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1. INTRODUCTION

Microelectrodes and ultramicroelectrodes (UMEs) have been
the subjects of intense studies in electrochemical sensing1�9 and
in electrical energy storage and conversion.10�21 Microelectrodes
and ultramicroelectrodes refer to electrodes with characteristic
sizes less than 25 μm.3�6 These electrodes have been used exten-
sively in different scanning probe microscopy techniques.22�28

For example, scanning electrochemical potential microscopy
(SECPM) was developed to directly measure the equilibrium
electric potential profile in the electric double layer forming near
electrode surfaces.24�28 It also provides information on the local
charge distribution and electric field in the electrolyte. The size
and geometry of UMEs are critical parameters determining the
spatial and temporal resolutions of the measurements.22�28

Moreover, electrodes with nanostructures and tailored mor-
phology hold great promise to enhance the energy and power
densities of electrical energy storage devices.10�21 For example,
Pech et al.29 synthesized onion-like carbon spheres 6�7 nm in dia-
meter and used them to synthesize electrodes for electric double
layer capacitors (EDLCs) using electrophoretic deposition. The
volumetric power density of their EDLC devices was comparable
to that of conventional electrolytic capacitors, while the volu-
metric energy density was 1 order of magnitude larger.29 This was
attributed to the electrode’s fully accessible surface area.29

In all the above-mentioned applications, understanding the
electric double layer structure is of great importance for the rational
and optimum design of the electrode morphology.15�18,25�28

For this purpose, numerical simulations can facilitate the design
of electrodes in a more systematic and efficient way than a trial-
and-error approach. They can also account for various and
complex phenomena and identify the dominant processes gov-
erning the capacitance behavior of the electrode. This paper aims
to develop rigorous and accurate numerical tools for simulating
electric double layers formed near ultramicroelectrodes. It also
assesses the validity of analytical expressions for the capacitance
of ultramicroelectrodes.

2. BACKGROUND

2.1. Helmholtz Model. Helmholtz30 was the first to propose
the concept of the electric double layer. He realized that charged
electrodes immersed in electrolyte solutions will repel the co-
ions while attracting counterions to their surfaces. The two
compact layers of charges formed at the electrode/electrolyte
interfaces were called the “electric double layer” (EDL).
Figure 1a shows a schematic of the electric double layer structure
formed at the anode surface as envisioned by Helmholtz.30�34 In
the Helmholtz model, all the counterions were assumed to be
adsorbed at the electrode surface.30�32 This structure is ana-
logous to that of conventional dielectric capacitors with two
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planar electrodes separated by a distance H.30�32 Therefore, the
capacitance per unit surface area (or specific capacitance) of the
Helmholtz double layer denoted by Cs

H and expressed in F/m2 is
given by35�39

CH
s ¼

E0Er
H

for planar electrode ð1aÞ
E0Er

R0 logð1 þ H=R0Þ for cylindrical electrode of radius R0 ð1bÞ
E0Er
H

1 þ H
R0

� �
for spherical electrode of radius R0 ð1cÞ

8>>>>>><
>>>>>>:

where ɛ0 and ɛr are the free space permittivity and the relative
permittivity of the electrolyte solutions, respectively. The thick-
nessH of the Helmholtz double layer can be approximated as the
radius of solvated ions.31,33,34 Note that eqs 1b and 1c reduce to
the asymptotic expression given by eq 1a when the electrode
radius is large enough, i.e., R0 . H.
2.2. Gouy�Chapman Model. Gouy40 and Chapman41 dev-

eloped an electric double layer model accounting for the fact that
the ions are mobile in the electrolyte solutions and are driven by
the coupled influences of diffusion and electrostatic forces.31,32,34

This results in the so-called “diffuse layer” shown in Figure 1b. In
this model, the ions are treated as point charges and the
equilibrium concentration ci of ion species i is given by the
Boltzmann distribution as31�34,42�44

ci ¼ ci∞ exp
�zieψ
kBT

� �
ð2Þ

where zi and ci∞ are the valency and bulk molar concentration of
ion species i, respectively. The absolute temperature is denoted
byT, e is the elementary charge, and kB is the Boltzmann constant
(kB = 1.381 � 10�23 m2 kg K�1 s�2). In the Gouy�Chapman
model, the local electric potential ψ in the diffuse layer is
determined by the Poisson�Boltzmann (PB) equation assuming
constant electrolyte permittivity.31�34,42�44 For binary sym-
metric electrolytes, z1 = �z2 = z and c1∞ = c2∞ = c∞. Then,
the PB equation is expressed as31�34,42�44

∇ 3 ðE0Er∇ψÞ ¼ 2zeNAc∞ sinh
zeψ
kBT

� �
ð3Þ

whereNA is the Avogadro’s number (NA = 6.022� 1023 mol�1).
For planar electrodes and constant electrolyte properties,

the exact solution of eq 3 exists subject to the following boundary
conditions: (i)ψ(0) =ψD and (ii)ψ(∞) = 0. Then, the specific
capacitance corresponding to the diffuse layer Cs

D is given

by31�34,42�44

CD
s ¼ qs

ψD
¼ 4zeNAc∞λD

ψD
sinh

zeψD

2kBT

� �
ð4Þ

where qs is the surface charge density and λD is the Debye
length for symmetric electrolytes defined as λD = [(ɛ0ɛrkBT/
2e2z2NAc∞)

1/2].31�34,42�44

For spherical electrodes, the exact solution of eq 3 exists
provided that the Debye�H€uckel approximation requiring zieψ/
kBT , 1 is satisfied.34,42�44 Then, the diffuse layer specific
capacitance is given by34,42�44

CD
s ¼ E0Er

λD
1 þ λD

R0

� �
ð5Þ

Equations 4 and 5 reduce to the same asymptotic expression
of Cs

D = ɛ0ɛr/λD when the Debye�H€uckel approximation and
the thin double layer approximation assuming λD/R0 , 1 are
satisfied.34,42�44

2.3. Gouy�Chapman�Stern Model. Stern45 combined the
Helmholtz model and the Gouy�Chapman model and de-
scribed the electric double layer as two layers (Figure 1c),
namely, (i) the Stern layer (or Helmholtz layer), referring to
the compact layer of immobile ions strongly adsorbed to the
electrode surface, and (ii) the diffuse layer where the ions are
mobile and the Gouy�Chapmanmodel (eq 3) applies.31�34,42�44

Note that there are no free charges within the Stern layer.31,32,34,42

The total electric double layer capacitance consists of the Stern
layer and diffuse layer capacitances in series.31,32,42,43 Mathema-
tically, the Gouy�Chapman�Stern (GCS)model for symmetric
electrolytes is expressed as42,46,47

∇ 3 ðE0Er∇ψÞ ¼
0 in the Stern layer ð6aÞ
2zeNAc∞ sinh

zeψ
kBT

� �
in the diffuse layer ð6bÞ

8><
>:

2.4. Effect of Finite Size of Ions. The point-charge assump-
tion associated with the Poisson�Boltzmann equation (eqs 3
and 6b) is only valid for very low ion concentration c∞ and low
electric potential.31,32,43 In reality, the ions have finite size and
thus a maximum ion concentration cmax exists corresponding to
the closed packing of ions. It is given by cmax = 1/(NAa

3)
corresponding to simple cubic packing of ions with effective
diameter a.48,49 Therefore, the ion concentration given by the
Boltzmann distribution (eq 2) should not exceed cmax. This

Figure 1. Schematics of the electric double layer structure showing the arrangement of solvated anions and cations near the electrode/electrolyte
interface in the Stern layer and the diffuse layer. (a) Helmholtz model, (b) Gouy�Chapman model, and (c) Gouy�Chapman�Stern model.
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corresponds to a maximum surface potential ψmax given by48,49

ψmax ¼ � kBT
ze

logðNAa
3c∞Þ ð7Þ

The magnitude of the local electric potential |ψ| in the diffuse
layer should not exceed ψmax for the Gouy�Chapman and
Gouy�Chapman�Stern models (eqs 3 and 6b) to be valid.
For example,ψmax = 0.04 V for the typical values ofT = 298K, z=
1, c∞ = 1 mol/L, and a = 0.66 nm.37�39,47

Numerous studies have been reported in the literature to
account for the effect of finite ion size in the electrolyte
solution.49�53 Among them, the modified Poisson�Boltzmann
(MPB) models based on the local-density and mean-field
approximations are relatively convenient both mathematically
and numerically.49�53 Among differentMPBmodels, Bikerman’s
model is the simplest for symmetric electrolytes and is expressed
as48,49,53�55

∇ 3 ðE0Er∇ψÞ ¼
2zeNAc∞ sinh

zeψ
kBT

� �

1 þ 2ν sinh2
zeψ
2kBT

� � ð8Þ

where the packing parameter is defined as ν = 2a3NAc∞ = 2c∞/
cmax.

48,49,53�55 From here on, the term “MPBmodel”will be used
to refer to eq 8. When ν = 0, the MPB model reduces to the
Gouy�Chapman model given by eq 3. For planar electrodes and
constant electrolyte properties, the surface charge density and
diffuse layer specific capacitance are given by48,49,52

CD
s ¼ qs

ψD

¼ 2zeNAc∞λD
ψD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ν
log 1 þ 2ν sinh2

zeψD

2kBT

� �� �s
ð9Þ

Note that whenψD = 0, eq 9 predicts an extremum for the diffuse
layer capacitance, i.e., Cs

D = ɛ0ɛr/λD. This capacitance could be
either a maximum or a minimum value depending on the packing
parameter ν as discussed in refs 48, 49, 52, and 53.
2.5. Simulations of Electric Double Layer near Ultra-

microelectrodes. The above-discussed models have been used
extensively to investigate the electric double layer near ultra-
microelectrodes despite their inherent limitations. Huang et al.37�39

used the Helmholtz model (eqs 1a�1c) to predict the specific
capacitance of EDLCs based on single spherical and cylindrical
electrode carbon particles as well as single cylindrical pores. Their
models predicted that the total specific capacitance decreases
with increasing electrode radius larger than 2 nm. However, the
electrolyte permittivity was used as an empirical parameter to
match the specific capacitance predicted by eqs 1a�1c with
experimental data.37�39

Compton and co-workers56,57 investigated the effect of the
electrode curvature on the diffuse layer formed at the surface of
single hemispherical and cylindrical nanoelectrodes. The authors
solved the Gouy�Chapman model (eq 3) numerically for
electrode radii ranging from 2 nm to 100 μm. The surface
electric potential ψs was less than 0.25 V, and the electrolyte
concentration c∞ was less than 0.1 mol/L. They observed a
significantly enhanced surface charge density for a sphere radius
less than 50 nm and attributed this phenomenon to the “non-
classical behavior” caused by the large electrode curvature.56,57

However, it should be noted that this trend could be readily
predicted by the exact solution given by eq 5. Moreover, the
Gouy�Chapman model used in refs 56 and 57 is limited to very
low ion concentrations and electric potentials.
Huang et al.47 used the Gouy�Chapman�Stern model to

investigate the effects of the shape and geometry of a single
nanopore on the specific capacitance. They explored “slit” and
cylindrical pores with diameters ranging from 2 to 16 nm. The
dielectric permittivity ɛr = 9.73 was imposed in the Stern layer
based on the values previously fitted in refs 37,38, while ɛr = 36
in the diffuse layer.47 The electrolyte concentration was c∞ =
1.0 mol/L, and the electrode surface potential was ψs = 1 V.
However, the Gouy�Chapman�Stern model breaks down for
such a concentration and potential as ions can no longer be
treated as point charges.48,49

Hamou et al.27,28 numerically investigated the electric poten-
tial profile near the probe apex in SECPMs by simulating planar
and spherical electrodes. Their model accounted for both the
Stern layer and the finite size of ions and solved the MPB model
given by eq 8. The electrolyte concentration c∞ ranged from
10�5 to 10�2 mol/L, while the surface potential ψs varied from
0.2 to 0.4 V.27,28 The authors investigated the effects of the shape
and size of the probe on the electric potential profile in the
electrolyte. They found that a sharper apex resulted in (i) higher
electric field and surface charge density at the probe vertex and
(ii) better resolution of the electric potential in the lateral
direction.27,28

In nearly all the above-mentioned references, the electrolyte
dielectric permittivity was assumed to be constant and some-
times was treated as a fitting parameter. However, the relative
permittivity ɛr of polar electrolytes is known to significantly
decrease as the electric field increases.58�65 In fact, the individual
electrolyte molecules become highly oriented under a large
electric field. Therefore, further orientation of the molecules
can hardly providemore polarization and the relative permittivity
decreases.60�62 Booth derived the following model to account
for the dependency of electrolyte dielectric permittivity on the
local electric field larger than 107 V/m:58�60

ErðEÞ ¼ n2 þ ðErð0Þ � n2Þ 3
βE

cothðβEÞ � 1
βE

� �
ð10aÞ

while ɛr can be treated as constant for E < 107 V/m

ErðEÞ ¼ Erð0Þ ð10bÞ
Here, E = |�3ψ| is the norm of the local electrical field vector,
ɛr(0) is the relative permittivity at zero electric field, and n is the
index of refraction of the electrolyte at zero electric field
frequency. Results of molecular dynamics simulations for differ-
ent electrolytes62�64 have verified that the Booth model accu-
rately predicts the electrolyte permittivity for high electric fields
up to 4 V/nm typically encountered in EDLCs.64,66 Moreover,
the Booth model has been combined with the Poisson equation
in refs 67�69 to investigate the repulsion between two charged
planar surface electrodes due to hydration forces in aqueous
electrolyte solutions. Hamou et al.28 investigated the effect of
field-dependent electrolyte permittivity using the Booth model
in the simulations of SECPM. However, they did not observe
significant changes in the dielectric permittivity and in electric
potential profiles.28

More recently, Wang et al.70 utilized the MPB and Booth
models to predict the specific capacitance of closely packed
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monodispersed sphere arrays with different packing morpho-
logies and sphere diameters. The numerical results established
that the diffuse layer specific capacitance of the sphere arrays
significantly decreased when the field-dependent electrolyte
permittivity was accounted for.70 However, the Stern layer
capacitance was predicted using the Helmholtz model (eq 1a),
rather than by simulating the complete electric double layer
structure consisting of both the Stern and diffuse layers.
This paper aims to clarify the dominant physical phenomena

that must be accounted for in simulating electric double layers
formed near ultramicroelectrodes. It also assesses the validity of
the Helmholtz model. An equilibrium model based on con-
tinuum theory was developed to predict the specific capacitance
of a single spherical electrode particle with various radii. To
the best of our knowledge, the present study is the first to
simulate the electric double layer capacitance of ultramicroe-
lectrodes by simultaneously accounting for (1) the Stern and
diffuse layers, (2) the finite size of ions, and (3) field-dependent
dielectric permittivity. Note that the double layer capacitances
also significantly depend on surface electric potential,48,49

electrolyte concentration,52,53 and temperature (eq 8). This
has been explored extensively in the literature and need not
be repeated.

3. ANALYSIS

3.1. Schematics and Assumptions. Figure 2 shows the
schematic of the computational domain simulated in the present
study. A spherical electrode of radius R0 was immersed in an
electrolyte solution. The region of electrolyte solution consists of
two layers corresponding to (1) a Stern layer of thicknessH near
the electrode surface and (2) a diffuse layer beyond. By virtue of
symmetry, the problem was one-dimensional in the radial
direction and was solved in spherical coordinates. The electric
potential was prescribed as positive at the electrode surface and
was zero far from the electrode surface. The length of the overall
computational domain was specified to be L = 80 nm for all cases
simulated. Increasing this length to 160 nmwas found to have no
effect on the predicted electric potential profile and on the
specific capacitance.
To make the problem mathematically tractable, the following

assumptions were made: (1) the electric potential and ion
concentration were invariant with time (steady state) and
reached their equilibrium states, (2) anions and cations had the

same and constant effective diameter48,49,71 independent of the
electrolyte concentrations, (3) isothermal conditions pre-
vailed throughout the electrode and electrolyte, (4) advection
of the electrolyte was assumed to be negligible, and (5) the
ions could only accumulate at the electrode surface and could
not diffuse into the electrode particle; i.e., there was no ion
insertion.
3.2. Governing Equation and Boundary Conditions. The

local steady-state and equilibrium electric potential in the
electrolyte solution denoted by ψ(r) was computed by solving
(i) eq 6a in the Stern layer and (ii) eq 8 in the diffuse layer.
In addition, the coordinate transformationR = r�R0 was used to
simplify the governing equation to

1

ðR þ R0Þ2
d
dR

E0ErðR þ R0Þ2 dψdR
� �

¼

0 0 e R e H ð11aÞ
2zeNAc∞ sinh

zeψ
kBT

� �

1 þ 2ν sinh2
zeψ
2kBT

� � R g H ð11bÞ

8>>>>>><
>>>>>>:

where R represents the distance from the electrode surface.
The associated boundary conditions were given by42,43

ψ ¼ ψs, at R ¼ 0 ð12aÞ

ψjR¼H� ¼ ψjR¼Hþ and

E0Er
dψ
dR

�����
R¼H�

¼ E0Er
dψ
dR

�����
R¼Hþ

, at R ¼ H
ð12bÞ

ψ ¼ 0, at R ¼ L ð12cÞ
Equation 12b states that the electric potential and displace-

ment were continuous across the Stern/diffuse layers interface
located at R = H.42,43 Cases when H = 0 in eqs 11a, 11b, and
12a�12c correspond to simulations without the Stern layer as
performed in refs 48, 49, and 53�55.
3.3. Constitutive Relations. In order to solve eqs 11a, 11b,

and 12a�12c, the electrolyte properties ɛr, z, c∞, and a along
with the temperature T are needed. Here, the Booth model58�60

given by eqs 10a and 10b was used to account for the effects
of the electric field on electrolyte relative permittivity. The
present study focuses on aqueous binary symmetric electrolyte
solution at room temperature (T = 298 K) characterized by the
following properties: ɛr(0) = 78.5,32 n = 1.33, and β = 1.41 �
10�8 V/m.67�69 The effective ion diameter was taken as a =
0.66 nm and the valency was z = 1 corresponding to solvated ions
such as K+, OH�, and Cl� in aqueous solutions,71 for example.
The electrolyte concentration was chosen as c∞ = 1.0 mol/L
corresponding to the typical values in EDLCs.
Finally, the Stern layer thickness H was approximated as the

solvated ion radius; i.e., H = a/2 = 0.33 nm.31,33,34 In reality, the
Stern layer thickness may be larger than the solvated ion radius
due to the specific adsorption of solvent molecules or anions near
the electrode surface.31�33,42,43 This is typically caused by non-
electrostatic forces.31�33,42,43 A parametric study was also carried
out for different values of Stern layer thickness, H = 0, 0.33, and
1.0 nm.

Figure 2. Schematic and coordinate system of the simulated computa-
tional domain consisting of the Stern layer and the diffuse layer. The
problem is one-dimensional in spherical coordinates by virtue of
symmetry.
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3.4. Method of Solution And Data Processing. Equations
11a and 11b were solved using the commercial finite element
solver COMSOL 3.5a, along with the boundary conditions given
by eqs 12a�12c. The model was solved for constant permittivity
ɛr(0) or field-dependent permittivity ɛr(E) given by eqs 10a and
10b. The specific capacitances of the Stern and diffuse layers were
computed by dividing the surface charge density34,72,73 qs(R) =
ɛ0ɛrE(R) by their respective potential differences as

31,32,43

CSt
s ¼ qsð0Þ

ψs �ψD
¼ E0ErEð0Þ

ψs �ψD
and

CD
s ¼ qsðHÞ

ψD
¼ E0ErEðHÞ

ψD

ð13Þ

where E(R) = |�dψ/dR|(R) is the norm of the local electric field
at location RwhileψD =ψ(H) is the electric potential computed
at the Stern/diffuse layers interface. Then, the total specific
capacitance Cs was calculated using the series formula as31,32,43

1
Cs

¼ 1
CSt
s

þ 1
CD
s

ð14Þ

Numerical convergence was assessed based on the surface
charge densities qs(R) at R = 0 and at R = H. The convergence
criterion was chosen such that the maximum relative difference
in both qs(0) and qs(H) was less than 1% when multiplying the
total number of finite elements by 2. The total number of finite
elements required to obtain a converged solution was less than
400 for all cases simulated in the present study.
3.5. Validation. The numerical tool was validated against (i)

the exact solutions of the Gouy�Chapman model for planar
electrodes (eq 4) and spherical electrodes (eq 5) for ɛr = 78.5,
c∞ = 0.01 mol/L, andψD = 0.01 V and (ii) the numerical results
of the MPB model (eq 8) for planar electrodes reported in ref 48
for a wide range of packing parameter ν and dimensionless
potential (zeψD/kBT). Excellent agreement was found in all
cases considered.
Figure 3 shows the numerically predicted diffuse layer specific

capacitance Cs
D as a function of sphere radius R0 ranging from

1 nm to 100 μm. It was obtained by solving eqs 11a and 11b with
H = 0 assuming constant permittivity ɛr = 78.5, c∞ = 0.01 mol/L,
a = 0.66 nm (i.e., ν = 0.0035), and ψD = 0.01 V. Figure 3 also

shows the exact solutions for planar and spherical electrodes
respectively given by eqs 4 and 5. The numerical predictions
agreed quite well with the exact solutions for all values of
electrode radius considered. It is evident that Cs

D decreased with
increasing sphere radius. It also reached the asymptotic value of
planar electrodes (eq 4) for sphere radii larger than 100 nm. This
can be attributed to the fact that a smaller sphere radius results in
a larger surface electric field73 and thus larger surface charge and
specific capacitance. These results are similar to the trend
predicted numerically in refs 56 and 57 for spherical and cyli-
ndrical nanoelectrodes using ψs = 0.25 V and c∞ = 0.1 mol/L.
However, the observed trend is not due to “nonclassical beha-
vior” but is based on classical continuum theory.

4. RESULTS AND DISCUSSION

4.1. Revisiting Gouy�Chapman�Stern Model. Figure 4a
shows the numerically predicted Stern, diffuse, and total specific
capacitances as a function of sphere radius R0 ranging from 1 nm
to 100 μm as well as the predictions using the Helmholtz model
(eq 1c). Results were obtained by solving the Gouy�Chapman�
Stern model (eqs 6a and 6b) assuming constant permittivity ɛr =
78.5, c∞ = 1 mol/L, H = 0.33 nm, and ψs = 0.5 V. The specific
capacitances Cs

St, Cs
D, and Cs were computed using eqs 13 and 14.

Figure 4a indicates that the predicted Cs
St decreased while Cs

D

Figure 3. Predicted diffuse layer specific capacitance Cs
D obtained by

numerically solving the Gouy�Chapman model (eq 3) assuming con-
stant permittivity ɛr = 78.5, c∞ = 0.01 mol/L, and ψD = 0.01 V, along
with the exact solutions for planar and spherical electrodes (eqs 4 and 5).

Figure 4. Predicted (a) Stern layer, diffuse layer, and total specific
capacitances and (b) electric potential ψD at the diffuse layer boundary
(R=H= 0.33 nm) obtained by numerically solving theGouy�Chapman�
Stern model (eqs 6a and 6b) assuming constant electrolyte permittivity
ɛr = 78.5, c∞ = 1 mol/L, and ψs = 0.5 V.
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increased slightly with increasing sphere radius and reached a
plateau for R0 larger than 100 nm. In addition, the Stern layer
specific capacitance Cs

St was much smaller than Cs
D. Thus, the total

specific capacitance Cs was dominated by Cs
St according to eq 14.

Furthermore, Figure 4a indicates that the predictions of
Helmholtz model (eq 1c) were identical to the computed Stern
layer specific capacitance Cs

St. This can be attributed to the fact
that, in both models, the electric potential is governed by
Poisson’s equation (eq 6a) assuming constant permittivity.35,36

Thus, the electric potential profile for planar electrodes is linear
in both the Helmholtz model and the solution of the Gouy�
Chapman�Stern model in the Stern layer.31�33,42,43 Conse-
quently, both models predict the same specific capacitance, i.e.,
Cs
H =Cs

St. This also establishes that theHelmholtz model predicts
the Stern layer capacitance rather than the total double layer
capacitance as sometimes assumed in the literature for large
electrolyte concentrations.37�39

Figure 4b shows the predicted electric potential ψD at the
diffuse layer boundary (R =H = 0.33 nm) as a function of sphere
radius R0, as well as the maximum potential ψmax given by eq 7
for ɛr = 78.5, c∞ = 1 mol/L, H = 0.33 nm, and ψs = 0.5 V. It
indicates that the computed diffuse layer potentialψD was larger
than themaximumpotentialψmax = 0.04 V for all values of sphere
radius considered. Therefore, the Gouy�Chapman�Stern model
(eqs 6a and 6b) was not valid for computing the diffuse layer
capacitance Cs

D for such high concentration as the results do not
satisfy the point-charge assumption.
4.2. Effect of Finite Size of Ions. Figure 5 shows the numeri-

cally predicted specific capacitances Cs
St, Cs

D, and Cs as a function
of sphere radius R0 obtained by solving the MPB model with
Stern layer (eqs 11a, 11b, and 12a�12c). The model accounted
for both the Stern layer and the finite ion size in the diffuse layer
with effective ion diameter a = 0.66 nm. The other parameters
were identical to those used to generate Figure 4a, i.e., ɛr = 78.5,
c∞ = 1mol/L,H = a/2 = 0.33 nm, andψs = 0.5 V. Here again, the
Stern layer specific capacitance Cs

St was identical to the predic-
tions of (i) the Helmholtz model Cs

H (eq 1c) and (ii) of the
Gouy�Chapman�Stern model (Figure 4a) for all values of the
sphere radius. However, the predicted diffuse layer specific capaci-
tance Cs

D decreased with increasing sphere radius in contrast to
predictions from the Gouy�Chapman�Stern model shown in

Figure 4a. Moreover, Cs
D was about 4 times smaller than that

plotted in Figure 4a. Then, the total specific capacitance Cs was
no longer dominated by the Stern layer specific capacitance and
was about half that predicted by the Gouy�Chapman�Stern
model (Figure 4a). These results demonstrate that the finite size
of ions has a significant effect on the specific capacitance and
must be accounted for in simulating the electric double layer for
large electrolyte concentration and large electric potential. Here,
again, the Helmholtz model cannot be used to predict the total
specific capacitance.
4.3. Effect of Field-Dependent Dielectric Permittivity.

Figure 6 shows the numerically predicted specific capacitances
Cs
St,Cs

D, andCs as a function of R0 accounting for field-dependent
permittivity. Results were obtained by solving the MPB model
with Stern layer (eqs 11a, 11b, and 12a�12c) with c∞ = 1mol/L,
H = a/2 = 0.33 nm,ψs = 0.5 V, and ɛr given by eqs 10a and 10b. It
also shows the predictions by the Helmholtz model (eq 1c) using
ɛr = ɛr(Es) based on the local electric field computed at the
electrode surface Es = E(R=0).
Figure 6 indicates that the predicted Stern layer specific

capacitance Cs
St using field-dependent permittivity ɛr(Es) dif-

fered significantly from that obtained assuming constant permit-
tivity (Figure 5). First, the numerical predictions assuming
constant permittivity overestimated Cs

St by a factor of 4. Second,
the predicted value of Cs

St was now in the range 40�45 μF/cm2

and was about 4�5 times smaller than Cs
D. Third, the predicted

Stern layer capacitanceCs
St was found to be nearly independent of

the sphere radius. This can be attributed to the fact that a smaller
sphere radius resulted in a larger surface electric field and thus
smaller electrolyte permittivity. Overall, these competing effects
balanced each other so that the surface charge density, given by
qs = ɛ0ɛr(Es)Es, and the specific capacitance Cs

St given by eq 13
did not change significantly as the sphere radius varied.
By contrast, the Helmholtz model predicted that the specific

capacitance decreased with decreasing sphere radius less than
40 nm due to the significant decrease of electrolyte permittivity.
In fact, the Helmholtz model underestimated the Stern layer
capacitance for sphere radius less than 40 nm when accounting
for field-dependent permittivity. Figure 6 also demonstrates that
the predicted diffuse layer specific capacitance Cs

D using field-
dependent permittivity ɛr(E) was nearly the same as the predic-
tions assuming constant permittivity ɛr(0) shown in Figure 5.

Figure 5. Predicted specific capacitances obtained by numerically
solving the MPB model with Stern layer (eqs 11a, 11b, and 12a�12c)
assuming constant electrolyte permittivity ɛr = 78.5, c∞ = 1 mol/L, and
ψs = 0.5 V, while H = a/2 = 0.33 nm.

Figure 6. Predicted specific capacitances obtained by numerically
solving the MPB model with Stern layer (eqs 11a, 11b, and 12a�12c)
using field-dependent electrolyte permittivity (eqs 10a and 10b) with
c∞ = 1 mol/L, ψs = 0.5 V, and H = a/2 = 0.66 nm.
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Note that the electrolyte relative permittivity and the Stern layer
thickness (or solvated ion radius) could be adjusted arbitrarily in
order to achieve good agreement between Helmholtz model and
experimental data as performed in refs 37�39. However, the
effects of electrolyte concentration and electrode potential
cannot be predicted explicitly by this approach. In other words,
such an approach lacks rigor and thus cannot be used for the
systematic optimization of EDLCs.
Overall, the total capacitance Cs = 31�37 μF/cm2 was about

half that predicted assuming constant permittivity (Figure 5). It
was dominated by the Stern layer capacitance, as shown in
Figure 6. This is consistent with the hypothesis typically made
for concentrated electrolyte solutions.37�39 Moreover, the elec-
trode curvature had no effect on the predicted specific capaci-
tances Cs

St, Cs
D, and Cs for sphere radii larger than 40 nm instead

of 100 nm when assuming constant permittivity (Figure 5).
In summary, these results demonstrate that the Stern layer as

well as the finite ion size and field-dependent electrolyte permit-
tivity needs to be accounted for in simulating EDLCs. This is
particularly true when the electrode sphere radius is small and
less than 40 nm for aqueous electrolytes.
Note that Hamou et al.28 investigated the effect of field-

dependent electrolyte permittivity in the simulation of SECPMs
using the Booth model. Unfortunately, the parameters used in
the Booth model were not reported in ref 28. Unlike the present
study, the authors did not observe significant changes in the
dielectric permittivity and in electric potential profiles.28 This
may be attributed to the following two reasons. First, the
electrolyte concentration and the surface potential considered
in ref 28 were c∞ = 10�5�10�3 mol/L and ψs = 0.2�0.4 V.
These values were lower than c∞ = 1 mol/L andψs = 0.5 V used
in the present study. Second, electric double layers between the
working electrode and the probe overlapped in the simulations of
SECPMs.28 This could significantly reduce the local electric field
making the dependency of the electrolyte permittivity on the
electric field negligible.70

4.4. Effect of Stern Layer Thickness. Figure 7 shows the
diffuse layer specific capacitance Cs

D as a function of R0 obtained
by solving eqs 11a, 11b, and 12a�12c using field-dependent
permittivity for Stern layer thicknessH = 0, 0.33, and 1.0 nm. The
case of H = 0 nm corresponds to the simulation of the diffuse

layer without Stern layer. The other parameters were identical to
those used to produce Figure 6. Figure 7 shows that Cs

D

decreased with decreasing Stern layer thickness for all values of
particle radius R0. The predicted Cs

D significantly decreased with
increasing sphere radius R0 for finite Stern layer thickness H.
However, in the limiting case of H = 0 nm (i.e., without Stern
layer), Cs

D remained nearly independent of R0.

5. CONCLUSION

This paper presented numerical simulations of the electric
double layer near the surface of a spherical ultramicroelectrode
particle immersed in aqueous electrolyte solution. The model
accounted for (i) the Stern and diffuse layers, (ii) the finite size of
ions in both layers, and (iii) the field-dependent electrolyte
permittivity. The effect of electrode curvature was also investi-
gated by varying the particle radius from 1 nm to 100 μm. The
following conclusions can be drawn:
1. The field-dependent permittivity ɛr(E) significantly affects

predictions of the Stern layer and total specific capacitances
for all particle radii considered.

2. The finite size of ions and the Stern layer need to be
accounted for in predicting the electric double layer
capacitance for large electric potential (∼0.5 V) and
electrolyte concentration (∼1 mol/L).

3. The electrode curvature has negligible effect on the Stern
layer and diffuse layer specific capacitances for sphere radii
larger than 40 nm for both constant and field-dependent
permittivities.

4. The Stern layer capacitance dominates the total capacitance
when the electrolyte concentration and surface potential
are large (c∞ g 1 mol/L and ψs g 0.5 V).

5. The Helmholtz model predicts the Stern layer capacitance
Cs
St of a sphere if the electrolyte permittivity can be assumed

to be constant or if the sphere radius is larger than 40 nm.
6. The Helmholtz model significantly underestimates Cs

St for
sphere radii less than 40 nm when accounting for field-
dependent permittivity.

These conclusions will be useful in accurately simulating
ultramicroelectrodes for electrochemical sensors and EDLCs
with more complex geometries.
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