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This paper presents a new numerical scheme for simulating multidimensional tran
and steady-state microscale energy transport. The new method is based on the me
characteristics that follows heat carriers along their pathline. Unlike traditional metho
it uses a fixed computational grid and follows the heat carriers backward in time.
method 1) is accurate, 2) is unconditionally stable, 3) can deal with complex geome
without a large increase in computational cost, and 4) can be used for solving cou
equations using other numerical schemes. First, the numerical scheme is described.
simulations for transient and steady-state phonon transport in dielectric thin films
discussed. Numerical results are compared with analytical and reported numerical
tions and good agreement is obtained.@DOI: 10.1115/1.1795233#

Keywords: Heat Conduction, Microscale, Nanoscale, Heat Transfer, Boltzmann T
port Equation
n

o

e

r
a

n
n
a

t

o

um
Fi-

cat-

re-
for-
by

it

n,

ach
ho-

ists
on
e-

um,
ns.

g

-
hod
able

xten-

s

for
nc-
ion

e to0
1 Introduction
During the last decade, heat transfer at microscale has bee

object of intense studies@1,2#. The research effort has been drive
by important applications in microelectronics, thin films, nanom
terials, and short-pulse laser heating. The conventional appr
to heat conduction problems using macroscopic empirical la
such as Fourier’s law or Joule’s law of heat generation br
down when the length scale of the system is comparable to
energy carrier mean free path or when the time scale of the ph
cal process is smaller than the relaxation time of the heat car
@2,3#. Then, transport of heat carriers must be treated in gre
details.

Heat is transported by carriers comprising of electro
phonons, and photons. Heat conduction is dominated by pho
in dielectric materials, predominantly by electrons in pure met
and by both phonons and electrons in impure metals or alloys@4#.
In all cases, transport of the heat carriers is governed by
Boltzmann transport equation~BTE!. The density function of hea
carriers can be described in a state space consisting not only o
physical space but also of an abstract wavevector space. In
physical space, the state vector coordinates consist of the sp
coordinates @e.g., (x,y,z) in Cartesian coordinates#. In the
wavevector space, the system is characterized by its waveve
kW . Considering electron and phonon transport, the state vectSW

can be expressed asSW 5@rW,kW ,t#. Let f p be the distribution function
of the energy carriers in the polarization statep. The distribution
function f p(rW,kW ,t) is assumed to be sufficiently smooth to allo
differentiation with respect to any of its variables as many tim
as necessary@5#. Then, the BTE can be expressed as@6#

] f p

]t
1nW •¹xf p1

dkW

dt
•¹kf p5S ] f p

]t D
sca

(1)

wherenW and kW are the group velocity vector~velocity of energy
propagation! and wavevector of the heat carriers, respective
The operators¹x and¹k are the gradient operators in the physic
and wavevector space, respectively. The second term on the
hand side of Eq.~1! represents the advection of the distributio
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while the third term corresponds to the change of moment
caused by external fields relating to the particle acceleration.
nally, the term (] f p /]t)sca on the right-hand side of Eq.~1! rep-
resents the restoration of thermodynamic equilibrium due to s
tering by electrons, holes, defects in the lattice, and phonons@7#.

Different formulations of the BTE have been developed in
cent years to solve engineering problems. The first alternative
mulation to the BTE for phonon transport has been developed
Majumdar @3#, who recognized that the flux of energy per un
time, per unit area, per unit solid angle in the directionsW, and per
unit frequency interval aroundv can be written as

I v~rW,sW,v,t !5
1

4p (
p51

3

\vnpf p~rW,sW,v,t !Dp~v! (2)

wheresW is the unit vector in the direction of carrier propagatio
\v is the heat carrier energy, whilenp andDp(v) are the speed of
sound and the phonon density of states per unit volume for e
polarization, respectively. The summation is over the three p
non polarization states@3,4#. The resulting form of the BTE has
been named the equation of phonon radiative transfer~EPRT! @3#.

Another common approach used for electron transport cons
of solving for one or several moments of the distribution functi
@6,7#. A partial differential equation for each moment can be d
rived from the BTE to assure conservation of charge, moment
and energy resulting in the so-called hydrodynamic equatio
They are the governing equations for the electron densityne ,
momentumpW e , and energyEe and can be derived by integratin
the BTE over all frequencies after multiplying it by 1,pW e

5me* vW e , and Ee5pe
2/2me* , respectively. Hydrodynamic equa

tions are often solved instead of the BTE. The moment met
has the advantage of reducing computational times, a valu
feature in control and optimization@5#. However, the discrete for-
mulation has major drawbacks that have been discussed e
sively by Kumar and Ramkrishna@8,9#. In brief, the discrete for-
mulation lacks ofinternal consistency, i.e., some of the moment
of the particle density functionf p ~or of the spectral intensity!
cannot be predicted accurately. The calculation is designed
certain arbitrarily selected moments of the particle density fu
tion rather than for an estimate of the particle density funct
accurate enough for estimatingall moments of the population@5#.
For example, an important moment includes the energy flux du
electronsqW e expressed as,
3;
004 by ASME OCTOBER 2004, Vol. 126 Õ 735
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qW e~rW,t !5E evW ef e~rW,e,t !D~e!de (3)

More recently, Chen@10# derived the ballistic-diffusion hea
conduction equations by dividing the phonon distribution funct
into the carriers originating from the boundaries and the carr
originating from the medium. Governing equations and bound
conditions for each component~ballistic or diffuse! of the distri-
bution have been derived from the BTE.

Even though the formulation of the thermal transport at micr
cale has long been established@4#, experiments of heat transfer a
subcontinuum scale poses great challenges, and numerical s
lations have become critical to the fundamental understandin
the phenomena and to the engineering design of submicron
tronic devices@11#. As recognized by different authors@1,3#, the
major difficulty lies in solving the BTE or the subsequent equ
tions.

Due to the analogy between the radiative transfer equa
~RTE! and the Boltzmann transport equation@3#, the traditional
numerical methods employed for solving the radiative trans
equation have been used to solve the EPRT@3,11–13#. For ex-
ample, Joshi and Majumdar@12# used the Schuster-Schwarzchi
two-flux approximation to solve the transient and steady-state
conduction across a diamond thin film. In the case of steady-s
heat conduction along a dielectric thin film with specular phon
reflection at the boundary, Klitsner et al.@14# solved the BTE
using the Monte Carlo simulations while Majumdar@3# solved the
EPRT using the discrete ordinate method of Kumar et al.@15#. In
both cases, the dielectric thin film was assumed to be a g
medium. Traditional discrete ordinate methods have also b
used by other researchers@13#. More recently, Murthy and Mathu
@11# proposed the use of unstructured solution-adaptive finite
ume methods. Each one of these methods has some advan
and drawbacks.

Finite difference or finite volume methods are widely used
engineering to solve partial differential equations. Numerical
lutions of relatively simple problems are readily and efficien
found by using these techniques, particularly for steady sta
However, major drawbacks include 1! false scattering due to in
adequate spatial discretization of the transient BTE, which le
to smearing of the wavefront@16#, 2! the numerical instability that
may force one to reduce the time step or the finite volume dim
sions, 3! the formulation and the computing requirements incre
greatly for problems of complex geometry and anisotropic beh
ior of the medium@17#, and 4! the ray effect due to angular dis
cretization can cause ‘‘large errors in the prediction of the equ
lent temperature unless fine angular discretizations are u
particularly at low acoustic thicknesses,’’ as recognized by Mur
and Mathur@18#. The authors combined a ray-tracing techniq
with the finite volume method to improve predictions of th
method@18#.

The discrete ordinate method~DOM! is another popular method
for solving the RTE or the BTE for neutrons and phonons@3,17#.
The equation is solved for an arbitrary set of discrete directio
The integrations over the solid angle are approximated by num
cal quadrature. In multidimensional problems, spatial partial
rivatives can be computed using finite volume methods. Then,
DOM has the same advantages and drawbacks as finite vo
methods. Specific drawbacks of the DOM include 1! the ‘‘ray
effect’’ that may be significant at low optical thickness and f
transient simulations, as discussed in details by Murthy
Mathur @18#, 2! the difficulty to deal with specularly reflecting
boundaries since the reflected or transmitted beams might no
incide with the discrete ordinates, 3! the arbitrary choice of the
quadrature that may result in significantly different numerical
sults@19#, 4! the method does not assure conservation of radia
energy@20#, and 5! false scattering.

Finally, solving transport equations by the Monte Carlo tec
nique consists of tracing the history of a statistically meaning
random sample of particles from their point of birth to their po
736 Õ Vol. 126, OCTOBER 2004
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of death. The advantages of the Monte Carlo method are its ab
to handle complex problems in terms of geometry and spatial
directional dependency without significantly increasing the co
puting effort or the complexity of the formulation@17#. Major
drawbacks include: 1! the higher computational cost than trad
tional methods for relatively simple problems, 2! the difficulty to
couple the method to other methods such as finite difference!
the statistical error intrinsic to any statistical methods, and 4! the
inefficiency to deal with problems considering the radiative inte
sity onto a small surface and/or a small range of solid ang
Modest @21# addressed the last issue by using backward Mo
Carlo simulations.

The present study aims at presenting a new numerical sch
for solving thermal transport at submicron scales. We recogn
that the BTE and subsequent equations fall in the framework
population balance theory, whose mathematical formalism
been recently reviewed by Ramkrishna@5#. The modified method
of characteristics developed by Pilon and Viskanta@22# for solv-
ing multiphase particulate flows has been adapted to solve m
dimensional transient and steady-state microscale heat condu
problems. First, the numerical method is described. Then,
problems are solved and the numerical solutions obtained
compared with analytical or numerical solutions already report

2 Governing Equations
The BTE applies to both electron and phonon transport. Ho

ever, the present study is limited to phonon transport in dielec
materials. In order to compare the present numerical method
existing ones, the study focuses on the EPRT@3#. This section
reviews the assumptions traditionally made to make the prob
mathematically tractable. Then, the governing equation and
associated boundary conditions are derived.

2.1 Assumptions. The following assumptions are usuall
made for solving the EPRT for phonon transport at microscale
engineering applications dealing with dielectric materials such
diamond and silicon dioxide@3,6,7,10#:

1. Phonons are considered to be the only heat carriers.
2. Phonon transport is assumed to satisfy the Boltzmann tr

port equation. Regimes of heat conduction and conditio
for validity of the BTE have been discussed by Tien a
Chen@1#.

3. The Debye model is assumed to be valid, thus@4#

• The phonon group velocityvW p is considered to be constan
~independent of frequency and time! with vW p5npsW, wherenp
is the speed of sound in the materials for polarizationp in
directionsW. The dispersion relation is given byvp5npk and
the group velocity, being constant, leads to dkW /dt50W. Physi-
cally, phonons dominating the heat transport travel at
speed of sound which does not vary significantly over
dominating range of frequency for heat transfer@3#.

• The phonon modes of frequency cannot be larger than
Debye frequencyvD defined as@4#,

vD5
kBuD

\
(4)

where uD is the Debye temperature. Physically, it corr
sponds to the fact that phonons cannot assume wavelen
smaller than twice the atomic spacing@7#.

• The number of energy levels per unit of energy range for e
polarization, the so-called density of states, is assumed to
continuous, denotedDp(v), and given by@4#

Dp~v!5
v2

2p2np
3

with 0<v<vD (5)

4. The polarization effects are negligible and all polarizatio
are treated identically.
Transactions of the ASME
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5. The single mode relaxation time approximation is used
express the scattering term of the BTE, i.e.,@3,4#,

S]Iv

]t D
sca

5
Iv
02Iv

ts~v!
5

1

2
*21

1 Ivdm2I v

ts~v!
(6)

where u is the polar angle,m is the director cosine, i.e.
m5cosu, andI v

0 is the equilibrium phonon blackbody radia
tion intensity. The phonon scattering rate 1/ts is assumed to
be the sum of the scattering rates associated to 1! scattering
on lattice imperfections 1/t i and 2! three phonon inelastic
Umklapp scattering 1/tU . Even though the normal~N! three
phonon inelastic scattering processes indirectly influence
ergy transfer, they are neglected here for the sake of simp
ity, and to permit comparison with previous studies@3,11#
and validation of the method. Note that this assumption d
not reduce the generality of the method since N proces
can also be accounted for by using the relaxation time
proximation@3#.

6. The medium and the scattering processes are assumed
isotropic, thus the relaxation time depends only on f
quency@ts(rW,kW )5ts(v)# @10#.

7. The contribution of the optical phonons to heat transfe
neglected due to their small velocity@7#.

8. The phase of the lattice waves is not considered, thus
glecting interferences.

9. Thermal expansion is neglected@4#.

Following the above assumptions, the equation of phonons ra
tive transfer~EPRT! can be derived from Eqs.~1!, ~2!, and~6! as
@3#

]I v

]t
1vW •¹xI v5

1

2 E21

1

I vdm2I v

ts~v!
(7)

At temperatures much lower than the Debye temperature,
recovery of the temperature from the intensityI v(rW,v,t) can be
performed by defining an equivalent equilibrium temperat
from the following equation@3,11#:

s@T~rW,t !#4

p
5

1

4p E
0

vDE
0

2pE
0

p

I v~rW,t !sinududfdv

5
1

2 E0

vDE
21

1

I v~rW,t !dmdv (8)

wheres is the Stefan-Boltzman constant for phonons, given b

s5
p2

40

kB
4

\3n
(9)

Note that Eq.~8! can be used, at any temperature, for gray m
dium calculations which neglect the spectral dependence of
intensity @11#.

2.2 Boundary Conditions. We limit our study to thermaliz-
ing boundaries and specularly reflecting boundaries.

Thermalizing Boundaries.At a thermalizing boundary, the
temperature is prescribed. The interface absorbs all incid
phonons@23# and emits blackbody phonon radiation assumed
be at equilibrium at the prescribed temperatureT. Thus, the
boundary conditions at the thermalizing boundaries yields the
tropic spectral radiation intensity according to

I b,v5
3\v3

8p3n2@e\v/kBT21#
(10)

For a gray medium, the thermalizing boundary condition for
total intensity becomes
Journal of Heat Transfer
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Specularly Reflecting Boundaries.A specularly reflecting
boundary with an outward normal vectornW corresponds to an
adiabatic interface at which@11#

I v~rWb ,sW,t !5I v~rWb ,sW r ,t ! (12)

with sW r5sW22(sW•nW )nW and rWb is the spatial coordinates of th
boundary. Specularly reflecting boundaries represent an idea
havior achieved by acoustically smooth surfaces, i.e., the sur
roughness is much smaller than the phonon wavelength.

3 Modified Method of Characteristics
The method of characteristics consists of transforming the p

tial differential BTE into an ordinary differential equation solve
along the pathline of the heat carriers. The conventional imp
mentation~or direct marching method! of the method of charac-
teristics is based on the Lagrangian formulation: the heat carr
are identified and located at initial timet5t0 and followed at
subsequent time as they are transported. In 3D thermal trans
however, the deformation that the initial mesh undergoes as t
progresses leads to deterioration of the numerical solution@24#.

The modified method of characteristics~or inverse marching
method! is an interpretation of the Lagrangian approach that ov
comes the difficulties related to mesh deformation@24#. Unlike the
direct marching method, the inverse marching method uses a fi
grid of arbitrary shape. In the remaining of the present study,
consider a Cartesian coordinate system for illustration purpo
However, the approach can be generalized to any system of c
dinates. By definition, the total time derivative ofI v
5I v(x,y,z,t) with respect to timet in the direction~u,f! can be
written as

dI v

dt
5

]I v

]t
1

dx

dt

]I v

]x
1

dy

dt

]I v

]y
1

dz

dt

]I v

]z
(13)

We further define the characteristic curves in the physical spac

dx

dt
5n sinu cosf (14)

dy

dt
5n sinu sinf (15)

dz

dt
5n cosu (16)

Then, along the characteristic curves in the (x,y,z,t) space, the
BTE can be written as

DI v

Dt
5

1

2 E21

1

I vdm2I v

ts~v!
(17)

where DI v /Dt denotes the substantial derivative ofI v , i.e., the
total time derivative along the pathline of the energy carriers.

Figure 1 shows a 3D computational cell in Cartesian coor
nates. The modified method of characteristics consists of de
mining the coordinates (xn ,yn ,zn) of the point in space from
where the particles located at the grid point (xa ,yb ,zc) at time t
1Dt originated from at timet while traveling in the direction of
polar angleun and azimuthal anglef l . In other words, for each
point of a specified grid, the pathline is projected rearward alo
the characteristic curve to the initial data surface to determine
initial data point. For example, in Fig. 1 the point (xa ,yb ,zc) is
the point (xi 11 ,yj 11 ,zk11). The solid line represents the sectio
of the characteristic curve along which the particle traveled fr
location (xn ,yn ,zn) to location (xa ,yb ,zc) during the time inter-
val betweent and t1Dt.
OCTOBER 2004, Vol. 126 Õ 737
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The general block diagram of the numerical procedure for so
ing the EPRT using the modified method of characteristics
shown in Fig. 2. First, temperature and spectral radiation intens
are set to their initial values across the computational domain.
avoid numerical instabilities, it is necessary to insure that t
phonons do not leave the computational cell between the timt
andt1Dt. In other words, each computational cell traveled by th
phonons should contain at least one point on the characteri

Fig. 1 Typical computational cell used for inverse marching
method containing the pathline of the phonons

Fig. 2 Block diagram of the numerical procedure for solving
the spectral EPRT by the modified method of characteristics
738 Õ Vol. 126, OCTOBER 2004
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curve, i.e., the point (xn ,yn ,zn) is always in a computational cel
adjacent to (xa ,yb ,zc). Therefore, the time stepDt for the entire
calculation is determined by the equation,

Dt5minH Uxi 112xi

n U,Uyj 112yj

n U,Uzk112zk

n UJ (18)

For a given frequencyvm , a polar angleun , an azimuthal angle
f l , and for all internal grid points (xa ,yb ,zc) where phonons are
located at timet1Dt, the phonon’s position (xn ,yn ,zn) at time t
is calculated as

xn5xa2n sinun cosf lDt (19)

yn5yb2n sinun sinf lDt (20)

zn5zc2n cosunDt (21)

The values of the variablesT andI v at point (xn ,yn ,zn) and time
t are obtained by Lagrangian interpolation using their values
time t at the eight corners of the computational cell in whi
(xn ,yn ,zn) is located. Then, the ordinary differential Eq.~17! is
solved forward in time by the fourth-order Runge-Kutta method
location (xa ,yb ,zc) and timet1Dt at all interior points and out-
flow boundaries. The integrals appearing in Eqs.~8! and ~17! are
estimated by the 3/8 Simpson numerical integration method@25#.
Finally, the boundary conditions are imposed in directions po
ing toward the medium. The calculations are repeated for all
discretized values of frequencyvm , polar angleun , and azi-
muthal anglef l . The temperature at all grid points is recover
from Eq. ~8! before the temperature and intensity fields are co
puted at the next time step.

The advantages and drawbacks of the modified method of c
acteristics over other methods are the following:

• Unlike finite-difference methods, in which the informatio
propagates along coordinate lines, the method of charact
tics propagates the information along the heat carriers’ pa
lines and thus matches the physics of the energy transp
resulting in extremely accurate numerical results.

• It does not require any outflow boundary conditions@26#. For
this reason, the modified method of characteristics is reco
mended for hyperbolic equations such as the BTE, wh
solution has a distinct domain of dependence and range
influence@25#.

• The method can be used for solving coupled equations s
as the BTE for electrons, the radiative transfer equation
photons, and/or the Maxwell’s equations. Other numeri
schemes such as finite-difference or finite element meth
can also be used in combination with the present method

• It can be used for both transient and steady-state calculat
with great accuracy and without problems of numerical ins
bility.

• Unlike finite-volume methods, there is no practical restricti
on the aspect ratio of computational cells@27#. Here, on the
contrary, the cell size is solely determined based on accur
requirements, and any arbitrary set of points can be use
the computational grid.

• It may be more time consuming than other methods due
interpolations and numerical integrations. However, the co
putational time does not increase significantly as the geo
etry becomes more involved, or coupling with other heat c
riers or fluid flow takes place.

4 Results and Discussion
For validation purposes, the results obtained by the modi

method of characteristics for a set of test problems have b
compared with analytical solutions or results reported in the
erature using different numerical schemes. The cases consid
are 1! transient and steady-state ballistic transport, 2! transient and
Transactions of the ASME
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steady-state heat conduction across a diamond film, and 3! 2D
steady-state heat conduction along a gray thin film with specul
reflecting boundaries.

4.1 Ballistic Transport. In order to validate the numerica
method described previously, transient and steady-state heat
duction in dielectric thin films in the ballistic transport limit i
considered, i.e., phonon scattering is neglected. We further ass
that the spectral phonon intensityI v is independent of wavelengt
~gray behavior!. Under these assumptions, the EPRT simplifies
@11#

]I

]t
1nW •¹I 50 (22)

whereI is the total phonon intensity.

Transient Calculations. Two-dimensional numerical simula
tions were performed for a 10mm31 mm diamond type IIa poly-
hedral thin film initially at 300 K. At t50, the bottom temperature
T(x,y,0)5T1 is imposed to be 301 K while the top temperatu
T2 is maintained at 300 K. The boundary conditions at the th
malizing boundaries in directions pointing toward the mediu
were I (x,y,0,t)5sT1

4/p and I (x,y,L,t)5sT2
4/p, respectively,

while symmetry boundary conditions were imposed at the ot
surfaces. The width of the thin film is considered much larger th
its thickness so that heat conduction can be treated as 1D.
temperature at each node was retrieved from the computed v
of the total radiation intensityI based on the expression

T~x,y,z,t !5F p

2s E
21

1

I ~x,y,z,m,t !dmG1/4

(23)

Furthermore, in order to simplify the presentation of the resu
normalized temperatureT* , time t* , and locationz* are defined,
respectively, as

T* ~z* !5
T4~z* !2T2

4

T1
42T2

4
, t* 5

t

L/n
, and z* 5z/L (24)

The computational domain was discretized in a 103N grid and Q
discrete ordinate directionsm i per quadrant with N and Q varying
from 20 to 40 and from 8 to 50, respectively. Figure 3 shows

Fig. 3 Numerical solution for transient heat conduction in the
ballistic limit for a 1 mm thick gray diamond type IIa thin film
with black bounding surfaces using different grids and 30 di-
rections
Journal of Heat Transfer
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numerical results for the normalized temperatureT* as a function
of the dimensionless locationz* for dimensionless timest*
50.1 and 1 for different spatial discretizations. The number
discretizations in thez direction does not affect the ability of th
code to capture the propagating front while the number of dir
tions influences the accuracy on the retrieved temperature.
thermore, the number of grid points in thex andy directions had
no effect, due to the symmetry of the problem, and 10 grid po
were arbitrarily chosen. Good agreement with theoretical value
observed at both times for 20 cells in thez direction or finer grids
and more than 45 directions per quadrant with time stepDt
5L/20n. The large number of directions is due to the fact that
integral term is computed by numerical integration. As time
creases, the temperature gradient across the film decrease
coarser grids can be used to capture the spatial change of tem
ture across the film. This must be compared with recent sim
tions by Murthy and Mathur@11,18# who reported 100 cells,Dt
5L/1000n, and 8 discrete directions per quadrant. The auth
used an unstructured finite volume scheme to solve the same
problem and recognized that ‘‘the problem is quite challeng
from a numerical solution point of view,’’ and that ‘‘good spatia
and temporal accuracy is required to minimize the numerical
fusion that tends to smear the step solution.’’ On the contrary,
study shows the advantages of the modified method of chara
istics in that the method is unconditionally stable and both tr
sient profile and wavefront are perfectly captured without a
smeared front even with coarse grids.

Steady-State Calculations.Steady-state heat conductio
across a 400 nm thick gallium arsenide film with black bound
surfaces in the ballistic limit is now considered. One face of
film is maintained at temperatureT(x,y,0)5T1510 K while the
other face is maintained atT(x,y,L)5T2520 K. The exact solu-
tion to this problem is known to be uniform across the film a
equal toT(z)5@(T1

41T2
4)/2#1/4517.075 K with a discontinuity at

the boundaries. The numerical results were obtained with a 10311
grid and 45 directions per quadrant for a CPU time of less than
seconds on a 633 MHz Pentium III microprocessor. Figure 4 co
pares the numerical results with the analytical solution and th
reported in the literature@28#. The maximum error between th
two solutions is less than 0.6% compared to 2% obtained by M
zumder and Majumdar@28# using the Monte Carlo method. Not
that an even better precision can be obtained by simulatin

Fig. 4 Numerical solution for steady-state heat conduction in
the ballistic limit for a 400 nm thick gray gallanium arsenide
thin film with black bounding surfaces
OCTOBER 2004, Vol. 126 Õ 739
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longer time or by increasing the number of directions. On
contrary, the Monte Carlo method contains intrinsic statistical
rors. Finally, the heat flux was computed and found to be cons
and independent of location.

4.2 One-Dimensional Heat Conduction Across a Diamond
Film. We now consider 1D heat conduction across a diam
type IIa thin film with 0.07% impurity concentration of13C. The
film, of thicknessL, is initially at T5T0 . At t50, a temperature
differenceDT51 K is imposed across the film, while the cool
surface is maintained at temperatureT0 . Moreover, only scatter-
ing by lattice imperfections and Umklapp scattering are cons
ered@3#. The relaxation time for imperfection scatteringt i is ex-
pressed as@3#

t i5
1

awhn
(25)

wherea is a constant close to unity,h is the number of scattering
site per unit volume, andw is the scattering cross section e
pressed as

w5pR2S x4

x411
D with x5

vR

n
(26)

with R being the radius of the lattice imperfections. On the oth
hand, the relaxation time due to Umklapp scatteringtU is ex-
pressed as@3#

tU5A
T

vuD
expS uD

gTD (27)

whereA and g depend on the materials, whileuD is the Debye
temperature defined asuD5\vD /kB . The overall relaxation time
is defined as 1/tS51/t i11/tU . Constants and properties require
to compute the relaxation times for diamond type IIa with 0.07
impurity concentration of13C were taken from the literature@3#
and are summarized in Table 1. A similar problem has been so
by Majumdar@3# using the discrete ordinate method proposed
Kumar et al.@15# with 8 discrete directions per quadrant. Mor
over, the Stefan-Boltzmann constant for phonons is constant
Eq. ~8! is valid only for low temperatures~less than 150 K for
diamond type IIa!. Therefore, in the present study the initial tem
peratureT0 has been arbitrarily set to 100 K.

Following Majumdar’s work@3# and in order to cover the
acoustically thin and thick regimes, three different film thic
nesses (L50.1mm, 1 mm, and 10mm! have been considered fo
type IIa diamond. The calculations were performed on a spec
basis over the frequency range from 0 tovD . A converged solu-
tion was obtained for a 5321 grid and 30 directions per quadran
while the spectrum from 0 tovD was discretized into 90 differen
wavelengths. Figure 5 shows the transient evolution of the t
perature profiles across a 1mm thick diamond thin film. The re-
sults are plotted in terms of dimensionless temperatureT1

5@T(z)2T1#/@T22T1# and dimensionless timet5nt/L. Quali-
tatively, they compare well with results reported in the literatu
for T05300 K @12#.

Figure 6 presents the steady-state temperature profiles a

Table 1 Physical properties of type IIa diamond 0.07% of 13C
isotope at room temperature †3‡

Property Value

Stefan-Boltzmann constant,s 50.47 W/m2 K4

Speed of sound,n 12,288 m/s
Impurity density,h 0.15431026/m3

Radius of lattice imperfections,R 1.785 Å
Constant, A 163.94
Umklapp scattering constant,g 1.58
Debye Temperature,uD 1860 K
740 Õ Vol. 126, OCTOBER 2004
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diamond thin films having different thicknesses. One can see
the temperature gradient increases as the film thickness incre
and that the numerical results fall between the acoustically
~ballistic! and thick~Fourier’s law! approximation limits. Similar
results have been previously reported in the literature@3,11,12# for
different temperatures and using other numerical schemes.

The present results confirm the good behavior of the numer
scheme for both transient and steady-state calculations, acco
ing for scattering on a spectral basis. Note that the actual time,
therefore the computational time, to reach steady-state incre
with the film thickness.

4.3 Heat Conduction Along a Silicon Crystal Thin Film.
Phonon transport along a silicon crystal is considered in this s
tion and schematically described in Fig. 7. The thin film is a
sumed to be a gray medium with a constant and uniform re

Fig. 5 Numerical solution for transient heat conduction
across a 1 mm thick diamond type IIa thin film

Fig. 6 Numerical solution for steady-state heat conduction
across a diamond type IIa thin film of different thicknesses L
Transactions of the ASME
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ation time defined astS5L/n, whereL is the phonon mean free
path that depends of the surface reflection@3,14# and the speed of
sound in siliconn is equal to 6400 m/s@29#. The lower~z50! and
upper ~z5L! surfaces are specularly reflecting while the endsy
50 andy5L are treated as black surfaces maintained at cons
temperatures much below the silicon Debye temperature of 64

Figure 8 compares the numerical results obtained by 1! the
Monte Carlo method@14#, 2! the discrete ordinate method@3,15#,

Fig. 7 Schematic for heat conduction problem along a silicon
crystal thin film of length L

Fig. 8 Comparison of numerical simulations of heat conduc-
tion along a 1 mm thick and 10 mm long silicon crystal thin-film.
Journal of Heat Transfer
tant
K.

and 3! the present method, for a silicon film with thickness L51
mm and lengthL510 mm. The results are given in dimensionle
form with T* given by Eq.~24! andy* 5y/L. Figure 8 shows the
relative difference between results obtained by the present me
and those obtained by the Monte Carlo@14#, and by the discrete
ordinate methods@3# for specularly reflecting boundaries. The r
sults compare very well with simulations reported in the literatu
@3,14#. The relative error between the present method and
DOM is less than 2%, while that with the Monte Carlo method
comparable to that between the DOM and the Monte Ca
method and stays below 6%. However, since no exact solutio
available it is not possible to determine which method is the m
accurate. Extension of the study to spectral diffuse surfaces
partially reflecting surfaces is straightforward. This test probl
demonstrates the capability of the numerical scheme to deal
both 1D and 2D problems and with both black and specula
reflecting boundaries.

4.4 Discussion. The objective of the present paper is
demonstrate the capability of the modified method of characte
tics to simulate microscale energy transport. Good agreement
reported results was shown. Similar or better stability and pre
tion capability than existing methods has been demonstrated.
numerical results have been obtained for 3D computational gr
and the program sequences, number of grid points, and direc
have not been optimized. The scheme can be viewed as a hy
method between the DOM and the ray tracing method. It is
alternative to that used by Coelho@30# for the radiative transfer
equation. This section discusses trade-offs and compromises
can be made to achieve better numerical efficiencies.

First, the computational efficiency can be improved by appro
mating the integral present on the right-hand side of Eq.~17! by
numerical quadrature. For example, given the symmetry of
above problems, the modified method of characteristics co
have been used to solve the Schuster-Schwarzchild two-flux
proximation by replacing the integral over all directions on t
right-hand side of Eq.~7! by the sum of the positive and negativ
components@17#. In general, the computationally costly numeric
integration over solid angle can be replaced by a weighted s
over an arbitrary number of discrete directions like in DOM. Th
procedure can significantly reduce the computational time, p
ticularly for multidimensional and spectral calculations. It is re
ommended for optimization, real time transient calculations, a
control of microscale devices. However, one will be faced w
the same drawbacks inherent to the discrete ordinate method
cussed in the Introduction. Similarly, the band approximation c
be used for spectral calculations, as performed by Murthy
Mathur@11#. These approaches have not been retained here fo
sake of accuracy, but they could easily be implemented for m
complex problems or geometries.

Moreover, as discussed previously, the simulated boundary
ditions were used in order to compare the results obtained by
present method with those reported in the literature. More reali
boundary conditions such as 1! diffusely reflecting opaque sur
faces that are more appropriate for ‘‘acoustically rough’’ surfac
and 2! partially diffuse and specular reflecting boundaries as
countered in superlattices constitute an extension of the pre
work and can numerically be implemented with relative ease.

Finally, the present method is very well suited for parallel co
puting, since the intensity at each node at any time step dep
explicitly and solely on the results obtained for the previous ti
step. The computing time can theoretically be divided by the nu
ber of grid points by using up to one CPU per grid point. Par
lelization can significantly speed up the computation of the te
perature field for real-time transient, multidimensional, and
coupled problems, as well as for steady-state transport in optic
thick media. In the diffusion approximation limit, when Fourier
law prevails, the governing equation becomes parabolic for tr
sient and elliptic for steady-state heat conduction problems@25#.
Parabolic equations feature repeated characteristics also hav
OCTOBER 2004, Vol. 126 Õ 741
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distinct domain of dependence and range of influence, but
signal propagates at infinite speed, unlike hyperbolic equat
such as the BTE or the EPRT@25#. Elliptic equations have no rea
characteristics and their solutions at any grid point depend on
solution at all the other grid points. For both parabolic and ellip
equations, other numerical methods appear to be more approp
than the present method@25#.

5 Conclusions
This paper has described in detail a new numerical method

solving multidimensional transient and steady-state thermal tr
port at subcontinuum scale with black or reflecting boundaries
a gray or spectral basis. The modified method of characteristic
unconditionally stable, accurate, and compatible with other
merical schemes and can be used for coupled problems emplo
the same prespecified grid. The numerical solutions obtained
1D and 2D heat conduction in dielectric thin films have be
compared with the analytical solution and, when possible, w
reported numerical results. Good agreement has been found
firming the capability of the numerical procedure and the ass
ated computer program.

The numerical scheme developed in the present study c
easily be extended to complex 3D geometry. The advantage o
proposed method is that even the most complicated problem
be solved with relative ease. As the problem becomes more
istic ~in terms of geometry and coupling with electron or phot
transport!, the complexity of the formulation and the comput
tional effort increase much more rapidly for conventional a
proaches. Furthermore, the method could also be used for 1! solv-
ing the RTE for emitting, absorbing, and scattering materials
2! the BTE for electrons and holes as well as coupled electr
phonon-photon transport problems. It can be used for solving
ergy transport in subcontinuum regions in thermal or electr
contact with continuum regions where traditional methods can
used. The method is particularly recommended for transient, m
tidimensional, and/or coupled problems.
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Nomenclature

A 5 constant
Dp 5 density of states for polarization p, m23 s

f 5 heat carriers distribution function
h 5 Planck’s constant
\ 5 Planck’s constant divided by 2p,

1.054310234 J s/photon
I v 5 direction spectral phonon radiation intensity,

J m22 sr
kW 5 wavevector, m21

kB 5 Boltzmann constant, 1.38310223 J/K phonon
L 5 thin-film thickness, m
L 5 thin-film length ~see Fig. 7!
n 5 total number of heat carriers
pW 5 particle momentum, kg m s21

qW 5 heat flux vector, W m22

R 5 radius of impurities
rW 5 vector location
sW 5 unit vector
t 5 time, s

t* 5 dimensionless time,t* 5nt/L
T 5 temperature, K
742 Õ Vol. 126, OCTOBER 2004
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T* 5 dimensionless temperature,
T* (z)5(T(z)41T2

4)/(T1
41T2

4)
vW 5 heat carrier group velocity vector, m/s
x 5 longitudinal location, m
y 5 spanwise location, m
z 5 vertical location, m

Greek Symbols

L 5 mean free path of the heat carriers, m
n 5 speed of sounds, m/s
e 5 energy of an individual heat carrier, J
m 5 director cosine,m5cos~u!
v 5 phonon angular frequency, rad/s

vD 5 Debye frequency, rad/s
f 5 azimuthal angle
h 5 number of scatterings site per unit volume
w 5 scattering cross section of an impurity

uD 5 Debye temperature, K
u 5 polar angle
s 5 Stefan-Boltzmann constant for phonons, W m22 K24

t i 5 relaxation time for impurity scattering, s
tU 5 relaxation time for Umklapp scattering, s
ts 5 total relaxation time for scattering, s
t* 5 acoustic thickness,t* 5L/(tsn)

Subscripts

0 5 refers to equilibrium
b 5 refers to the boundary
e 5 refers to electrons

i, j, k 5 indices for the vector nodes of the computational g
p 5 polarization state
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