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Abstract

This paper presents a complete set of coupled equations that govern the bubble transport in three-dimensional gravity-driven

flow. The model accounts for bubble growth or shrinkage due to pressure and temperature changes as well as for multiple gas

diffusion in and out of the bubbles but neglects bubble coalescence, break-up, and nucleation. The model applies to glass melting

furnaces but it could be extended to other two-phase flow applications such as metal and polymer processing, passive cooling

systems, and two-phase flow around naval surface ships. Governing equations are given for the key variables which are, in the

present case, (1) the refining agent concentration, (2) the gas species dissolved in the liquid phase, and (3) the bubble radius, gas

molar fraction, and density function. The method of solution based on the backward method of characteristics is briefly discussed.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

The quality of glass products is degraded if gas

bubbles and unfused silica grains remain in the molten

glass as it is being pulled from the furnace [1,2]. Having

fewer defects, especially fewer remaining bubbles, has

become a major requirement in the new quality stan-
dards for many commercial glass products. For exam-

ple, in TV-glass production, a presence of six bubbles

per ton of glass results in 10% rejection rate of the final

product, and for new products such as High Definition

Television, the quality requirements are even more

stringent [3]. For automotive window glass, the most

demanding specification requires that gas bubbles be less

than 0.5 mm in diameter for transparency purposes [4].
Moreover, for automobile windshield glass, reducing

by half the defect density would increase the profitability

by more than 2 millions dollars per year per plant [4].
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Radiation is the main mode of heat transfer in glass

melting furnaces. As shown by Pilon and co-workers [5–

7] even a small number of entrapped bubbles can affect

the radiation characteristics of semitransparent media

provided that the bubble radius is much larger than the

wavelength of radiation and that the medium is weakly

absorbing. Moreover, these bubbles may accumulate or
rise to the free liquid surface and form a foam layer

which has significant negative effects on the energy effi-

ciency, the glass quality, the productivity, the pollutant

emissions, and the furnace integrity [8].

The goal of the present work is to develop a general

model for bubble transport, growth and shrinkage in

three-dimensional flows. The flow is assumed to be

laminar for the sake of simplicity. The bubbles can grow
or shrink due to diffusion of gases in and out of the

bubbles. The analysis presented is as general as possible

and can find applications in many materials processing

situations for at least one of the following reasons: (1)

for predicting the radiation transfer in liquid containing

bubbles, (2) for predicting the foam formation, and/or

(3) for improving the quality of manufactured products.

Applications to glass melting furnaces appear to be the
most natural one since glass is one of the most common

mail to: pilon@seas.ucla.edu


Nomenclature

A frequency factor in Arrhenius equation

C mass concentration

D diffusion coefficient

Deff jf effective diffusion coefficient of the foam layer

E activation energy

f fugacity

f1 bubble density function

g specific gravity

h bubble generation rate per unit volume in the state

space

H1 steady-state foam thickness
~i;~j;~k unit vectors in the physical space

j; k oxidation indices of the refining agent

jðx; yÞ superficial gas velocity at the glassmelt surface

kr refining reaction rate constant

K mass transfer coefficient

l number of gas species diffusing into and out of the

bubbles

_m mass flux

M refining agent ion

Mi molecular mass of gas species �i’
M mean molecular mass

p pressure

pi partial pressure of gas species �i’
q order of the refining reaction

r bubble radius

R universal gas constant¼ 8.314 J/molK

S solubility of the gas species in the molten glass

T temperature

t time

u projection of the velocity vector on the x-axis
v projection of the velocity vector on the y-axis
V volume

~v velocity vector

w projection of the velocity vector on the z-axis
wr vertical upward velocity of the bubble relative to

the glassmelt

~x spatial or external coordinates

x longitudinal location (see Fig. 1)

y spanwise location (see Fig. 1)

z local depth within the glassmelt (see Fig. 1)

Greek symbols

a parameter [Eq. (20)]

ci molar fraction of gas species �i’ inside the bubble

r surface tension

q density

l kinematic viscosity

Subscripts

b refers to the bubbles

batch refers to the batch

comb refers to the combustion space

diff refers to gas diffusion from the the glassmelt to the

gas bubbles

e equilibrium property at the bubble/glassmelt

interface

i index of the gas species

int refers to the surface of the glassmelt

M refers to the refining agent

n index of the bubble group

O2 refers to the oxygen

ref refers to refining reaction

1 refers to the bulk of the glassmelt

Notations

½X� molar concentration of species X in the glassmelt
_X derivative of property X with respect to time

Batch
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Fig. 1. Schematic of a glass melting furnace and the coordinate system.
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and available semitransparent media that is weakly

absorbing in the infrared spectral region from 0.2 to

4.5 lm [9,10].

1.1. General description of the glass melting process

Fig. 1 shows a schematic of a typical glass melting

furnace. During the glass making process, the glass
batch is introduced in the glass melting furnace where it

spreads due to convection currents in the molten glass

and melts due to the heating from the flames in the

combustion space and/or from Joule heating in electric

melters. Melting of raw batch materials is a complex

physicochemical process which involves a large num-

ber of chemical reactions and phase transformations

occurring over the wide temperature range from 800 to
1200 �C [11]. For example, in the typical container glass
manufacturing the basic and most important reaction

in the batch involve silica, sodium carbonate, and cal-

cium carbonate [12],
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CaCO3 þNa2CO3 ! Na2CaðCO3Þ2 around 550 �C;
ð1Þ

Na2CaðCO3Þ2 þ 2SiO2

! Na2O � SiO2 þ CaO � SiO2 þ 2CO2 600–830 �C;
ð2Þ

Na2CO3 þ SiO2 ! Na2 � SiO2 þ CO2 720–900 �C;
ð3Þ

2CaCO3 þ SiO2 ! CaO � SiO2 þ 2CO2 600–900 �C:
ð4Þ

Carbon dioxide gas is produced as a result of the last

three reactions and it mainly diffuses in the melt [1]. A

small fraction of the gas contributes to heterogeneous

nucleation of bubbles within or just below the batch.

Some of these bubbles pass through the batch and reach
the combustion space, while the others are trapped

in the melt and are carried with the convection currents

in the glass bath. Refining agents, which are involved in

the equilibrium redox reactions producing or consuming

gases, are usually added to the batch in order to remove

undesirable bubbles from the glassmelt [1,13,14]. Three

types of refining agents are commonly used [15]:

1. Variable-valence metal oxides which release only oxy-

gen, e.g., the antimony oxide (Sb2O5/Sb2O3), the ar-

senic oxide (As2O5/As2O3), and the cesium oxide

(CeO3/CeO2) [14,16–19].

2. Sulphates and sulphites which release a mixture of

sulphur dioxide (SO2) and oxygen [19]. For example,

sodium sulphate (Na2SO4) is used as a refining agent

at high temperatures (around 1800 �C) but it also
accelerates the melt formation if introduced in suit-

able proportions [20]. However, a detailed explana-

tion of the beneficial effects of sulphate is not yet

available.

3. Chlorides, bromides, and iodines which evaporate

at refining temperature [15].

The fusion of raw materials in the batch and the
fining reactions taking place in the glassmelt generate a

large number of gas bubbles. A fraction of these bubbles

is entrapped on the free surface of the glass to produce

the primary foam [12]. Resorption of the remaining

small fining gas bubbles, taking place during the con-

ditioning of the glassmelt as it flows from the hot spot in

the middle towards the throat of the furnace, also leads

to formation of the so-called secondary foam [12]. Vi-
sual observations and laboratory scale studies of furnace

operations indicate that the foam layers of various

thickness can cover a large fraction of the free surface

of the molten glass [12,21].
1.2. Literature review

Previous studies of the bubble behavior in glassmelt

were mainly concerned with individual bubbles in an

infinitely large quiescent pool of molten glass at a uni-

form temperature. The simplest of such studies consists

of studying the shrinkage or growth of a stationary

bubble containing a single gas [22,23] sometimes

accounting for refining reactions [16,17]. Other studies
were concerned with a stationary bubble containing

several gases with or without refining reactions [17,24,

25]. More realistic situations were investigated by ac-

counting for the bubble rise due to buoyancy for a single

gas bubble [2,26] or a bubble containing several gases

[27,28], including the presence of refining reactions

[14,15,18]. All of these studies show that in the presence

of refining agents, only two mechanisms are mainly
responsible for the removal of gas bubbles from the

melt. They are:

• First, in high temperature regions, the equilibrium of

the refining reaction shifts to gas production [1].

Then, the fining gas produced diffuses from the mol-

ten glass into already existing gas bubbles. In addi-

tion, gases already contained in bubbles are being
diluted by the incoming fining gas [1,29], and, in turn,

this enhances the diffusion of gases from the melt into

the growing bubbles. Diffusion of fining gases makes

bubbles grow in size until the buoyancy force is large

enough to enable them to rise to the glassmelt free

surface.

• Second, at low temperatures, the equilibrium of the

fining reaction shifts to gas consumption resulting
in gas diffusion from the bubbles to the melt. Small

bubbles, which did not yet grow to a sufficiently large

size, then dissolve in the glassmelt [19]. However, re-

cent studies [30,31] demonstrate that the refining

reaction involving antimony oxide in TV panel glass

was complete and irreversible, i.e., bubble shrinkage

due to gas consumption at low temperatures was

not clearly evident.

Even though modeling the behavior of individual

bubbles gives an insight into the mechanism of bubble

generation, growth, and shrinkage, it does not lead to

any conclusions about the overall performance of the

refining process. To accomplish the latter objective, one

approach is to trace bubbles as they grow and shrink

while being transported in the glass bath through re-
gions of different temperatures, gas concentrations and

pressures [1,13,29,30]. In this approach, bubbles are

introduced at the batch/glassmelt interface and are fol-

lowed individually. All the studies reported [1,13,29,30]

assume that probabilistic events such as the bubble

coalescence or breakage or bubble nucleation are neg-

ligible. Moreover, they neglected the interdependence of
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gas concentration in the glassmelt and mass transfer in
and out of the bubbles thus enabling them to solve

successively (1) the glass flow and thermal structure, (2)

the gas concentrations dissolved in the glassmelt, and (3)

the trajectory and growth or shrinkage of a large num-

ber of individual single or multicomponent gas bubbles.

The results are analyzed using statistical methods [1] in

order to assess the degassing efficiency of a new tank

design or new process conditions. The tracing method is
a useful technique to elucidate the bubble trajectories in

the molten glass. However, it is tedious to implement

and does not provide detailed information about the

number of bubbles and their size distribution at any

given location throughout the tank. Therefore, the

bubble-tracing approach cannot account for the cou-

pling between the concentration of gases dissolved in the

molten glass, the bubble density function, the growth
rate, and the glass flow and temperature fields. In

addition, it can hardly be used to predict foaming at the

surface of the glassmelt.

An alternative approach has been proposed by Un-

gan et al. [32] that consists of solving the conservation

equation for the total number of bubbles and taking into

account the effect of bubbles on the flow and tempera-

ture fields of the molten glass through the reduction of
the effective density of the two-phase mixture. However,

only monodispersed bubbles with constant radius were

considered and refining reactions and bubble growth

due to pressure change and gas diffusion were neglected.

In contrast, the population balance theory [33] allows

one to predict in detail the radius and gas content of

polydispersed bubbles and their density function

throughout the glass melter. The only attempts to em-
ploy population balance theory to the bubble dynamics

in glass tanks are due to Roi et al. [34] and Balkanli and

Ungan [35]. Roi et al. [34] proposed a two-dimensional

model for calculating the time dependence of the bubble

size distribution assuming that the bubble growth rate is

independent of the bubble radius. However, the authors

admitted that their model �contains substantial simpli-

fications and cannot be used for the exact quantitative
modeling of concrete melting vessels’. Balkanli and

Ungan [35] presented a more realistic study based on a

discretized formulation of the three-dimensional steady-

state population balance equation (PBE). However, the

practical application of both works appear to be very

limited since several highly simplifying assumptions

have been made such as: (1) refining reactions are not

considered, (2) bubble nucleation in the melt and at the
refractory walls is neglected, (3) each gas bubble con-

tains only one diffusing gas, and (4) the governing

equations for the gas concentration in the molten glass,

the bubble growth rate, and bubble population equation

are solved independently, i.e., the coupling between

these equations is neglected. Moreover, Balkanli and

Ungan [35] solved the discretized form of the bubble
population balance equation with a coarse grid in the
bubble radius space. The limitations of these approaches

have been discussed by Kumar and Ramkrishna [36]. In

brief, the discrete formulation lacks of internal consis-

tency, i.e., some of the moments of the bubble density

function f1 cannot be predicted accurately [36]. In other

words, the calculation is designed for certain selected

moments of the bubble density function rather than for

an estimate of the bubble density function accurate en-
ough for estimating all moments of the population

[33,37].

The purpose of the present work is to propose a

simplified yet realistic analysis of the bubble behavior in

glass melting furnaces by using the population balance

theory [33]. For the first time, it presents a complete set

of coupled conservation equations for (i) the refining

agent concentration, (ii) the concentrations of the gases
dissolved in the glassmelt, and (iii) the bubble density

function along with the associated boundary conditions

and the closure laws. The model accounts for the three-

dimensional convective transport of refining agent,

gases, and bubbles as well as for bubble growth due to

multiple gas diffusion and by taking into account bubble

nucleation along the refractory walls and refining reac-

tions. Finally, the method of characteristics and the
associated numerical scheme used for solving the pop-

ulation balance equation in terms of the bubble density

function f1 are briefly described.
2. Physical model

The present analysis simplifies the mathematical for-
mulation by decoupling the liquid and gas phase equa-

tions, i.e., the conservation equations for the liquid and

gas phases are solved independently and the momentum

and energy equations are solved only for the liquid

phase assuming that no bubbles are present. Moreover,

unlike previous studies [32,35,38] the study predicts the

bubble density function f1 of polydispersed bubbles and

enables the accurate post-processing calculation of all
the moments of the distribution.

2.1. Assumptions

In order to make the problem of bubble generation

and transport in the glass melting tank mathematically

tractable the following assumptions are made:

1. The effects of bubbles and dissolved gases on the

velocity and on the temperature fields as well as

on the thermophysical properties of the glassmelt

are not considered.

2. Bubbles are perfectly spherical in shape. This

assumption holds for air–molten glass flows at the

pressures encountered in the glass melting tank.
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3. The bubbles have negligible inertia (qb � q1). This
hypothesis is reasonable since very small bubbles are

present in the glass bath.

4. The components of the bubble velocity vector, are

taken to be the same as those of the molten glass

(u1; v1;w1), except in the vertical direction where

the buoyancy force has to be taken into account.

In other words, the slip between the bubble and

the glassmelt velocity is neglected except in the ver-
tical direction. This can be justified by the fact that

bubble are assumed to be small.

5. The molten glass is considered to be incompressible.

6. Local thermal equilibrium exists between the gas

and liquid phases, i.e., T1 ¼ Tb ¼ T .
7. Coalescence and break-up of bubbles are not

considered.

8. The gases in a bubble are perfectly mixed, and the
gas mixture inside the bubbles behave as an ideal gas.

9. The bubbles are assumed to contain l different gas

species.

0. The diffusing gas species �i’ is weakly soluble in the

condensed phase (i.e., the Henry’s law is applicable

at the bubble/glassmelt interface).

1. The pressure in the bubbles remains close to the

atmospheric pressure (maximum 5 atm [39]) so that
the ideal gas approximation for fugacity is valid.

2. The diffusing gases neither react with the condensed

phase nor undergo dissociation or association.

3. Neither chemical reactions between gases inside a

bubble nor dissociation of gas molecules are taken

into account.

4. The equilibration kinetics at the bubble surface are

assumed to be very rapid, so that the rate limiting
process is diffusion of gases in the melt.

5. The analysis presented is restricted to fining reac-

tions that involve variable-valence metal oxides

and produce oxygen only (in particular, the anti-

mony oxide Sb2O5).

The above assumptions are commonly used in the

treatment of bubble transport in three-dimensional
laminar gravity-driven flow of molten glass [13,29–

31,35]. Assumptions regarding the bubble velocity and

neglect of the effects of bubbles on the liquid phase flow

and temperature fields are the most severe one and their

limitations will be discussed later. They have been used

to decouple the conservation, momentum, and energy

equations of the liquid and gas phases. This approach

can be justified by the facts that bubble radius and
concentration are small and that the alternative ap-

proach solving the coupled governing equations using

the two-fluid model lacks mechanistic closure laws

accounting, for example, for the interfacial momentum

transfer [40]. Moreover, the effect of bubbles on the

thermophysical properties of the glassmelt such as

the dynamic viscosity, the thermal conductivity, and the
specific heat are not clearly known. This is particularly
true for the effect of bubbles on the radiation charac-

teristics of molten glass that have been addressed in

Refs. [5–7].
2.2. Refining agent concentration in the glassmelt

2.2.1. Refining reaction

As mentioned in the Introduction, the refining agent
is introduced into the melting tank as part of the batch.

As the agent is carried by the flow of the molten glass

and encounters high temperature regions, the following

reversible chemical reaction for variable-valence metal

oxides, written in a generalized form, takes place [41]:

Mkþ þ k � j
2

O2�
�

k � j
4

O2 þMjþ: ð5Þ

In the case of antimony oxide as a refining agent,

Kawachi and Kawase [13,30] and Kawachi and Kato

[31] showed that the rate of the backward reaction can

be neglected in the production of TV panel glass.
Therefore, the refining reaction can be considered as

irreversible with only the decomposition of the refining

agent taking place. By assuming a constant oxygen ion

activity and by defining q as the order of the refining

reaction occurring at constant volume, the rate of the

decomposition reaction can be expressed as [13,31]

� o½Mkþ�
ot

¼ k � j
4

� �
o½O2�
ot

¼ kr½Mkþ�q; ð6Þ

where the reaction rate constant kr is calculated from the

Arrhenius’ law [30,31],

kr ¼ A exp

�
� E
RT

�
: ð7Þ

The pre-exponential parameter A and the activation

energy E are constants determined experimentally.

2.2.2. Fining agent concentration

As follows from Eq. (6), the oxygen generation rate

depends on the concentration of the dissociated form of

the refining agent Mkþ. Therefore, the local refining

agent concentration ½Mkþ� is required in order to predict
the transport of oxygen dissolved in the glass bath as

well as the bubble generation rate. The species conser-

vation equation for the refining agent in the glassmelt

is given by

o½Mkþ�
ot

þr � ð~v1½Mkþ�Þ ¼ r � DMr½Mkþ�
� �

� kr½Mkþ�q;

ð8Þ
where ½Mkþ� is the molar concentration of metal ions

and ~v1 is the local glassmelt velocity vector. The first

term on the right-hand side of Eq. (8) accounts for the

metal ion diffusion through the melt, while the last term
represents the mass sink due to consumption of ions
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Mkþ by the refining reaction. Although the steady-state
solution of the problem is sought, the transient term

(o½Mkþ�=ot) has been retained for performing iterative

numerical integration which results in the steady-state

solution of the molar concentration ½Mkþ�.
2.2.3. Boundary conditions

Eq. (8) can be solved provided that boundary con-

ditions are defined. The batch consists of the raw
materials and cullet mixed with the refining agent in the

form of oxides such as Sb2O5. The dissociation of the

oxide occurs as the temperature increases leading to

production of cations and anions such as Mkþ and O2�,
respectively. Furthermore, assuming that the concen-

tration of the refining agent is uniform within the

batch, and the dissociation reaction at the batch/hot

molten glass interface is instantaneous, complete, and
irreversible, the concentration of the cations ½Mkþ�
should be constant everywhere at the batch/glassmelt

interface:

½Mkþ� ¼ constant at the batch=glassmelt interface:

ð9Þ
The specific value of ½Mkþ� depends on the process and

the type of glass produced; it can be determined from
operating data. Typically, antimony oxide is added in

0.1–1.0 wt% [19].

Finally, the gradient of the concentration ½Mkþ� is

taken to vanish at the glass/refractory walls and at the

free surface of the molten glass

r~n½Mkþ� ¼~0 at the glassmelt=refractories interface;

ð10Þ

r~n½Mkþ� ¼~0

at the glassmelt=combustion space interface: ð11Þ

Such boundary conditions can be justified by the fact

that the diffusion of the cations from the glassmelt to the

refractory walls and to the combustion space is negli-

gible.
2.3. Dissolved gas transport in the glassmelt

The growth and shrinkage of the bubbles is, in part,

caused by gas diffusion into and out of the bubbles due

to a difference in concentration of a given gas species

between the glassmelt and the gas bubbles. Therefore,

one needs to predict the local concentration of each

gas species dissolved in the glassmelt.
2.3.1. Species concentration equation

The transport of major gas species (O2, H2O, CO2,

and N2) in the glassmelt is governed by the following

general species concentration equation [13,42,43],
oC1;i

ot
þr � ð~v1C1;iÞ ¼ r � ðDirC1;iÞ þ _mref ;i � _mdiff ;i:

ð12Þ
Here, C1;i and Di are the mass concentration and the
diffusion coefficient of the dissolved gas species �i’ in the

glassmelt, respectively. The first term on the right-hand

side of Eq. (12) accounts for mass diffusion of the dis-

solved gas species �i’ in the glassmelt. The source term
_mref ;i is the volumetric gas production rate due to the

refining reaction, and the sink term _mdiff;i accounts for

the volumetric diffusion rate of gas species �i’ from the

glassmelt into the bubbles. As before, the transient term
½oC1;i=ot� has been retained to enable iterative numerical

integration of Eq. (12). Note that the last two terms on

the right-hand side of Eq. (12) have been neglected by

Balkanli and Ungan [42], while Kawachi and Kawase

[13] neglected only the last term.

As stated in assumption 2, the analysis presented here

is restricted to refining reactions that are complete and

irreversible and produce oxygen only. Then, the source
term _mref ;i vanishes in the case of all gas species but

oxygen. Solving Eq. (8) for ½Mkþ� enables one to com-

pute the oxygen generation rate per unit volume

of glassmelt at every location in the glassmelt since

kr½Mkþ�q ¼ 4

k � j

� �
1

MO2

oC1;O2

ot

¼ 4

k � j

� �
_mref ;O2

MO2

: ð13Þ

After some rearrangement,

_mref ;O2
¼ k � j

4

� �
MO2

kr½Mkþ�q: ð14Þ

The sink term _mdiff ;i is the total mass of dissolved gas

species �i’ diffusing from the glassmelt into the bubbles

per unit volume of the glassmelt and per unit of time

at location~x and instant of time t. It is given by

_mdiff ;ið~x; tÞ

¼
Z 1

0

� � �
Z 1

0

Z 1

0

KiðC1;i

�
� Ce;iÞf1 dr

�
dci;1 � � � dci;l�1;

ð15Þ

where KiðC1;i � Ce;iÞ is the total mass flow rate of the gas

species �i’ from the glassmelt across the surface of a

bubble of radius r expressed in [kg/s/bubble]. The con-

centration difference of gas species �i’ between the glas-

smelt and the bubble/glassmelt interface is (C1;i � Ce;i).
The bubble density function, i.e., the number of bubbles

per unit volume at location~x and time t having equiva-

lent radii that lie within the range r to r þ dr, and the

molar fraction of gas species �i’ ranges between ci and
ci þ dci with 16 i6 l� 1 is denoted f1 ¼ f1½~x; r; t;
ðciÞ16 i6 l�1�. Note that all the molar fractions of gas

species �i’ ci sum up to unity. Thus, cl can be expressed as
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a function of the remaining (l� 1) others and cannot be
treated as an independent variable. When C1;i > Ce;i the

gas species �i’ diffuses from the glassmelt in the bubbles,

whereas when C1;i < Ce;i it diffuses from the gas bubbles

to the glassmelt. Then, _mdiff ;ið~x; tÞ behaves either as a sink
(if C1;i > Ce;i) or as a source (if C1;i < Ce;i). To complete

the formulation, the closure laws must be specified as

well as the boundary conditions.

2.3.2. Closure laws

To make the problem well-posed, the total mass flow

of the gas species from the glassmelt to the bubbles and

particularly the mass transfer coefficient Ki, and the gas

concentrations at the bubble glassmelt interface, Ce;i,

should be defined.

According to Levich [44], for bubbles moving at low

relative velocities wr (Reynolds number much smaller
than unity) in a quiescent liquid containing diffusing

gases, the coefficient Ki can be expressed as

Ki ¼ 7:98D2=3
i w1=3

r r4=3 ðin m3=sÞ: ð16Þ
Here, Di is the diffusion coefficient of gas species �i’ in the

glassmelt while wr is the relative velocity of the bubble of

radius r with respect to the liquid. Extensive studies have

shown that in molten glass small bubbles behave like
solid sphere while large spherical bubbles behave like

fluid spheres (see Ref. [19] for an in-depth review).

According to the Stokes’ law for solid spheres, the small

gas bubbles rise in the molten glass with the relative

vertical velocity given by

wr ¼
2

9

q1gr
2

l1
: ð17Þ

On the other hand, in the case of large spherical bubbles

in the molten glass, the vertical velocity relative to the

molten glass follows the Hadamar–Rybczynski formula

[19,45]:

wr ¼
1

3

q1gr
2

l1
: ð18Þ

Unfortunately, there are no clear criteria regarding what

bubbles should be considered as large or small. Exper-

imental results suggested that bubbles of diameter larger

than 1 mm can be considered as large and their velocity

follows Eq. (18) [45]. In brief, the bubble rise velocity

with respect to liquid phase can be written as

wr ¼ a
q1gr

2

l1
; ð19Þ

where a is a parameter that depends on the bubble size

according to Eqs. (17) and (18):

a ¼ 2=9 for small bubbles ð2r6 1 mmÞ;
1=3 for large bubbles ð2rP 1 mmÞ:

�
ð20Þ

Note that Eqs. (17)–(19) correspond to the terminal (i.e.,

steady-state) velocity of spherical bubbles, i.e., the
transient motion of bubbles have not been considered
for the sake of simplicity and since its formulation is still

incomplete and quite involved [46].

In the present analysis, the magnitude of the mass

flux is assumed to be relatively small, so that the vari-

ations of mass concentration of gas species �i’ in both

phases are small as well. Then, the local quasi-equilib-

rium can be assumed to exist at the bubble/molten glass

interface [47], which implies the equality of the chemical
potentials of the diffusing gas on both sides of the

interface. This fact, combined with assumptions 3, 8 and

10, allows us to apply the generalized Henry’s law and

obtain the relationship between species concentrations

on both sides of the bubble/glassmelt interface [48],

Ce;i ¼ SiMifb;i: ð21Þ
Here, Ce;i is the concentration of the diffusing gas �i’ at
the interface (assumed to be at equilibrium) and Si is the
solubility of gas species �i’ in the glass melt, Mi is the

molecular weight of the species �i’, and fb;i the fugacity

of the species �i’ in the bubble. Provided that the pres-

sure is low enough and the ideal gas approximation

holds (assumption 9), the fugacity fb;i is approximately

equal to the partial pressure of species �i’ (pb;i) on the

gas side of the interface [39], so that

Ce;i ¼ SiMipb;i: ð22Þ
Using an ideal gas equation of state (assumption 7), the

partial pressure of the gas species �i’ in the bubble is

given by the Raoult’s law:

pb;i ¼ cipb; ð23Þ
where ci is the molar fraction of gas species �i’ inside the
bubble and is such that

Xl

i¼1

ci ¼ 1: ð24Þ

This results in the following jump condition for the

species concentrations at the bubble/glassmelt interface:

Ce;i ¼ ciSiMipb: ð25Þ
2.3.3. Boundary conditions

According to Balkanli and Ungan [35], the concen-
tration of carbon dioxide (CO2) at the batch/glassmelt

interface can be taken as being the saturation concen-

tration owing to the very high intensity of gas generation

due to fusion and melting of the raw batch materials.

Also, as speculated by Kawachi and Kawase [13], oxy-

gen (O2) is supplied in sufficiently large amounts from

the combustion space or by refining reactions taking

place in the batch to saturate the glassmelt beneath the
batch/glassmelt interface; similarly, for nitrogen (N2) in

air fired furnaces. However, transport of nitrogen can

be neglected in oxy-fired furnaces since it is present in

very small amount.
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glassmelt and the corresponding p–T diagram.
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At the glass/refractory wall interface, the gradient of
the concentration of gas species �i’ in the glassmelt

is assumed to vanish owing to the absence of mass

transfer through the refractory walls:

r~nC1;i ¼~0 at the glassmelt=refractories interface:

ð26Þ
In cases when the free surface of the glassmelt is in

direct contact with the combustion gases, the gas con-

centration at the free surface is given by the Henry’s law
[13,31,42], i.e.,

C1;i ¼ SiMipijint
at the glassmelt=combustion space interface; ð27Þ

where pijint is a partial pressure of gas species �i’ on the

combustion side of the glassmelt/combustion space

interface and is obtained from the calculation of the gas

species concentrations as well as the flow and tempera-

ture fields in the combustion space.
However, if the free surface is covered by a foam

blanket then the effect of foam should be accounted for

by equating the mass fluxes on both sides of the foam/

glassmelt interface, i.e.,

DiðrC1;iÞ ¼ Deff jf ;irðC1;iÞ
at the glassmelt=foam interface; ð28Þ

where Deff jf ;i is the effective diffusion coefficient of gas

species �i’ through the foam layer and Cijint is the gas

concentration at the foam/glassmelt interface. The left-

hand side of Eq. (28) represents the gas diffusion mass
flux on the glass side, while the right-hand side repre-

sents that on the foam side. Assuming that the foam

thickness is small, a linear approximation of the gas

concentration in the foam layer yields the following

mixed boundary condition,

DirC1;i ¼ Deff jf;i
Cijcomb � C1;i

H1

� �
at the glassmelt=foam interface; ð29Þ

where H1 is the steady-state foam thickness (see Ref.

[49]) and Cijcomb the gas concentration at the foam/

combustion space interface, i.e., at the top of the foam

layer. A model for the effective diffusion coefficient of

gas species �i’ through the foam layer, Deff jf;i can be

found in the literature [50].
2.4. Bubble density population

2.4.1. Single bubble environment

A schematic of a single bubble in mechanical and

thermal equilibrium with the surrounding molten glass
is given in Fig. 2, along with the corresponding p–T
diagram. The Young–Laplace equation relates the

pressure (pb) inside a spherical bubble of radius r with
the pressure (p1) in the surrounding glassmelt and the

surface tension r by

pb ¼ p1 þ 2r
r
: ð30Þ

Since the velocity of the viscous molten glass in the glass

bath is very small (of the order of 1 cm/s) the pressure

field in the tank can be assumed to be purely hydro-

static. Thus, the total pressure inside the bubble is ex-

pressed as

pb ¼ p0 þ q1gzþ
2r
r
; ð31Þ

where p0 is the pressure at the free surface of the molten
glass and z is the local depth within the glassmelt.

Based on assumption 5, the components of the bub-

ble velocity vector~vb can be expressed as

~vbð~xÞ ¼ u1~iþ v1~jþ ðw1 � wrÞ~k ð32Þ
with wr being the upward bubble velocity relative to the

molten glass due to the buoyancy force given by Eq.
(19). Note that according to our convention, the vertical

axis is oriented downward. Values of u1, v1, and w1,

are obtained from the thermal-flow computation of

molten glass circulation in the bath (see, for example,

Refs. [51–55]).

2.4.2. Bubble population balance equation

As discussed in detail by Ramkrishna [33,56], the
bubble population can be described by a state vector

defined in a so-called state space. Each bubble in the

glassmelt is characterized by its radius r and the molar

fraction of gas species �i’ contained in the bubble ci. Let
f1½~x; t; r; ðciÞ16 i6 l�1� be the average number density

function of bubbles. As already discussed, cl cannot be
treated as an independent variable. The average number

density function f1½~x; t; r; ðciÞ16 i6 l�1� is assumed to be
sufficiently smooth to allow differentiation with respect

to any of its variables as many times as necessary [33].

Note that the temperature of the bubbles is assumed to

be the same as that of the glassmelt, i.e., the local
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thermal equilibrium prevails. Therefore, although the
temperature is important to determining the growth rate

of a bubble, it is a continuous phase (glassmelt) variable

and hence does not enter the characterization of the

bubble state. Considering the bubbles generated and

transported by the flow of the glassmelt, and assuming

that there are l gases diffusing into or out of each

bubble, the state vector ~S can be expressed as
~S ¼ ½x; y; z; t; r; ðciÞ16 i6 l�1�. Then, the population bal-
ance equation can be expressed as

of1
ot

þ o

ox
ðu1f1Þ þ

o

oy
ðv1f1Þ þ

o

oz
½ðw1 � wrÞf1�

þ o

or
ð_rf1Þ þ

Xl�1

i¼1

o

oci
ð _cif1Þ ¼ h; ð33Þ

where wr is given by Eq. (19). The time rate of change of

the bubble radius and of the molar fraction of gas spe-

cies �i’ inside the bubble are denoted by _r and _ci,
respectively. The transient term of1=ot represents the
time rate of change of the bubble density, and the other

two terms on the left-hand side of Eq. (33) represent

advection of the bubble density function in the physical

space and in the property space, respectively. Finally,

the term h represents the net rate of production of

bubbles of a particular state (~x; r; ðciÞ16 i6 l�1) at time t.
The molar fraction of gas species �i’ can be expressed

as a function of the mass concentrations Cb;i since by
definition

ci ¼
Cb;i=MiPl

j¼1ðCb;j=MjÞ
¼ Cb;iRT

Mipb
: ð34Þ

Then, the time derivative of the molar fraction of gas

species �i’ in the bubble ci can be expressed as

_ci ¼ ci
_Cb;i

Cb;i

"
� q1gðw1 � wrÞ � 2r_r=r2

pb

#
; ð35Þ
_r ¼
0:635RT aq1g

l1

� 	1=3 Pl
i¼1

D2=3
i
Mi

C1;i � ciSiMipbð Þ
� �

� q1gðw1 � wrÞr=3

p0 þ q1gzþ 4r=3r
: ð41Þ
where _r and _Cb;i are the time rate of change of the bubble

radius and of the mass concentration of gas species �i’
contained in the bubbles, respectively. Expressions for _r
and _Cb;i can be derived from assumptions 8 to 10 by

writing the time rate of change of the mass of gas species

�i’ contained in a spherical bubble of radius r as [44]

dmi

dt
¼ dðCb;iVbÞ

dt
¼ KiðC1;i � ciSiMipbÞ; ð36Þ
where Cb;i and C1;i are the mass concentrations of gas
species �i’ in the bubble and in the glassmelt, respec-

tively. Eq. (36) indicates that if a bubble contains a

single gas, the bubble can only shrink since the con-

centration of gas dissolved in the glassmelt C1;i (in kg/

m3) cannot be larger than the gas solubility given by

SiMiðp0 þ q1gzÞ. Substituting the expression for Ki given

by Eq. (16) and that of Ce;i given by Eq. (25) and dif-

ferentiating the left-hand side of Eq. (36) yields

4p
3
r3 _Cb;i þ Cb;i4pr2 _r ¼ 7:98ðC1;i � ciSiMipbÞD2=3

i w1=3
r r4=3:

ð37Þ

Then, solving for _Cb;i results in

_Cb;i ¼
1:905

r
aq1gD

2
i

l1

� �1=3

C1;ið � ciSiMipbÞ �
3_r
r
Cb;i:

ð38Þ
According to the Dalton’s law for ideal gases, the total

pressure of the gas mixture in the bubble is given by

pb ¼
Xl

i¼1

ðpb;iÞ ¼
Xl

i¼1

Cb;i

Mi

� �" #
RT : ð39Þ

The derivative of Eq. (39) with respect to the time t using
the expression for _Cb;i given by Eq. (38) results in

opb
ot

¼ 1:905RT
r

aq1g
l1

� �1=3

�
Xl

i¼1

D2=3
i

Mi
C1;ið½ � ciSiMipbÞ� �

3_r
r
pb: ð40Þ

The temperature T is obtained from the steady-state

solution of the thermal-flow calculations of the glas-

smelt. Substituting the expression for pb given by Eq.

(31) into Eq. (40), assuming that op0=ot ¼ 0 (steady-

state), and solving for the growth rate _r gives
The first term in the numerator of Eq. (41) takes into

account the change of radius due to mass transfer at the

bubble interface, while the second term accounts for

the change in pressure as the bubbles are transported in

the glass bath. Such an expression has been previously

derived by Balkanli and Ungan [2], but the expression

for the term accounting for growth due to the change in

pressure appears to be in error as also confirmed by
other studies for quiescent glassmelt (w1 ¼ 0) [14,28].
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Note that the gas and liquid momentum equations
have been decoupled and it was assumed that the ver-

tical component of the bubble velocity vector was given

by wb ¼ w1 � wr. It implies that the bubble velocity

field does not satisfy the continuity equation in steady-

state, i.e., r �~vb 6¼ 0 [37]. Therefore, assumptions 2 and

5 introduce an artificial source in the population balance

equation. In order to approximately conserve the total

number of bubbles the bubble velocity vector~vb should
satisfy

r �~vb ¼ r �~v1 � owr

oz
� 0: ð42Þ

Since the molten glass is treated as incompressible, Eq.

(42) is satisfied if owr=oz � 1. Physically, this corre-

sponds to situation where the bubble growth rate and

liquid velocity does not vary significantly along the

bubble pathline during the time interval t and t þ dt.
2.4.3. Bubble generation

Finally, heterogeneous nucleation can occur on the

surface of undissolved sand grains or on refractory walls

[1]. Nemec [57] observed in an experimental crucible

under uniform temperature conditions that heteroge-

neous bubble nucleation occurs at the surface of

undissolved sand grains only if refining agent is present

while homogeneous bubble nucleation could never be
observed. It indicates that bubble nucleation takes place

if the glassmelt is supersaturated with refining gases, i.e.,

if the local gas concentration dissolved in the molten

glass exceeds the solubility at the local temperature and

pressure. Cable and Rasul [58] reported that heteroge-

neous bubble nucleation occurred at the surface of the

refractory even at small supersaturations. Finally, Roi et

al. [59] have discussed bubble generation and formation
of a bubble curtain consisting of very small bubbles

located close to the refractory walls. The authors

attributed the formation of a bubble curtain to the

combination of an unfavorable temperature distribution

and bubble growth rate.

Moreover, solving the gas species concentration

equation (Eq. (12)) for oxygen could possibly yield

oxygen concentrations higher than solubility within the
glass bath due to the source from the refining reactions.

However, such cases are expected only in the refining

section of the tank where the number of undissolved

sand grains is predicted to be small [60], thus limiting the

number of available nucleation sites. Instead, the main

mechanism for dissolved oxygen removal from the

glassmelt is the diffusion in already existing bubbles to

make them grow and rise at the surface. Note also that
from a thermodynamics point of view gas diffusion is

favored over heterogeneous nucleation. Therefore, given

the complexity of the physical phenomena and the

controversy regarding the significance and mechanisms

of heterogeneous nucleation in glass melting furnaces,
heterogeneous nucleation has not been considered in the
present study. The validity of this assumption will be

examined in view of the numerical results presented in

the second part of this document. Moreover, very fine

grids close to the walls should be used to account for the

entrainment by the flowing liquid of the very small

bubbles generated at the refractory walls. Then, the grid

size should be smaller than the typical size of a gener-

ated bubble making the calculation even more time
consuming.
2.4.4. Boundary conditions

Boundary conditions for the bubble density function

f1 are required to solve the population balance equation

(33) and are expressed as follows:

• At the batch/glassmelt interface bubbles exist in signif-
icant numbers due to the fusion/melting transforma-

tions taking place in the batch. The batch coverage

is assumed to be known and the gas composition

and the bubble density function are the same under

the entire surface covered by the batch and does

not vary with time. Then, the boundary condition

at the batch/glassmelt interface is expressed as

f1 ¼ f1;0 at the glassmelt=batch interface; ð43Þ
where f1;0 ¼ f1;0½r; ðciÞ1P iP l�1� is the bubble density

function depending on the fusion/melting process and

determined experimentally.

• At the glassmelt/refractory wall interface the bound-

ary conditions appear to be controversial. Balkanli

and Ungan [35], suggested the use of the weak bound-

ary conditions at the refractory walls. However,

Swarts [4] mentioned that the number of bubbles
per unit volume generated at the glass/refractory

interfaces is significant. Until further experimental

results are obtained we will assume that the gradient

of f1 in the normal direction vanishes,

r~nf1 ¼~0 at the glassmelt=refractories interface:

ð44Þ

• At the free surface of the glassmelt Balkanli and

Ungan [35] used the same boundary condition as that
used at the glass/melt/refractory wall interface, i.e.,

r~nf1 ¼~0. Physically, such a boundary condition

means that no bubble can escape through the glas-

smelt free surface. Obviously, such a boundary condi-

tion does not represent the physical phenomena

occurring since a single bubble reaching a free inter-

face can either merge with the interface almost instan-

taneously or bounce back one or several times before
stabilizing at the free interface to finally burst [61].

Additional complications appear when bubbles accu-

mulate to form a foam layer at the glassmelt surface.

Then, rising bubbles aggregate and coalescence with
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bubbles in the foams. This phenomenon is suspected
to be of major importance for onset of foaming. To

the best of our knowledge, no boundary conditions

for the bubble density function f1 at the glassmelt free

surface and at the glassmelt/foam interface account-

ing for the physical phenomena described above are

available in the literature. Note that the finite-differ-

ence algorithm needs the definition of these boundary

conditions. On the other hand, the method of charac-
teristics used in the present study does not require

specification of any boundary condition at the glass/

combustion space interface.

The local superficial gas velocity jðx; yÞ at the glas-

smelt surface can be computed from the bubble density

function:

jðx; yÞ ¼
Z 1

0

� � �
Z 1

0

Z 1

0

f1½x; y; z
�

¼ 0; r; ðciÞ1P iP l�1�

� 4pr3

3

� �
ðw1 � wrÞdr

�
dc1 � � � dcl�1: ð45Þ

Then, the transient and steady-state foam thickness can

be predicted from the analysis by Pilon et al. [49,62] for

liquid foams generated from viscous liquids. However,
the spreading of the foam over the glassmelt surface is

not accounted for. The foam layer strongly affects the

radiation heat transfer from the combustion space to the

glass bath and can significantly reduce the glassmelt

temperature [8,55]. Model for radiation transfer through

foam and combined conduction and radiation transfer

have been proposed recently [8,63–66] and should be

used to recompute the glassmelt flow and thermal
structures. However, this task is beyond the scope of

the present work, and the presence of a foam layer will

not be considered further.
1 The Fortran subroutine is available at http://www.sali.freeserv-

ers.com/engineering/fortran_codes/unequal_simps. html.
3. Method of solution of model equations

Fig. 3 shows the block diagram of essential steps in

the procedure which is used to calculate the bubble

transport in the glass melting furnace. Previous studies

computed the dissolved gas concentration in the melt by

neglecting the source term in Eq. (12) due to the diffu-
sion of gases in and out of the bubbles [35] and assumed

that bubbles contain only one gas species. This simpli-

fication reduces the number of independent variables

and implies that the dissolved gas concentrations C1;i,

the bubble radius r, and the bubbles density function f1
can be computed consecutively and independently. In

this study, the variables C1;i, r, ci, and f1 are interde-

pendent and determined iteratively until all the solutions
are converged as shown in Fig. 3. Considering refining

reactions that are complete and irreversible enables us

to compute the refining agent concentration ½Mkþ�
independently.
The governing conservation equations and boundary
conditions for the thermal-fluid calculations of the

molten glass along with the numerical method of solu-

tion can be found elsewhere [51–54]. The governing

partial differential equations for the refining agent con-

centration ½Mkþ� and the gas concentrations C1;i, are of

parabolic type with the transient term included as an

iteration parameter. For the purpose of numerical

solution, the equations are discretized over the spatial
coordinates by means of the control volume integration

technique [66]. The resulting finite-difference approxi-

mation of derivatives produces a system of linear alge-

braic equations, which are then solved using line-by-line

iterative method. The method solves a line of nodes by

applying the tri-diagonal matrix inversion algorithm and

sweeps the domain of integration in alternating direc-

tions along the coordinates axes. A fully implicit and
unconditionally stable Euler method with very large

time steps is employed to integrate the equations in time

until steady-state solution is achieved. Numerical inte-

gration of the source/sink terms corresponding to gas

diffusion in and out of the bubbles and given by Eq. (15)

was performed using Simpson’s rule for unequally

spaced data. 1 The steady-state conditions for the

refining agent concentration and the dissolved gas
concentrations was assumed to be reached when the

http://www.sali.freeservers.com/engineering/fortran_codes/unequal_simps.html
http://www.sali.freeservers.com/engineering/fortran_codes/unequal_simps.html
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residual for each of these variables was less than an
arbitrary small value.

The population balance equation [Eq. (33)] is solved

using the backward (or modified) method of character-

istics described by Pilon and Viskanta [37]. In brief, the

partial differential equation (33) is transformed into a

system of ordinary differential equations by solving

it along the characteristic curves in the particle state

space defined as

dx
dt

¼ u1ðx; y; zÞ; ð46Þ

dy
dt

¼ v1ðx; y; zÞ; ð47Þ

dz
dt

¼ w1ðx; y; zÞ � wrðx; y; z; rÞ; ð48Þ

dr
dt

¼ _r½x; y; z; ; r; ðciÞ16 i6 l�1; t�; ð49Þ

dci
dt

¼ _ci½x; y; z; r; ðciÞ16 i6 l�1; t� for i ¼ 1; . . . ; l� 1;

ð50Þ
where wr, _r, and _ci are given by Eqs. (19), (41) and (35),

respectively. If we assume that the liquid phase can be

treated as incompressible, then, along the characteris-

tic curves, the population balance equation (33) can

be written as [37]

Df1
Dt

¼ hþ f1
owr

oz

"
� o_r
or

�
Xl�1

i¼1

o _ci
oci

#
; ð51Þ

where Df1=Dt denotes the substantial derivative or the

total time derivative along the pathline of the bubbles.

The partial derivatives of wr, _r, and _ci with respect to z,
r, and ci, respectively, are derived from Eqs. (19), (41)

and (35) and expressed as

owr

oz
¼ 2aq1gr _r

l1ðw1 � wrÞ
� aq1gr

2

l2
1

ol1
oz

; ð52Þ

o_r
or

¼
0:63RT aq1g

l1

� 	1=3 Pl
i¼1 2rciSiD

2=3
i =r2

� 	
� q1gðw1�3wrÞ

3

p0 þ q1gzþ 4r=3r

þ 4r
3r2

_r
p0 þ q1gzþ 4r=3r

;

ð53Þ

o _ci
oci

¼ � 3_r
r
� 1:905SiRT

r
aq1g
l1

� �1=3

� 1

�
� ciðp0 þ q1gzÞ
p0 þ q1gzþ 4r=3r

�
� q1gðw1 � wrÞ � 2r_r=r2

pb
:

ð54Þ

Eqs. (46)–(51) represent a system of ordinary differential

equations that can be solved along the characteristic
curves by the method of characteristics using inverse
marching method with the same staggered grids as those

used for computing the glassmelt velocity ~v1, tempera-

ture T , refining agent ½Mkþ�, and dissolved gas concen-

trations C1;i fields enabling the coupling between all the

variables. A detailed description of the numerical

scheme has been presented by Pilon and Viskanta [37]

and need not be repeated here.

The backward method of characteristics (or inverse
marching method) is an interpretation of the Lagrang-

ian approach that overcomes the difficulties related to

mesh deformation. Based on a prespecified grid, it fol-

lows the particles backward in time as opposed to for-

ward in the case of direct marching method. The

backward method of characteristics uses a fixed grid

that is also used for solving other transport equations

such the momentum equation, the energy equation or
the gas concentration in the continuous phase by finite-

difference methods using a staggered grid as suggested

by Patankar [66]. Thus, interactions between the parti-

cles or bubbles and the surrounding fluid can be easily

accounted for in the numerical scheme. But unlike finite-

difference methods that propagate the information along

coordinate lines, the method of characteristics propa-

gates the information along the pathlines and thus
matches the physics of the flow resulting in accurate

numerical results [37]. Other advantages of the method

of characteristics are to overcome the numerical diffu-

sion introduced by finite-difference methods [66] and to

eliminate the need for outflow boundary conditions

particularly at the glass free surface and glassmelt/foam

interface. Moreover, the modified method of charac-

teristics can be used for both transient and steady-state
calculations with great accuracy and without problems

of numerical instability.
4. Conclusion

This paper presented the mathematical formulation

of bubble transport and generation in three-dimensional
laminar gravity-driven flow. The mathematical model

has been developed but is not limited to glass manu-

facturing and can be readily applied to other materials

processing problems such as steel, aluminum, and poly-

mers. After careful statement of the physical assump-

tions, the governing equations for (1) the refining agent

concentration, (2) the gas species dissolved in the liquid

phase, and (3) the bubble density function are derived.
To the best of our knowledge, this study is the first one

presenting a complete set of coupled governing equa-

tions for the key variables essential to assess the refining

performances of a furnace. The method of solution and

the convergence criteria are briefly discussed. The results

will enable one to predict the quality of the glass, to

simulate foaming of the glassmelt, and to determined the
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number and size distribution of bubbles in the glassmelt
which are critical for accurately predicting heat transfer

from the combustion space to the glass bath [8,63,64].

The second part of this paper [67] presents the results of

sample calculations.
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