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1 Introduction while the third term corresponds to the change of momentum
sed by external fields relating to the particle acceleration. Fi-
, the term ¢f,/dt)sc, On the right-hand side of Eq1) rep-
sents the restoration of thermodynamic equilibrium due to scat-
E%Fgg by electrons, holes, defects in the lattice, and phofitihs
ifferent formulations of the BTE have been developed in re-

During the last decade, heat transfer at microscale has been(@ﬁ
object of intense studid4,2]. The research effort has been driverfe
by important applications in microelectronics, thin films, nanom

terials, and short-pulse laser heating. The conventional appro

;?Jchhezztscgggﬁgtrlgnlgvzoglre T(?uli?smlgavT %?rzse%?plcer?er?gtlir(l)%alblrzw nt years to solve engineering problems. The first alternative for-

down when the lenath scale of the svstem is c%m arable to lation to the BTE for phonon transport has been developed by
9 Y P ajumdar[3], who recognized that the flux of energy per unit

energy carrier mean free path or when the time scale of the phy5|-e er unit area, per unit solid angle in the direcibrand per
cal process is smaller than the relaxation time of the heat carri(I,*r[r%t ;‘rz uenc inteyr\F/)aI aroune can t?e written as P
[2,3]. Then, transport of heat carriers must be treated in greater q y

details. 3
Heat is transported by carriers comprising of electrons, > = _ i > 2
phonons, and photons. Heat conduction is dominated by phonons (1S 0,0) 477; havpfy(r,s o) Dp(w) 2

in dielectric materials, predominantly by electrons in pure metals,
and by both phonons and electrons in impure metals or allblys wheres is the unit vector in the direction of carrier propagation,
In all cases, transport of the heat carriers is governed by the is the heat carrier energy, whilg andD,(w) are the speed of
Boltzmann transport equatigBTE). The density function of heat sound and the phonon density of states per unit volume for each
carriers can be described in a state space consisting not only of ladarization, respectively. The summation is over the three pho-
physical space but also of an abstract wavevector space. In i polarization statel3,4]. The resulting form of the BTE has
physical space, the state vector coordinates consist of the spatieén named the equation of phonon radiative trar&eRT) [3].
coordinates[e.g., ,y,z) in Cartesian coordinatés In the Another common approach used for electron transport consists
wavevector space, the system is characterized by its waveveaibsolving for one or several moments of the distribution function
k. Considering electron and phonon transport, the state v&tot6,7]. A partial differential equation for each moment can be de-
can be expressed &s-[rk,t]. Letf, be the distribution function "ved from the BTE to assure conservation of charge, momentum,
of the energy carriers in the polarization stateThe distribution 2nd energy resulting in the so-called hydrodynamic equations.
function f,(r K t) is assumed to be sufficiently smooth to allo fhey are the governing equations for the electron dersjty
du'ff I S ) nty . V‘4nomentumpe, and energyE, and can be derived by integrating
ifferentiation with respect to any of its variables as many tlme[ﬁe BTE over all frequencies after multiplying it by B
as necessaryb]. Then, the BTE can be expressed &b Iy P . .
=mgve, and E,=pg/2mg , respectively. Hydrodynamic equa-
tions are often solved instead of the BTE. The moment method
(1) has the advantage of reducing computational times, a valuable
sca feature in control and optimizatidi®]. However, the discrete for-

- - . . mulation has major drawbacks that have been discussed exten-
wherew andk are the group velocity vectduelocity of energy sively by Kumar zJind Ramkrishr{®,9]. In brief, the discrete for-

propagation and wavevector of the heat carriers, reSpeCtiVel}(hulation lacks ofinternal consistencgyi.e., some of the moments

The operatord, andV are the gradient operators in the physical ' ; ; . .
and wavevector space, respectively. The second term on the Igltt-the particle density functiori, {or of the spectral intensily

. ; ..~ _cannot be predicted accurately. The calculation is designed for
hand side of Eq(1) represents the advection of the OIIStrIbutIonc:ertain arbitrarily selected moments of the particle density func-

tion rather than for an estimate of the particle density function
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L. R of death. The advantages of the Monte Carlo method are its ability
Qe(r,t)= J evefe(r,€,t)D(€)de (3)  to handle complex problems in terms of geometry and spatial and
directional dependency without significantly increasing the com-
More recently, Cher{10] derived the ballistic-diffusion heat puting effort or the complexity of the formulatiofL7]. Major
conduction equations by dividing the phonon distribution functiograwbacks include: )1the higher computational cost than tradi-
into the carriers originating from the boundaries and the carriefisnal methods for relatively simple problems, tee difficulty to
originating from the medium. Governing equations and boundagpuple the method to other methods such as finite difference, 3
conditions for each componefitallistic or diffusg of the distri- the statistical error intrinsic to any statistical methods, anthd
bution have been derived from the BTE. inefficiency to deal with problems considering the radiative inten-
Even though the formulation of the thermal transport at microsity onto a small surface and/or a small range of solid angles.
cale has long been established, experiments of heat transfer atModest[21] addressed the last issue by using backward Monte
subcontinuum scale poses great challenges, and numerical si@grlo simulations.
lations have become critical to the fundamental understanding ofThe present study aims at presenting a new numerical scheme
the phenomena and to the engineering design of submicron elfg-solving thermal transport at submicron scales. We recognize
tronic deviceq11]. As recognized by different authof$,3], the that the BTE and subsequent equations fall in the framework of
major difficulty lies in solving the BTE or the subsequent equaopulation balance theory, whose mathematical formalism has
tions. been recently reviewed by Ramkrishfd. The modified method
Due to the analogy between the radiative transfer equation characteristics developed by Pilon and Viska[&2] for solv-
(RTE) and the Boltzmann transport equatif8l, the traditional ing multiphase particulate flows has been adapted to solve multi-
numerical methods employed for solving the radiative transfeimensional transient and steady-state microscale heat conduction
equation have been used to solve the ERRI1-13. For ex- problems. First, the numerical method is described. Then, test
ample, Joshi and Majumdat 2] used the Schuster-Schwarzchildproblems are solved and the numerical solutions obtained are
two-flux approximation to solve the transient and steady-state heampared with analytical or numerical solutions already reported.
conduction across a diamond thin film. In the case of steady-state
heat conduction along a dielectric thin film with specular phonon
reflection at the boundary, Klitsner et 4ll4] solved the BTE . .
using the Monte Carlo simulations while Majumdalt solved the 2 Governing Equations
EPRT using the discrete ordinate method of Kumar etldd]. In The BTE applies to both electron and phonon transport. How-
both cases, the dielectric thin film was assumed to be a grayer, the present study is limited to phonon transport in dielectric
medium. Traditional discrete ordinate methods have also beeaterials. In order to compare the present numerical method with
used by other researchés3]. More recently, Murthy and Mathur existing ones, the study focuses on the EHRBT This section
[11] proposed the use of unstructured solution-adaptive finite vakviews the assumptions traditionally made to make the problem
ume methods. Each one of these methods has some advantagathematically tractable. Then, the governing equation and the
and drawbacks. associated boundary conditions are derived.
Finite difference or finite volume methods are widely used in

engineering to solve partial differential equations. Numerical so-
lutions of relatively simple problems are readily and efﬁcnentl jnade for solving the EPRT for phonon transport at microscale in

found by using these techniques, particularly for steady staté’ gineering applications dealing with dielectric materials such as
However, major drawbacks include false scattering due to in- dgamond and silicon dioxidg3,6,7,10:

adequate spatial discretization of the transient BTE, which leadsl. Phonons are considered to be the only heat carriers.

to smearing of the wavefrofiL6], 2) the numerical instability that 2. Phonon transport is assumed to satisfy the Boltzmann trans-
may force one to reduce the time step or the finite volume dimen-  port equation. Regimes of heat conduction and conditions
sions, 3 the formulation and the computing requirements increase  for validity of the BTE have been discussed by Tien and
greatly for problems of complex geometry and anisotropic behav- Chen[1].

ior of the medium[17], and 4 the ray effect due to angular dis- 3. The Debye model is assumed to be valid, thtis

cretization can cause “large errors in the prediction of the equiva-, The phonon group velocity , is considered to be constant
lent temperature unless fine angular discretizations are used, (independent of frequency a’?’ld tigngith o= v s wherew
particularly at low acoustic thicknesses,” as recognized by Murthy ;o e speed of sound in the materials pfor polarlzalpnmﬁ
and Mathur[18]. The authors combined a ray-tracing technique directions. The dispersion relation is given hy,= v k and
with the finite volume method to improve predictions of the ' . . - oP P .
method][18]. the group velocity, b_elng constant, leads tddt=0. Physi-

The Qiscrete ordinate methd@OM) is another popular method ga:?é dpgfggﬂz dd\(/)vrl?ilgi?t:jnge;hﬁoth(\alztr trgriﬁggg;{ﬁvil\/:rt ttIEIeE
for solving the RTE or the BTE for neutrons and phonfdd.7]. dp d 0 by tor b y sig s y
The equation is solved for an arbitrary set of discrete directions. ominating range of frequency for heat transfef
The integrations over the solid angle are approximated by numeri-" The phonon modes of_frequency cannot be larger than the
cal quadrature. In multidimensional problems, spatial partial de- DePYe frequencyop defined ag4],

2.1 Assumptions. The following assumptions are usually

rivatives can be computed using finite volume methods. Then, the _kseo @)
DOM has the same advantages and drawbacks as finite volume “o=7g
methods. Specific drawbacks of the DOM includethie “ray where 6, is the Debye temperature. Physically, it corre-

effect” that may be significant at low optical thickness and for  sponds to the fact that phonons cannot assume wavelengths
transient simulations, as discussed in details by Murthy and smaller than twice the atomic spacifid.

Mathur [18], 2) the difficulty to deal with specularly reflecting « The number of energy levels per unit of energy range for each

boundaries since the reflected or transmitted beams might not co- polarization, the so-called density of states, is assumed to be
incide with the discrete ordinates) ghe arbitrary choice of the continuous, denote®,(w), and given by[4]

guadrature that may result in significantly different numerical re-

sults[19], 4) the method does not assure conservation of radiative 2 )
energy[20], and 5 false scattering. Dy(w)= 32,3 with  Oswswp (%)
Finally, solving transport equations by the Monte Carlo tech- Ve

nigue consists of tracing the history of a statistically meaningful 4. The polarization effects are negligible and all polarizations
random sample of particles from their point of birth to their point are treated identically.
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5. The single mode relaxation time approximation is used to ly=0T%m (11)
express the scattering term of the BTE, i[8,4],

1 Specularly Reflecting BoundariesA specularly reflecting
10 Shldu—1, boundary with an outward normal vectar corresponds to an
((7'_‘0) _o o_ 2 (6) adiabatic interface at whicHL1]
ot . N
o WO ) Lolo S0=1 (7S D) 12)

where ¢ is the polar angleu is the director cosine, i.e.,  _ o L i )
u=cos6, and!? is the equilibrium phonon blackbody radia-With S;=s—2(s-n)n andr, is the spatial coordinates of the
tion intensity. The phonon scattering rate-llis assumed to Poundary. Specularly reflecting boundaries represent an ideal be-
be the sum of the scattering rates associated gedttering Navior achieved by acoustically smooth surfaces, i.e., the surface
on lattice imperfections ¥/ and 2 three phonon inelastic foughness is much smaller than the phonon wavelength.
Umklapp scattering X{, . Even though the norm#N) three
phonon inelastic scattering processes indirectly influence en-
ergy transfer, they are negllected .here for. the sake of S|mplr§- Modified Method of Characteristics
ity, and to permit comparison with previous stud[&s11] o ) )
and validation of the method. Note that this assumption does The method of characteristics consists of transforming the par-
not reduce the genera”ty of the method since N process@ differential BTE into an Ordinary differential equation solved
can also be accounted for by using the relaxation time aplong the pathline of the heat carriers. The conventional imple-
proximation[3]. mentation(or direct marching methgdof the method of charac-

6. The medium and the scattering processes are assumed tdepistics is based on the Lagrangian formulation: the heat carriers
isotropiC, thus the relaxation time depends On|y on frere identified and located at initial tImE‘:to and followed at
quency] «(r, E): ()] [10]. subsequent time as they are transported. In 3D thermal transport,

7. The contribution of the optical phonons to heat transfer gowever, the deformation that the initial mesh undergoes as time
' neglected due to their small velocify] progresses leads to deterioration of the numerical sol{iidh

8. The phase of the lattice waves is not considered, thus ne-The ”?Od'f'?d methoq of charactensﬂ(}gr inverse marching
glecting interferences. method is an interpretation of the Lagrangian approach that over-
9. Thermal expansion is neglectgd. comes the difficulties related to mesh deformafid4]. Unlike the
) ] ) direct marching method, the inverse marching method uses a fixed
Following the above assumptions, the equation of phonons radigid of arbitrary shape. In the remaining of the present study, we
tive transfer(EPRT) can be derived from Eq¢l), (2), and(6) as  consider a Cartesian coordinate system for illustration purposes.

(3] However, the approach can be generalized to any system of coor-
1 (1 dinates. By definition, the total time derivative of,
_J’ I, du—1, =1,(x,y,2z,t) with respect to time in the direction(6,¢) can be
Mo . 2 ) @ written as
T v [ —
at § 7s(®) d, o, dxal, dyda, dzdl, "
At temperatures much lower than the Debye temperature, the oot Tdt ox dt oy dt oz (13)

recovery of the temperature from the intendify(r,»,t) can be

performed by defining an equivalent equilibrium temperatur\é/e further define the characteristic curves in the physical space as

from the following equation3,11]: dx )
oITEOT 1 [wofon(r _ @~ veineeoss g
—_— = I ,(r,t)sin #dgd¢pdw
m 47 Jo Jo Jo dy ) )
L ) E:vsmasmqs (15)
@D
=3 fo j71| o) dudw (8) dz
P cosf (16)
whereo is the Stefan-Boltzman constant for phonons, given by
Then, along the characteristic curves in they(z,t) space, the
m kg BTE can be written as
o= — )
40 43y 1
Note that Eq.(8) can be used, at any temperature, for gray me- DI 2 J,llwd’“_l‘“
dium calculations which neglect the spectral dependence of the D_tw: _— 17)
intensity[11]. (@)

where O, /Dt denotes the substantial derivative Igf, i.e., the

total time derivative along the pathline of the energy carriers.
Figure 1 shows a 3D computational cell in Cartesian coordi-
Thermalizing Boundaries. At a thermalizing boundary, the nates. The modified method of characteristics consists of deter-

temperature is prescribed. The interface absorbs all incidenining the coordinatesx(,,y,,z,) of the point in space from

phonons[23] and emits blackbody phonon radiation assumed tghere the particles located at the grid poirf, {yy ,z;) at timet

be at equilibrium at the prescribed temperatdie Thus, the + At originated from at time while traveling in the direction of

boundary conditions at the thermalizing boundaries yields the iseelar angled, and azimuthal angle, . In other words, for each

2.2 Boundary Conditions. We limit our study to thermaliz-
ing boundaries and specularly reflecting boundaries.

tropic spectral radiation intensity according to point of a specified grid, the pathline is projected rearward along
the characteristic curve to the initial data surface to determine the
| 3ho® (10) initial data point. For example, in Fig. 1 the point,(yyp,zc) IS
b,

w:m the point Q<i+1,yj+;,zk+l). The solid. line represents the section

of the characteristic curve along which the particle traveled from
For a gray medium, the thermalizing boundary condition for thecation ,,y,,z,) to location &, ,Yy,z.) during the time inter-
total intensity becomes val betweert andt+ At.
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(Xi,Yi+15Zks1) t+ At curve, i.e., the pointx,,y,,z,) is always in a computational cell

g (Xaymzo) =  adjacenttoX,,yy,Zc). Therefore, the time stefit for the entire
E pathline (XiYje15Zks1) calculation is determined by the equation,
(XiYjpZis1) : o (Xie1-YirZs1) Atzmin{ Xi+1_xi‘, yj+1V_Yj‘l Zk+1_zk] (18)
! g _ :
Et ¢ For a given frequencw,,, a polar angled,, an azimuthal angle
P S R {(XnoYnoZn) ¢, and for all internal grid pointsx, ,y, ,zc) where phonons are
o located at time+ At, the phonon’s positionx;, ,y,,,z,) at timet
N USRS YA SRR R (Xin,Yjei,z) IS calculated as
z b b )
|/ S Loy Xn=Xa— v Sin 6, COSg, At (29)
- L —yy— v sing, singA 2
X (Xth’Zk) (Xi+l’y_i’zk) Yn=Yp—vsintysing At (20)
Z,=2Z.— v COSH, At (21)

Fig. 1 Typical computational cell used for inverse marching
method containing the pathline of the phonons The values of the variablésandl , at point ,,Y,,z,) and time
t are obtained by Lagrangian interpolation using their values at
time t at the eight corners of the computational cell in which
The general block diagram of the numerical procedure for sol{Xn:YnZn) is located. Then, the ordinary differential Eq.7) is
ing the EPRT using the modified method of characteristics §lved forward in time by the fourth-order Runge-Kutta method at
shown in Fig. 2. First, temperature and spectral radiation intenslgfation &a .y .zc) and timet+ At at all interior points and out-
are set to their initial values across the computational domain. ffgw boundaries. The integrals appearing in E@.and(17) are
avoid numerical instabilities, it is necessary to insure that tigstimated by the 3/8 Simpson numerical integration mefRéfi
phonons do not leave the computational cell between the tim&inally, the boundary conditions are imposed in directions point-
andt+ At. In other words, each computational cell traveled by thi@g toward the medium. The calculations are repeated for all the

phonons should contain at least one point on the characterigligcretized values of frequenay,, polar angled,, and azi-
muthal angleg, . The temperature at all grid points is recovered

from Eq. (8) before the temperature and intensity fields are com-

puted at the next time step.

Initialize t=0, T=T, and 1,(8,$)=I, ,(T,) | The advantages and drawbacks of the modified method of char-
7 acteristics over other methods are the following:

Compute the time step At « Unlike finite-difference methods, in which the information

) propagates along coordinate lines, the method of characteris-
4'| t=t+At | tics propagates the information along the heat carriers’ path-
] lines and thus matches the physics of the energy transport,
_.l For a new value of @, | resulting in extremely accurate numerical results.
1 « It does not require any outflow boundary conditi¢@6]. For
_,l Fenasiew walieotl | this reason, the modlf_led method of characteristics is recom-
7 mended for hyperbolic equations such as the BTE, whose
solution has a distinct domain of dependence and range of
—’l For a new value of 6, | influence[25].
¥ » The method can be used for solving coupled equations such
| Compute the phonon group velocity vector | as the BTE for electrons, the radiative transfer equation for
3 photons, and/or the Maxwell's equations. Other numerical
Compute the coordinates (X,,y,,,Z,) schemes such as finite-difference or finite element methods
° can also be used in combination with the present method.
=2 + It can be used for both transient and steady-state calculations
iz with great accuracy and without problems of numerical insta-
P : X = bility.
= % * Unlike finite-volume methods, there is réa)g]ractical restriction
. 3 3 N on the aspect ratio of computational ¢ . Here, on the
Solve the characteristic equations to obtain the I, | < = contrary, trr)le cell size is solrély determined based on accuracy
al allinternal goints of Gime that requirements, and any arbitrary set of points can be used as
L2 the computational grid.
| Impose boundary conditions | « It may be more time consuming than other methods due to
interpolations and numerical integrations. However, the com-
putational time does not increase significantly as the geom-
etry becomes more involved, or coupling with other heat car-
riers or fluid flow takes place.
4 Results and Discussion
For validation purposes, the results obtained by the modified
4' Retrieve the temperature at t+At method of characteristics for a set of test problems have been
compared with analytical solutions or results reported in the lit-
Fig. 2 Block diagram of the numerical procedure for solving erature using different numerical schemes. The cases considered
the spectral EPRT by the modified method of characteristics are 1 transient and steady-state ballistic transportr@nsient and
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Dimensionless coordinate, z+*=z/L.
Fig. 4 Numerical solution for steady-state heat conduction in

the ballistic limit for a 400 nm thick gray gallanium arsenide
thin film with black bounding surfaces

Fig. 3 Numerical solution for transient heat conduction in the
ballistic limit for a 1 um thick gray diamond type lla thin film
with black bounding surfaces using different grids and 30 di-
rections

numerical results for the normalized temperatiifeas a function
of the dimensionless locatiog* for dimensionless timeg*
r—O.l and 1 for different spatial discretizations. The number of
JYscretizations in the direction does not affect the ability of the
code to capture the propagating front while the number of direc-
4.1 Ballistic Transport. In order to validate the numerical tions influences the accuracy on the retrieved temperature. Fur-
method described previously, transient and steady-state heat dbermore, the number of grid points in theandy directions had
duction in dielectric thin films in the ballistic transport limit isno effect, due to the symmetry of the problem, and 10 grid points
considered, i.e., phonon scattering is neglected. We further assumgge arbitrarily chosen. Good agreement with theoretical values is
that the spectral phonon intenslty is independent of wavelength observed at both times for 20 cells in théirection or finer grids
(gray behavior. Under these assumptions, the EPRT simplifies and more than 45 directions per quadrant with time stap

steady-state heat conduction across a diamond film, ar2D3
steady-state heat conduction along a gray thin film with specula
reflecting boundaries.

[11] =L/20v. The large number of directions is due to the fact that the
integral term is computed by numerical integration. As time in-

(9—|+17-VI =0 (22) creases, the temperature gradient across the film decreases and

at coarser grids can be used to capture the spatial change of tempera-

ture across the film. This must be compared with recent simula-
tions by Murthy and Mathuf11,18 who reported 100 cellsAt
Transient Calculations. Two-dimensional numerical simula- =L/1000v, and 8 discrete directions per quadrant. The authors
tions were performed for a 18mx1 um diamond type lla poly- used an unstructured finite volume scheme to solve the same test
hedral thin film initially at 300 K. At &0, the bottom temperature problem and recognized that “the problem is quite challenging
T(x,y,0)=T, is imposed to be 301 K while the top temperaturédrom a numerical solution point of view,” and that “good spatial
T, is maintained at 300 K. The boundary conditions at the theand temporal accuracy is required to minimize the numerical dif-
malizing boundaries in directions pointing toward the mediurfusion that tends to smear the step solution.” On the contrary, this
were I(x,y,O,t):oT‘l‘/w and I(x,y,L,t):oT‘z‘/w, respectively, Study shows the advantages of the modified method of character-
while symmetry boundary conditions were imposed at the OthﬁtiCS in that the method is unconditionally stable and both tran-
surfaces. The width of the thin film is considered much larger th&ient profile and wavefront are perfectly captured without any
its thickness so that heat conduction can be treated as 1D. Tfeeared front even with coarse grids.
temperature at each node was retrieved from the computed valu
of the total radiation intensity based on the expression

wherel is the total phonon intensity.

%teady-State Calculations Steady-state heat conduction
across a 400 nm thick gallium arsenide film with black bounding
o (1 1/4 surfaces in the ballistic limit is now considered. One face of the
%f 1(X,y,z,p,t)du (23) film is maintained at temperatufg(x,y,0)=T;=10 K while the

-1 other face is maintained aix,y,L)=T,=20K. The exact solu-
Furthermore, in order to simplify the presentation of the resultdon to this problem is known to be uniform across the film and
normalized temperatuf&*, timet*, and locatiorz* are defined, €qual toT(z)=[(T{+T3)/2]"*=17.075K with a discontinuity at

T(x,y,z,t)=

respectively, as the boundaries. The numerical results were obtained with<6110
grid and 45 directions per quadrant for a CPU time of less than 40
.ok T4(2)-T; L 0 . seconds on a 633 MHz Pentium Il microprocessor. Figure 4 com-
T(Z)=——— U=, and Z=2L (24) pares the numerical resuilts with the analytical solution and those

4 4
1= T2 reported in the literaturg¢28]. The maximum error between the
The computational domain was discretized in &Ngrid and Q two solutions is less than 0.6% compared to 2% obtained by Ma-
discrete ordinate directions; per quadrant with N and Q varying zumder and Majumddr28] using the Monte Carlo method. Note
from 20 to 40 and from 8 to 50, respectively. Figure 3 shows thhat an even better precision can be obtained by simulating a

Journal of Heat Transfer OCTOBER 2004, Vol. 126 / 739



——1=0.1
——1=1

—a— Steady state

— — Fourier's law

- - - - Ballistic Regime

Table 1 Physical properties of type Ila diamond 0.07% of B3¢ 1.00
isotope at room temperature  [3]
Property Value +
Stefan-Boltzmann constant, 50.47 W/nfK* =
Speed of soundy 12,288 m/s g 075
Impurity density, 0.154x 1079/m? s
Radius of lattice imperfection& 1.785 A =
Constant, A 163.94 5
Umklapp scattering constany, 1.58 E-
Debye Temperaturedp, 1860 K 3 050
wn
8
=
e

longer time or by increasing the number of directions. On th &
contrary, the Monte Carlo method contains intrinsic statistical eg
rors. Finally, the heat flux was computed and found to be constex
and independent of location.

0.25

4.2 One-Dimensional Heat Conduction Across a Diamond
Film.  We now consider 1D heat conduction across a diamor
type lla thin film with 0.07% impurity concentration éfC. The
film, of thicknessL, is initially at T=T,. At t=0, a temperature
differenceAT=1 K is imposed across the film, while the cooler

0.00

= I

0.00 0

25

0.50 0.75 1.00

Dimensionless location, z¥=z/L

surface is maintained at temperatig. Moreover, only scatter- Fig- 5 Numerical solution for transient heat conduction
ing by lattice imperfections and Umklapp scattering are consi@cross a1 pm thick diamond type lla thin film

ered[3]. The relaxation time for imperfection scatterimgis ex-
pressed af3]

diamond thin films having different thicknesses. One can see that

1
_azpnu

whereq is a constant close to unity; is the number of scatterings
site per unit volume, and is the scattering cross section ex-
pressed as

(25)

Tj

4

o=mR? (26)

wR
with  y=—
x'+1 v

the temperature gradient increases as the film thickness increases
and that the numerical results fall between the acoustically thin
(ballistic) and thick(Fourier’s law approximation limits. Similar
results have been previously reported in the literaft8r&l1,17 for
different temperatures and using other numerical schemes.

The present results confirm the good behavior of the numerical
scheme for both transient and steady-state calculations, account-
ing for scattering on a spectral basis. Note that the actual time, and
therefore the computational time, to reach steady-state increases

with R being the radius of the lattice imperfections. On the oth&¥ith the film thickness.

hand, the relaxation time due to Umklapp scatteringis ex-
pressed ag3]

Syl p( % 27
w=A o0 A T (27)
whereA and y depend on the materials, whi&, is the Debye
temperature defined & =h wp /kg . The overall relaxation time 1.00

4.3 Heat Conduction Along a Silicon Crystal Thin Film.
Phonon transport along a silicon crystal is considered in this sec-
tion and schematically described in Fig. 7. The thin film is as-
sumed to be a gray medium with a constant and uniform relax-

is defined as ¥s=1/7,+ 1/7y . Constants and properties required
to compute the relaxation times for diamond type lla with 0.07%
impurity concentration of°C were taken from the literaturg]

and are summarized in Table 1. A similar problem has been solvé

by Majumdar{3] using the discrete ordinate method proposed b 0.75 1

Kumar et al.[15] with 8 discrete directions per quadrant. More- &

u

over, the Stefan-Boltzmann constant for phonons is constant a g

Eq. (8) is valid only for low temperaturedless than 150 K for 5

diamond type lla Therefore, in the present study the initial tem- E‘ 0.50 |

peratureT, has been arbitrarily set to 100 K. 2
Following Majumdar’s work[3] and in order to cover the §

acoustically thin and thick regimes, three different film thick-2=

nessesl(=0.1um, 1 um, and 10um) have been considered for -2

S10

type lla diamond. The calculations were performed on a spectr § 0.25 T

basis over the frequency range from Odg . A converged solu- &
tion was obtained for a’$21 grid and 30 directions per quadrant, =
while the spectrum from 0 tep was discretized into 90 different

wavelengths. Figure 5 shows the transient evolution of the ten

—o— L=10pm
—o— L=1um
—=— L=0.1pum

= = - = Ballistic regime

— — Fourier's Law

perature profiles across aum thick diamond thin film. The re-
sults are plotted in terms of dimensionless temperafTife
=[T(z)—T,)/[T,—T4] and dimensionless time= »t/L. Quali-
tatively, they compare well with results reported in the literature
for To=300K [12].

0.00
0.00

0.25

0.50 0.75

Dimensionless location, z*=z/L

Fig. 6 Numerical solution for steady-state heat conduction

Figure 6 presents the steady-state temperature profiles acrassss a diamond type lla thin film of different thicknesses L
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z and 3 the present method, for a silicon film with thickness 1
Reflecting Boundaries pm and lengthC=10 um. The results are given in dimensionless
L form with T* given by Eq.(24) andy* =y/ L. Figure 8 shows the
/\ relative difference between results obtained by the present method
) o and those obtained by the Monte Caflif], and by the discrete
Ty Diamond thin film T, ordinate method3] for specularly reflecting boundaries. The re-
sults compare very well with simulations reported in the literature
\/ [3,14]. The relative error between the present method and the
0 Reflecting Boundaries — DOM is less than 2%, while that with the Monte Carlo method is
comparable to that between the DOM and the Monte Carlo
L method and stays below 6%. However, since no exact solution is
available it is not possible to determine which method is the most
Fig. 7 Schematic for heat conduction problem along a silicon accurate. Extension of the study to spectral diffuse surfaces and
crystal thin film of length L partially reflecting surfaces is straightforward. This test problem

demonstrates the capability of the numerical scheme to deal with
both 1D and 2D problems and with both black and specularly

ation time defined ass=A/v, whereA is the phonon mean free reflecting boundaries.
path that depends of the surface reflecfidji4] and the speed of 4 4 Dpiscussion. The objective of the present paper is to

sound in siliconw is equal to 6400 m/k29]. The lower(z=0) and  jemonstrate the capability of the modified method of characteris-

upper (z=L) surfaces are specularly reflecting while the egds yi-q 1, simulate microscale energy transport. Good agreement with
=0 andy= L are treated as black surfaces maintained at constq:llg7

o borted results was shown. Similar or better stability and predic-
temperatures much below the silicon Debye temperature of 8454, . hapility than existing methods has been demonstrated. The
Figure 8 compares the numerical results obtained byh#

. . numerical results have been obtained for 3D computational grids,
Monte Carlo method14], 2) the discrete ordinate meth¢8,15,  4n the program sequences, number of grid points, and directions

have not been optimized. The scheme can be viewed as a hybrid
method between the DOM and the ray tracing method. It is an

1.0 alternative to that used by Coelfi80] for the radiative transfer
£ 09 0 O Monte Carlo (Klitsner, 1988) equation. This section discusses trade-offs and compromises that
Fﬂ ’ —DOM (Majumdar, 1993) can be made to achieve better numerical efficiencies.
® os X X Present work First, the computational efficiency can be improved by approxi-
= e mating the integral present on the right-hand side of &@) by
& 0.7 numerical quadrature. For example, given the symmetry of the
2 06 above problems, the modified method of characteristics could
£ have been used to solve the Schuster-Schwarzchild two-flux ap-
;‘ 0.5 proximation by replacing the integral over all directions on the
i right-hand side of Eq(7) by the sum of the positive and negative
§ 04 1 component$17]. In general, the computationally costly numerical
g 0.3 + integration over solid angle can be replaced by a weighted sum
= over an arbitrary number of discrete directions like in DOM. This
5 02 T procedure can significantly reduce the computational time, par-
=] ticularly for multidimensional and spectral calculations. It is rec-
= 0.1 ommended for optimization, real time transient calculations, and
0.0 | | | | ‘ . control of microscale devices. However, one will be faced with

the same drawbacks inherent to the discrete ordinate method dis-
cussed in the Introduction. Similarly, the band approximation can
Dimensionless Distance, y*=y/L be used for spectral calculations, as performed by Murthy and
Mathur[11]. These approaches have not been retained here for the
7 sake of accuracy, but they could easily be implemented for more
complex problems or geometries.
L —e—present vs. DOM Moreover, as discussed previously, the simulated boundary con-
- present vs. Monte Carlo ditions were used in order to compare the results obtained by the
present method with those reported in the literature. More realistic
boundary conditions such a9 #iffusely reflecting opaque sur-
faces that are more appropriate for “acoustically rough” surfaces
and 2 partially diffuse and specular reflecting boundaries as en-
countered in superlattices constitute an extension of the present
3 work and can numerically be implemented with relative ease.
Finally, the present method is very well suited for parallel com-
24 puting, since the intensity at each node at any time step depends
explicitly and solely on the results obtained for the previous time
step. The computing time can theoretically be divided by the num-
ber of grid points by using up to one CPU per grid point. Paral-
; lelization can significantly speed up the computation of the tem-
0 1 f 1 1 perature field for real-time transient, multidimensional, and/or
0 01 02 03 04 05 06 07 08 09 1 coupled problems, as well as for steady-state transport in optically
(b) Dimensionless distance, y*=y/L thick media. In the diffusion approximation limit, when Fourier's
law prevails, the governing equation becomes parabolic for tran-
Fig. 8 Comparison of numerical simulations of heat conduc- sient and elliptic for steady-state heat conduction problg2b
tionalong a1l um thick and 10 mm long silicon crystal thin-film. Parabolic equations feature repeated characteristics also having a

0.0 01 02 03 04 05 06 07 08 09 1.0

—
)
<=

5T =& DOM vs. Monte Carlo

Relative error, %
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distinct domain of dependence and range of influence, but the T* =

signal propagates at infinite speed, unlike hyperbolic equations

dimensionless temperature,
T*(2)=(T(2)*+T9)/(T1+T3)

such as the BTE or the EPRZ5]. Elliptic equations have no real v = heat carrier group velocity vector, m/s
characteristics and their solutions at any grid point depend on the x = longitudinal location, m

solution at all the other grid points. For both parabolic and elliptic y = spanwise location, m

equations, other numerical methods appear to be more appropriate z = vertical location, m

than the present methd@5s). Greek Symbols
5 Conclusions A = mean free path of the heat carriers, m
v = speed of sounds, m/s

This paper has described in detail a new numerical method for . — energy of an individual heat carrier, J

solving multidimensional trans_,ient and steady-s_tate thermal_ trans- w = director cosineu=cog6)
port at subcontinuum scale with black or reflecting boundaries on ,, — phonon angular frequency, rad/s
a gray or spectral basis. The modified method of characteristics is ,,  — Debye frequency, rad/s

unconditionally stable, accurate, and compatible with other nu- = azimuthal angle

merical schemes and can be used for coupled problems employing ,, — number of scatterings site per unit volume
the same prespecified grid. The numerical solutions obtained for = scattering cross section of an impurity

1D and 2D heat conduction in dielectric thin films have been ,  _ Debye temperature, K

compared with the analytical solution and, when possible, with ?9 = polar angle
reported numerical results. Good agreement has been found con- Stefan-Boltzmann constant for phonons, WK

o =

firming the capability of the numerical procedure and the associ- 7, = relaxation time for impurity scattering, s

ated computer program. _ ry = relaxation time for Umklapp scattering, s
The numerical scheme developed in the present study could . — iota] relaxation time for scattering, s

easily be extended to complex 3D geometry. The advantage of the 7;
proposed method is that even the most complicated problem can ]
be solved with relative ease. As the problem becomes more reaHbscripts

istic (in terms of geometry and coupling with electron or photon o = refers to equilibrium

transport, the complexity of the formulation and the computa- b = refers to the boundary

tional effort increase much more rapidly for conventional ap- e = refers to electrons

proaches. Furthermore, the method could also be used &oid- j k = indices for the vector nodes of the computational grid
ing the RTE for emitting, absorbing, and scattering materials and  p = polarization state

2) the BTE for electrons and holes as well as coupled electron-

phonon-photon transport problems. It can be used for solving en-

ergy transport in subcontinuum regions in thermal or electricg%?e

contact with continuum regions where traditional methods can ferences

used. The method is particu|ar|y recommended for transient, mulfl] Tien, C. L., and Chen, G., 1994, “Challenges in Microscale Conductive and

= acoustic thickness;* =L/(7sv)

tidimensional, and/or coupled problems.
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