline silicon matrix. First,

the simulation procedure was validated with results for dense

crystalline silicon reported in the literature.18,35,36 Then, the

thermal conductivity of nanoporous crystalline silicon was

computed at 500 K for various system morphology including

porosity, pore diameter, and system length. Finally, a

physics-based model predicting the effects of these parame-

ters on the thermal conductivity of nanoporous silicon was

developed.

III. ANALYSIS

A. Thermal conductivity prediction using NEMD
simulations

The detailed procedure of the NEMD simulations used

in the present study has already been described by Coquil

et al.25 and need not be repeated. In brief, the thermal con-

ductivity was estimated using the so-called Muller-Plathe

method.19,23 It consists of imposing a heat flux q00z along

the z-direction and determining the resulting temperature

gradient dTMD=dz to estimate the thermal conductivity

as,18

k ¼ � q00z
dTMD=dz

: (3)

The heat flux was imposed by a velocity swapping technique

described in the literature.19,23 To do so, the atoms with the
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largest kinetic energy (i.e., the hottest) in the heat sink were

exchanged with those with the lowest kinetic energy (i.e., the

coolest) in the heat source. The simulation cell was first di-

vided into an even number of slices. The temperature of each

slice and its gradient were calculated by averaging the

atomic kinetic energy over time as well as overall the atoms

in the slice. The temperature TMD (z) of a slice along the z-

direction (i.e., the direction of the heat flux) at every time

step was determined from the classical statistical mechanics

equipartition theorem as,23

TMD zð Þ ¼ 1

3nkkB

Xnk

i¼1

mit
2
i ; (4)

where kB¼ 1.38� 10�23 m2 kg=s2 K is the Boltzmann’s con-

stant, nk is the number of atoms in the slice about z, and mi

and vi are the mass and velocity of individual atoms i,
respectively. The temperature of each slice was then aver-

aged over multiple time steps. The number of atoms per slice

nk was chosen to be larger than 32 following Schelling et
al.18 After reaching steady state, a temperature profile

TMD(z) decreasing from the center to the ends of the simula-

tion cell could be estimated using Eq. (4). A total number of

6 to 8� 106 steps were simulated for a microcanonical or

NVE ensemble, in which the total number of atoms, total

volume, and total energy of the system were conserved. In

addition, periodic boundary conditions were imposed in all

directions. Finally, the thermal conductivity was retrieved

using Eq. (3) by averaging over the last 2� 106 time steps.

The numerical procedure was implemented using the large-

scale atomic=molecular massively parallel simulator

(LAMMPS).37 Simulations were run in parallel on 32 to 128

64-bit nodes with 1024 to 2048 MB of RAM.

It should be noted that the expression for temperature

TMD(z) given by Eq. (4) is widely used in MD simulations.

However, TMD represents the real temperature T only if the

latter is much larger than the Debye temperature TDebye.
38 In

cases when the system temperature is lower than TDebye, TMD

needs to be corrected for quantum effects.38 For silicon,

TDebye¼ 650 K (Ref. 18) and according to Volz and Chen38

and Tang,39 quantum corrections are negligible when TMD

exceeds 500 K for crystalline silicon systems.

B. Validation

MD simulations were first validated with dense crystal-

line silicon. The well established two and three-body interac-

tions Stillinger and Weber (SW) potential40 was used. It is

known to successfully describe the elastic constants and ther-

mal expansion coefficients, as well as phonon dispersion

relations of dense silicon.41–43 It was also previously used to

model silicon thermal conductivity above 500 K.18 Here,

simulation systems consisted of six silicon unit cells in both

the x- and y-directions, with each unit cell consisting of a di-

amond cubic arrangement of eight silicon atoms. The lattice

constant a of each unit cell was 5.43 Å. On the other hand,

the number of unit cells along the z-direction varied from 48

to 384. Results for thermal conductivity were analyzed as a

function of the simulation system length Lz ranging from

26 to 104 nm. The total number of atoms varied from 13 824

to 55 294. Simulations were performed at both 500 and 1000

K. The simulation time step was set to be 0.55 fs and simula-

tions were run for a total of 6� 106 time steps. This corre-

sponded to an effective time of 3.3 ns which was more than

twice as long as the total time used by Schelling et al.18 and

well above the 1 ns limit necessary to reach a steady-state

temperature profile.18 The equations of motion were inte-

grated using a velocity Verlet algorithm.15 The rate of veloc-

ity exchanges was chosen so that the corresponding heat flux

was approximately 1.8� 1011 eV=nm2�s, in agreement with

that used by Schelling et al.18 The simulation systems were

divided into slices corresponding to 1=4 of a silicon unit cell.

Note that the temperature profile was found to have already

converged after the first 2� 106 steps.

The temperature profile was linear except for the slices

within the heat source and heat sink regions, both corre-

sponding to about 20% of the simulation system length. The

nonlinearity in temperature observed around those regions

was attributed to the strong scattering caused by the heat

source and sink.44 The linear part of the temperature profile

was fitted with a linear function, TMD(z), and the resulting

gradient, dTMD=dz, was used in Eq. (3) to estimate the ther-

mal conductivity. The gradients estimated for the two differ-

ent linear regions, on each side of the heat source, typically

differed by less than 10%. This difference was used to esti-

mate the error associated with the retrieved thermal conduc-

tivity. Note that the system length Lz represents half of the

total length of the simulation cell along the z-direction.

Figure 1 plots 1=k as a function of 1=Lz at 500 and 1000

K along with results previously reported by Schelling et al.18

and bulk properties for natural and isotopically enriched sili-

con reported in the literature.35,36 It establishes that results

obtained in the present study were in excellent agreement

with those previously reported by Schelling et al.18 In

FIG. 1. Predicted values of 1=k as a function of 1=Lz for crystalline silicon

at 500 and 1000 K along with similar results reported by Schelling et al.
(Ref. 18) Experimental data for bulk natural silicon (Ref. 35) and isotopi-

cally enriched pure silicon (Ref. 36) are also displayed.
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addition, the bulk thermal conductivity can be estimated by

extrapolating the linear fit (solid lines) for 1=k versus 1=Lz as

1=Lz tends to zero or Lz tends to infinity.18 Then, the thermal

conductivity of bulk silicon was found to be 141 6 25

W=m�K at 500 K and 46 6 2 W=m�K at 1000 K. The meas-

ured thermal conductivity of natural Si at 500 and 1000 K

were about 80 and 30 W=m�K, respectively.35 That of isoto-

pically enriched Si, known to contain fewer defects than nat-

ural Si, was estimated to be 120 W=m�K at 500 K.18,36 This

was in reasonable agreement with the present MD simula-

tions results.

C. Thermal conductivity of nanoporous silicon

In order to simulate crystalline nanoporous silicon, sim-

ulation cells of crystalline silicon were first generated. Here,

the simulation cells had the same size (6 to 12 unit cells)

along both the x- and y-directions and had 48 to 480 unit

cells along the z-direction. Then, spherical pores, in a simple

cubic arrangement, were introduced by removing silicon

atoms within a spherical region along the centerline of the

crystalline lattice. Figure 2 shows the 2D atomic structures

of a typical crystalline nanoporous silicon phase with two

pores, 2.6 nm in diameter, inserted in a 3.26� 3.26� 6.52 nm3

simulation cell. The structure represented a cross-section in

the y-z plane which intercepted the center of pores. Note

that, in the present study, there was no passivation on the

pore surface, i.e., silicon atoms on the pore surface have dan-

gling bonds.

Here also, the time step was 0.55 fs. Initially, the system

temperature was uniform and set to be 515 6 15 K by impos-

ing constant number of atoms, volume and temperature

(NVT ensemble) for 20 000 time steps. Then, the system

was set to equilibrium under constant number of atoms, vol-

ume and energy (NVE ensemble) condition for another 20

000 time steps. Finally, the simulation was performed in the

NVE ensemble for 6 to 8� 106 time steps with velocity

exchange rate adjusted to impose a heat flux of approxi-

mately 1.8� 1011 eV=nm2�s (i.e., 2.9� 1010 W=m2). Note

that the pore shape remained spherical throughout the simu-

lations. The z-direction of the simulation cell was divided

into slices corresponding to 1=2 of a silicon unit cell and

containing more than 50 atoms. The procedure used to esti-

mate the temperature gradient and to calculate the thermal

conductivity was identical to that previously described for

dense silicon. The temperature profile was found to have al-

ready converged after the first 4� 106 steps.

Finally, Table I summarizes the values of porosity fv,
spherical pore diameter dp, cross-sectional area Ac, system

length Lz, and pore number N of the crystalline nanoporous

silicon systems investigated in the present study. The poros-

ity ranged from 8% to 38% while pore diameter varied from

1.74 to 5.86 nm. The system length was between 13 and 130

nm corresponding to 4 to 32 aligned pores.

IV. RESULTS AND DISCUSSION

A. Effects of system length and pore diameter

Figures 3(a) and 3(b) show the predicted effective ther-

mal conductivity at 500 K of crystalline nanoporous silicon

keff as a function of system length Lz for different pore diam-

eters dp with porosity fv equal to 27% and 38%, respectively.

They indicate that the thermal conductivity of nanoporous

crystalline silicon was more than one order of magnitude

smaller than that of dense crystalline silicon at 500 K (see

Fig. 1).18,35,36 This was due to the fact that the presence of

the nanosize pores greatly enhances phonon scattering. Note

that similar reduction in thermal conductivity was observed

for only 1.5% vacancy concentration as reported by Lee et
al.26 This could be attributed to the facts that vacancy defects

introduced large strain fields in regions of the materials with

size comparable to the pore diameter used in the present

study.26 These randomly distributed defect-induced strain

fields caused large rate of phonon scattering by clusters and

effectively obstruct the cross-sectional area for phonon trans-

port.26 In addition, Fig. 3 also establishes that the thermal

conductivity of crystalline nanoporous silicon systems for a

given porosity (i) increased with increasing Lz for a given

pore diameter dp and (ii) increased with increasing pore di-

ameter dp for a given length Lz. Similar results and conclu-

sions were found for the other values of porosity investigated

(Table I).

FIG. 2. Typical atomic structures of the nanoporous crystalline silicon

phase with two spherical pores of 2.6 nm in diameter aligned along the

z-direction of a 3.26� 3.26� 6.52 nm3 simulation cell. This 2D representa-

tion corresponds to the projection of 1 nm thick slab in the out-of-plane

direction.

TABLE I. Summary of simulated crystalline nanoporous silicon systems

with various porosity, pore diameter, cross-section area, system length, and

pore number.

Porosity Pore diameter Cross-section area Length Pore number

% dp (nm) Ac (nm2) Lz (nm) N

8 1.74 3.26� 3.26 13 to 104 4 to 32

8 2.93 5.43� 5.43 22 to 109 4 to 20

15 2.17 3.26� 3.26 13 to 104 4 to 32

15 2.88 4.34� 4.34 17 to 104 4 to 24

27 2.61 3.26� 3.26 13 to 104 4 to 32

27 3.48 4.34� 4.34 17 to 104 4 to 24

27 4.34 5.43� 5.43 22 to 109 4 to 20

27 5.21 6.52� 6.52 26 to 130 4 to 20

38 2.93 3.26� 3.26 13 to 104 4 to 32

38 3.91 4.34� 4.34 17 to 104 4 to 24

38 4.89 5.43� 5.43 22 to 130 4 to 24

38 5.86 6.52� 6.52 26 to 130 4 to 20
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Moreover, it is interesting to note that Coquil et al.25

established that the system length had no effect on the ther-

mal conductivity of amorphous nanoporous SiO2 when the

system length was larger than approximately 5 nm for

dp¼ 1.8 nm and fv¼ 25 6 2%.25 The different behavior

observed with crystalline nanoporous Si can be attributed to

their crystalline nature in which phonon modes have signifi-

cantly longer MFP than in amorphous materials.

B. Effect of porosity

Figure 4 shows the thermal conductivity of nanoporous

silicon at 500 K as a function of system length for porosity

ranging from 8% to 38%. Here, the pore diameter dp was

maintained at 2.8 6 0.2 nm and the porosity of nanoporous

silicon systems was adjusted by varying the cross-sectional

area Ac. It is evident that the thermal conductivity decreased

with increasing porosity. In addition, the system length Lz

had stronger effect on thermal conductivity for systems with

smaller porosity. For example, the thermal conductivity of

nanoporous silicon with porosity fv¼ 8% and 38% increased

by 85% and 40%, respectively, as Lz increased from 22 to

109 nm. This was due to the fact that, in systems with large

porosity, phonon scattering by pores dominated over phonon

scattering by film boundaries.

C. Bulk thermal conductivity of nanoporous silicon

The bulk thermal conductivity of nanoporous Si can be

determined by linear extrapolation of 1=k versus 1=Lz as

Lz !1.18 Sellan et al.45 indicated that the minimum system

length used should be comparable to the largest MFP of the

dominant phonons. The authors further defined the maxi-

mum thermal conductivity kmax that can be accurately pre-

dicted using the linear extrapolation procedure with a

minimum system length Lmin as,45

kmax ¼
LminkBtg

6a3
; (5)

where a is the lattice constant and vg is the average phonon

group velocity given by,45

tg ¼
1

3
tg; L þ 2tg; T

� �
; (6)

where vg,L and vg,T are the longitudinal and transverse pho-

non group velocities, respectively. Note that the above

requirement was validated against results of MD simulations

for argon and dense crystalline silicon.18,45 Here, we further

expressed the group velocities vg,L and vg,T in nanoporous

crystalline Si as,46

FIG. 3. Predicted effective thermal conductivity of crystalline nanoporous

silicon at 500 K as a function of system length Lz for porosity (a) fv¼ 27%

and (b) fv¼ 38% along with various pore diameters dp and simulation cell

cross-section Ac.

FIG. 4. Predicted effective thermal conductivity of crystalline nanoporous

silicon at 500 K as a function of system length for pore diameter

dp¼ 2.8 6 0.2 nm and porosity fv between 8% and 38%.
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tg;L ¼ ½ðKeff þ 4Geff=3Þ=qeff �1=2 and (7a)

tg;T ¼ ðGeff =qeff Þ1=2; (7b)

where Keff, Geff, and qeff are the effective bulk modulus,

shear modulus, and density of the nanoporous material,

respectively.46 For porous material of porosity fv, the effec-

tive bulk modulus Keff has been expressed as,47

Keff ¼ Km 1� ft 1þ 3Km

4Gm

� �� �
; (8)

where Km and Gm are the bulk and shear modulus of the con-

tinuous dense matrix. Similarly, the effective shear modulus

Geff can be expressed as,47

Geff ¼ Gm 1� ft 1þ 6km þ 16Gm

9km þ 14Gm

� �� �
; (9)

where km is the Lamé’s elastic constant of the dense ma-

trix.47 In addition, the effective density qeff is given by

qeff¼ qm(1� fv). The density qm, the bulk modulus Km, the
shear modulus Gm, and the Lamé’s constant km for the dense

crystalline silicon matrix were calculated from previously

reported MD simulations using the Stillinger-Weber poten-

tial as 2300 kg=m3, 71.5 GPa, 52.4 GPa, and 36.6 GPa,

respectively.42 For comparison, the experimental data for

qm, Km, Gm, and km were 2329 kg=m3, 59.6 GPa, 79.6 GPa,

and 6.5 GPa, respectively.48 Then, the phonon group veloc-

ities vg,L, vg,T, and vg of nanoporous silicon were calculated

using Eqs. (6) to (9). Finally, considering that the minimum

system length Lmin simulated was 50 nm, i.e., 1=Lz< 0.02

nm�1, the maximum thermal conductivity kmax predicted by

Eq. (5) ranged between 3 and 5 W=m�K for systems with po-

rosity between 8% and 38%. Note that the same conclusions

were reached by using the above experimentally measured

elastic properties.48

Figures 5(a) and 5(b) show the predicted values of 1=keff

at 500 K as a function of 1=Lz for crystalline nanoporous sili-

con with porosities of 27% and 38%, respectively. Systems

satisfying 1=Lz< 0.02 nm�1 were used for linear extrapola-

tion. Except for systems with 8% porosity, the predicted

thermal conductivity of bulk nanoporous silicon keff

Lz !1ð Þ was less than or equal to kmax, confirming the va-

lidity of the linear extrapolation of 1=keff versus 1=Lz.
45 For

systems with 8% porosity, simulations of systems signifi-

cantly longer than those simulated would be required.

D. Physical modeling

1. Effective medium approximations

The effect of porosity on various properties of porous

materials is usually accounted for by some effective medium

approximations (EMAs). Numerous EMAs have been devel-

oped in order to predict the effective thermal conductivity

keff of porous materials.25,49 Here, the pores in nanoporous

silicon are so small that their thermal conductivity can safely

be neglected as explained in Refs. 25 and 50. Then, EMAs

typically provide expressions for keff as the product of the

matrix thermal conductivity km and a function of porosity

W(fv), i.e., keff¼ kmW(fv). For example, the Russell model51

gives WRussellðftÞ ¼ ð1� f 2=3
t Þ=ð1� f 2=3

t þ ftÞ while the

Eucken model52 uses WEuckenðftÞ ¼ ð1� ftÞ=ð1þ ft=2Þ.
These models were previously used to model the effective

thermal conductivity of microporous silicon with periodi-

cally aligned cylindrical pores and porosity of 23% and

26%.53,54 Note that these two functions behave similarly and

the maximum relative difference between them is about 6%

for porous Si of any porosity. In addition, the coherent poten-

tial model is expressed as,55,56

keff ¼ kmWcpðftÞ ¼ kmð1� 1:5ftÞ: (10)

This model was first derived by Landauer55 for the effective

dielectric properties of random mixtures of spherical inclu-

sions in a continuous matrix. The main assumption was that

FIG. 5. Predicted values of 1=keff of crystalline nanoporous silicon at 500 K

as a function of 1=Lz for porosity (a) fv¼ 27% and (b) fv¼ 38% along with

various pore diameter dp and simulation cell cross-section Ac. Linear extrap-

olation used data satisfying 1=Lz< 0.02 nm�1 (Lz> 50 nm).
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“a region of type 1 is not preferentially surrounded by either
other regions of type 1 or by regions of type 2.”55 Therefore,

porous materials having very small or very large porosity do

not satisfy this assumption. Cahill and Allen56 successfully

applied the coherent potential model to predict the thermal

conductivity of Vycor glass from 30 to 300 K with pore di-

ameter and porosity approximately equal to 10 nm and 30%,

respectively. More recently, this model was also found to

agree well with predictions of thermal conductivity of amor-

phous mesoporous silica at 300 K obtained by non-

equilibrium MD simulations.25

Finally, note that the above EMAs do not directly

account for the effect of pore diameter. However, Figs. 3 and

5 show that dp has significant effect on keff for a given poros-

ity. Thus, the coherent potential model and most other

EMAs, in their conventional form keff¼ kmW( fv), are inad-

equate to predict the effective thermal conductivity of crys-

talline nanoporous media.

2. Effect of interfacial area concentration

It has been established that the reduction of thermal con-

ductivity of nanocomposite material is mainly due to phonon

scattering by interfaces.11,57–59 The phonon-interface scatter-

ing rate is known to increase with increasing interfacial area

concentration Ai (m�1) defined as the surface area of inter-

face per unit volume of nanocomposite material.57–59 In po-

rous material with spherical pores arranged in a simple cubic

lattice, the interfacial area concentration can be expressed as

Ai¼ 6fv=dp. Thus, for a given porosity fv, Ai increases with

decreasing pore diameter dp. Figure 3 suggests that keff

decreased not only with increasing fv but also with decreas-

ing dp and thus with increasing Ai.

Moreover, the systems simulated in the present study

fell in the ballistic regime characterized by l=dp� 10.60

Then, the phonon hydrodynamics model given by Eq. (1) for

spherical pores simplifies to,

keff ¼ km
1

1:3l 1þ 3ffiffi
2
p

ffiffiffiffi
ft
p	 


Ai

: (11)

The relative difference between predictions by Eqs. (1) and

(11) for nanoporous silicon systems investigated in the pres-

ent study was less than 1%. More importantly, Eq. (11) sug-

gests that the thermal conductivity of nanoporous silicon is

inversely proportional to Ai.

Similarly, for cylindrical pores with the same ranges of

pore diameter and porosity explored in this study, the ballis-

tic diffusive model given by Eq. (2) simplifies to

keff ¼ kma
ffiffiffiffi
ft
p

FðftÞ=Ai, where for periodically arranged

cylindrical pores Ai¼ 4fv=dp. Here also, the thermal conduc-

tivity appears to be inversely proportional to Ai.

Unfortunately, predictions by Eq. (11) underestimated

the thermal conductivity computed by our MD simulations

by about 90% at 500 K using km¼ 80 W=m�K for high purity

crystalline silicon35 and l ^ 140 nm.33 To improve the pre-

dictions of Eq. (11), the MFP l could be treated as a fitting

parameter. Alternatively, a new physics-based model was

developed in the present study.

3. Modeling

This section presents a model for the effective thermal

conductivity of mesoporous Si based on kinetic theory and

able to simultaneously account for the effects of porosity,

interfacial area concentration, and system length. The kinetic

theory expresses the thermal conductivity km of the dense

matrix in nanoporous materials as,61

km ¼
1

3
Ct;mt2

g;mstot: (12)

The total relaxation time stot includes the contributions from

(i) phonon Umklapp scattering sU as well as phonon scatter-

ing by (ii) pores sph�p, and (iii) film boundaries sph�b. Here,

Umklapp scattering rate was estimated based on the phonon

MFP in bulk dense silicon as sU
�1 ¼ vg;m=l where l ^ 140

nm.33 The relaxation time for phonon scattering by large

defect aggregates62 was adopted to account for phonon-pore

scattering. It was expressed as sph�p
�1 ¼ vg;mnpd2

p=4, where n
is the number density of pores of diameter dp. For spherical

pores, n ¼ 6fv=ðpd3
pÞ so that the phonon-pore scattering rate

can be expressed as sph�p
�1 ¼ vg;mAi=4. This corresponds to an

average phonon-pore scattering MFP of 4=Ai in good agree-

ment with that derived by Minnich and Chen57 for phonon-

interface scattering in nanocomposites. In addition, phonon-

boundary scattering can be expressed as sph�b
�1 ¼ vg;mLz=4,35

where Lz corresponds to the thickness of nanoporous silicon

thin films. In nanoporous materials, Umklapp scattering is

typically negligible compared with phonon scattering by

pores and by film boundaries, i.e., s�1
U � sph�p

�1 and

s�1
U � sph�b

�1 . These conditions can also be formulated in

terms of pore number density or porosity as n� 4=ðlpd2
pÞ or

fv� 2dp=(3l) and in terms of system length as Lz� l, respec-

tively. In the present study, the number density of pores n

FIG. 6. Effective thermal conductivity keff as a function of (1� 1.5 fv)=
(Ai=4þ 1=Lz) of all crystalline nanoporous silicon systems simulated at

500 K for porosity fv ranging between 8% and 38%, pore diameter dp

between 1.74 and 5.86 nm, and system length between 13 and 130 nm. Pre-

dictions by Eq. (15) are also shown with b¼ 8.40� 108 W=m2�K.
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was at least 10 times larger than 4=ðlpd2
pÞ for all systems

simulated. This verified that Umklapp scattering was negligi-

ble compared with phonon scattering by pores. Then, accord-

ing to Matthiessen’s rule, the total relaxation time stot can be

expressed as,35

1

stot
¼ 1

sph�p
þ 1

sph�b
¼ tg;m

Ai

4
þ 1

Lz

� �
: (13)

Combining EMAs, accounting for the effect of porosity on keff,

with the matrix thermal conductivity km, accounting for the

effect of phonon-pore scattering, the effective thermal conduc-

tivity of nanoporous silicon systems can be expressed as,

keff ¼ kmWðftÞ ¼
1

3
Ct;mtg;m

WðftÞ
Ai=4þ 1=Lz

: (14)

It is evident that as Lz tends to infinity, the bulk effective

thermal conductivity keff is inversely proportional to Ai in

agreement with the phonon hydrodynamic model for spheri-

cal pores28 and the ballistic diffusive model for cylindrical

pores in the ballistic regime.27

Furthermore, the specific heat Cv;m and the group veloc-

ity vg,m of the silicon matrix may differ from those of dense

bulk silicon due to band folding and phonon confinement

effect.63,64 In fact, Hopkins et al.64 recently observed, using

the plane-wave expansion technique,65 a large reduction in

phonon group velocity in single crystalline nanoporous sili-

con films made by phononic crystal patterning. The main

purpose of the present study was to investigate the scaling

laws predicting the effects of morphological parameters on

the thermal conductivity of nanoporous silicon. To facilitate

the scaling analysis and considering the approximate nature

of potentials used in MD simulations, the product Cv,mvg,m=3

was substituted by a semiempirical parameter b so that the

effective thermal conductivity can be written as,

keff ¼ b
WðftÞ

Ai=4þ 1=Lz
; (15)

where b depends only on temperature, on the matrix materi-

als, and possibly on the choice of interatomic potential. Note

that equilibrium MD simulations with the Green-Kubo theo-

rem could be used to predict phonon dispersion and density

of state as well as specific heat and group velocity in silicon

nanostructures.63 However, this falls outside the scope of the

present study.

Figure 6 plots keff from the MD simulations as a function

of (1� 1.5fv)=(Ai=4þ 1=Lz) for all values of porosity, pore

diameter, and system length investigated in the present study

(Table I). It is remarkable that nearly all data points previ-

ously scattered (see Figs. 3 and 4) collapsed onto a single

straight line. This indicates that the present model success-

fully captured the effects of various system morphology

simultaneously. Here also, the systems with porosity fv¼ 8%

showed relatively large deviations from the other systems.

This could be attributed to the fact that the small porosity

systems do not satisfy the assumption of the coherent poten-

tial model,55 as previously discussed. In addition, Fig. 6

FIG. 7. Effective bulk thermal conductivity keff as a function of (1� 1.5

fv)=(Ai=4) for nanoporous silicon with (a) spherical pores (present study) at

500 K, (b) periodically arranged cylindrical pores at 300 K (Ref. 11), and (c)

vacancy defects (Ref. 26) for various values of porosity and pore diameter.

Predictions by Eq. (15) are also shown with (a) b¼ 8.40� 108 W=m2�K, (b)

b¼ 5.38� 108 W=m2�K, and (c) b¼ 6.26� 108 W=m2�K.
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shows that the effective thermal conductivity keff for all sys-

tems can be linearly related to the present model by using a

slope of b¼ 8.40� 108 W=m2�K with a coefficient of deter-

mination R2¼ 0.99. Note that using the Russell model

WRussell(fv) resulted in b¼ 7.72� 108 W=m2�K with

R2¼ 0.97.

Figure 7 plots the effective bulk thermal conductivity

keff as a function of (1� 1.5fv)=(Ai=4) for nanoporous silicon

with (a) spherical pores computed in the present study as

well as, (b) periodically arranged cylindrical pores,11 and (c)

vacancy defects26 for various values of porosity and pore di-

ameter reported in other MD simulations. Note that the latter

used the Tersoff potential instead of the Stillinger-Weber

potential. This suggests that the linear relationship between

keff and (1� 1.5fv)=(Ai=4) is independent of the choice of

potential although the coefficient of proportionality b may

not. Also, note that in Lee et al.’s study,26 the 0.15% va-

cancy concentration did not satisfy the ballistic transport

assumption and was not included in the plot. Here also, the

effective bulk thermal conductivity keff was inversely propor-

tional to Ai and followed the coherent potential model

(1� 1.5fv) for the three types of nanostructures considered.

The coefficient of proportionality between keff and

(1� 1.5fv)=(Ai=4) was found to be b¼ 5.38� 108 W=m2�K
and b¼ 6.26� 108 W=m2�K for nanoporous Si with cylindri-

cal pores and vacancy defects, respectively. The difference

in the value of b can be attributed to difference in tempera-

ture (500 or 300 K), interatomic potential (SW or Tersoff),

pore or vacancy shapes, as well as spatial arrangement.

V. CONCLUSION

This study established that the effective thermal conduc-

tivity keff of crystalline nanoporous silicon predicted from

non-equilibrium MD simulations was strongly affected by

the pore interfacial area concentration Ai, the porosity fv, and

the system’s length Lz. In addition, a modified effective me-

dium approximation combining kinetic theory and the coher-

ent potential approximation suggested that keff was

proportional to (1� 1.5fv) and inversely proportional to the

sum (Ai=4þ 1=Lz). This model agreed with MD simulation

predictions for the thermal conductivity of crystalline nano-

porous silicon with not only spherical pores (present study)

but also with cylindrical pores and vacancy defects, reported

in the literature.11,26 These results will be useful in designing

nanostructured materials with desired thermal conductivity

by tuning their morphology for various applications includ-

ing thermoelectric energy conversion.
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