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ABSTRACT: This paper presents a generalized modified
Poisson−Nernst−Planck (MPNP) model derived from first
principles based on excess chemical potential and Langmuir
activity coefficient to simulate electric double-layer dynamics in
asymmetric electrolytes. The model accounts simultaneously
for (1) asymmetric electrolytes with (2) multiple ion species,
(3) finite ion sizes, and (4) Stern and diffuse layers along with
Ohmic potential drop in the electrode. It was used to simulate
cyclic voltammetry (CV) measurements for binary asymmetric
electrolytes. The results demonstrated that the current density
increased significantly with decreasing ion diameter and/or
increasing valency |zi| of either ion species. By contrast, the ion
diffusion coefficients affected the CV curves and capacitance
only at large scan rates. Dimensional analysis was also performed, and 11 dimensionless numbers were identified to govern the
CV measurements of the electric double layer in binary asymmetric electrolytes between two identical planar electrodes of finite
thickness. A self-similar behavior was identified for the electric double-layer integral capacitance estimated from CV measurement
simulations. Two regimes were identified by comparing the half cycle period τCV and the “RC time scale” τRC corresponding to
the characteristic time of ions’ electrodiffusion. For τRC ≪ τCV, quasi-equilibrium conditions prevailed and the capacitance was
diffusion-independent while for τRC ≫ τCV, the capacitance was diffusion-limited. The effect of the electrode was captured by the
dimensionless electrode electrical conductivity representing the ratio of characteristic times associated with charge transport in
the electrolyte and that in the electrode. The model developed here will be useful for simulating and designing various practical
electrochemical, colloidal, and biological systems for a wide range of applications.

1. INTRODUCTION
Cyclic voltammetry (CV) is a powerful technique in the field of
electrochemistry.1−3 It has been the subject of intense studies in
electrochemical sensing1−3 and in electrical energy storage and
conversion.4−9 In these applications,4−9 the electric potential is
typically above 1 V, while the electrolyte concentration is at
least 1 mol/L. Numerous studies9−23 have demonstrated that
the finite ion size must be accounted for when simulating
electric double layers at such large electric potential and/or
large electrolyte concentrations. However, these studies have
been mostly limited to binary and symmetric electrolytes.9−23

Practical electrolytes are typically asymmetric in nature due to
the difference in (i) their ion diffusion coefficients,24 (ii) their
ion sizes such as in ionic liquids,25 and/or (iii) their ion
valencies such as aqueous H2SO4 and Na2SO4. Moreover, the
use of electrolyte mixtures with more than two ion species have
been investigated in many practical applications such as
supercapacitors,26−28 water desalination,29,30 electrokinetics in
colloidal systems,31−40 electrochemical measurements involving
supporting electrolytes,41−43 and various biological processes
including gating and permeation in ion channels.44−50

Existing simulations of asymmetric electrolytes based on
continuum theory and accounting for finite ion size are mainly
limited to equilibrium conditions.21,31−40,51−62 For example,
Bikerman63 developed the first equilibrium modified Poisson−
Boltzmann (MPB) model accounting for finite ion size. This
model applies to electrolytes with anions and cations having
different volumes but symmetric valency. Borukhov et al.51,52

and Silalahi et al.53 developed MPB models valid for binary
electrolytes with asymmetric valency but identical ion diam-
eters. Their model was later extended to binary asymmetric
electrolytes with unequal ion diameters.54,55 Biesheuvel and co-
workers56−58 and Alijo ́ et al.40 developed more general MPB
models valid for asymmetric electrolytes and/or multiple ion
species with different ion sizes and valencies. This was accom-
plished by incorporating an excess chemical potential term
based on the Boublik−Mansoori−Carnahan−Starling−Leland
equation-of-state. It directly relates the excess chemical
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potential to the local ion concentrations, ions’ effective
diameters, and their exclusion volumes.40,56−58 Moreover,
Tresset59 developed a generalized Poisson−Fermi model for
asymmetric electrolytes and multiple ion species based on the
lattice gas approach by considering ions in discrete cells of
different volumes. In addition, Li and co-workers60−62

developed a model for asymmetric electrolytes based on the
variational principle while accounting for the finite sizes of both
ions and solvent molecules. Alternatively, Horno and co-
workers31−37 developed a MPB model for asymmetric elec-
trolytes by directly applying a “Langmuir-type” correction to
the equilibrium ion concentration given by the Boltzmann
distribution.
Figure 1a shows a schematic of the electric double layer

structure consisting of Stern and diffuse layers forming near a

planar electrode.1,9,64 Several studies have considered ion
species with different effective diameters resulting in multiple
Stern layers with different thicknesses near the electrode
surface.36−40 There were no free charges within the Stern layer
immediately adjacent to the electrode surface while all ion
species coexisted in the diffuse layer.36−40 By contrast, only ion
species of intermediate sizes existed in the intermediate Stern
layer(s). Such electric double layer structure was typically used
along with PB or MPB models.36−40 However, the associated
ion concentrations do not satisfy the overall electroneutrality
condition across the electrolyte domain expressed as
∑i=1

N ∫ −L
L zici(x,t) = 0, even for uniform concentrations typically

used as initial conditions.9,17−23 This was caused by the small

ions present in the intermediate Stern layer(s). For example, for
binary and asymmetric electrolytes with valencies (zi)1≤i≤2 and
initial bulk ion concentrations (ci∞)1≤i≤2, the above integral
initially reduces to ∑i=1

2 ∫ −L
L zici∞ dx = 2z2c2∞(H1 − H2) ≠ 0

where Hi = ai/2 (i = 1 and 2) is the Stern layer boundaries
defined according to the diameters of the larger (a1) and
smaller (a2) ions, respectively. Note that c1(x,t) and c2(x,t)
were nonzero for −L + H1 ≤ x ≤ L − H1 and −L + H2 ≤ x ≤
L − H2, respectively. This issue becomes particularly severe
when simulating electric double layers in a finite electrolyte
domain.
This paper aims to develop a model, from first principles, for

simulating electric double-layer dynamics valid for asymmetric
electrolytes and/or for multiple ion species accounting for
different ion diameters, as well as different valencies and
diffusion coefficients. The model was used to simulate CV
measurements for binary asymmetric electrolytes.

2. BACKGROUND
2.1. Cyclic Voltammetry. In CV measurements, the

surface potential ψs is imposed to vary periodically and linearly
with time t as
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where v is the scan rate in V/s, m(= 1, 2, 3,...) is the cycle
number, and τCV = (ψmax − ψmin)/v is half the cycle period.
The latter represents the time for varying the surface poten-
tial from its maximum ψmax to its minimum ψmin values or
versa vice. Here, ψmax − ψmin is referred to as the “poten-
tial window”. Note that the measurements are referred to as
“linear sweep voltammetry” when ψs(t) = ψmin + vt or ψs(t) =
ψmax − vt.
The surface charge density qs accumulated at the electrode

surface during one cycle can be estimated by computing the
area enclosed by the CV curves.9 Then, the areal integral
capacitance Cs (in F/m2) can be computed from CV
measurements as9

∮ψ ψ ψ ψ
ψ=

−
=

−
C

q j

v
1

2
ds

s

max min max min

s
s

(2)

where js is the surface current density (in A/m2).
2.2. Modeling of Electric Double Layer Dynamics.

Recent efforts have been made to account for the effect of finite
ion size in modeling ion transport in concentrated electrolyte
solutions and/or under large electric potential.18−23,44−50,65−67

For example, Kilic et al.19 derived a modified Poisson−Nernst−
Planck (MPNP) model valid for binary and symmetric
electrolytes under large electrolyte concentration and electric
potential. The authors added an excess term accounting for the
entropic contribution due to finite-size ions in the expression of
the Helmholtz free energy. This resulted in an excess term in
the expressions of the chemical potentials and mass fluxes.19−22

However, this MPNP model does not apply to asymmetric
electrolytes or to multiple ion species.9,17−23

Alternatively, several authors65−67 incorporated the finite ion
size in ion mass fluxes using the activity coefficient to account
for the deviation from ideal electrolyte solutions. However,
these studies65−67 were also limited to binary and symmetric

Figure 1. Schematic and the computational domain of the electric
double layer structure consisting of Stern and diffuse layers (a) near
a planar electrode (i.e., with the half domain) and (b) between
two planar electrodes (i.e., with the full domain). Here, the ion
diameters of large and small ion species are denoted by a1 and a2,
respectively.
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electrolytes. Note that the MPNP model developed by Kilic
et al.19 can be also formulated in a form equivalent to that based
on the activity coefficient.21,22,37 Based on this MPNP model,19

Wang and Pilon9 performed numerical simulations reproducing
CV measurements for electric double layer capacitors with
binary and symmetric electrolytes for large concentration and
potential window. The model simultaneously accounted for the
finite ion size, Stern and diffuse layers, and the electrode
electrical conductivity. A scaling analysis was performed, and
dimensionless numbers governing CV measurements were
identified.9

Davidson and Goulbourne44 extended the MPNP model to
multiple ion species but with symmetric ion diameter and
valency. Eisenberg and co-workers45−47 developed a MPNP
model for binary asymmetric electrolytes based on the variation
principle. Horng et al.48 later extended this model45−47 for
asymmetric electrolytes with multiple ion species. However,
these MPNP models45−48 were expressed as integral-differential
equations, thus making the numerical solution procedure highly
involved particularly for three-dimensional geometries.
Lu and Zhou49,50 extended the expression of chemical

potential developed in refs.51,52 and proposed a “size-modified”
Poisson−Nernst−Planck (SMPNP) model for asymmetric
electrolytes and multiple ion species. In their model,49,50 they
introduced a parameter “ki = ai/a0” representing the ratio of ion
diameter ai and the diameter of solvent molecules a0. The
authors considered different cases for ki > 1 and justified that
the model successfully constrained the ion concentrations
below their maximum values. However, this SMPNP model
breaks down when neglecting the size of solvent molecules and
as ki → ∞ the excess term accounting for finite ion sizes
approaches infinity.
To the best of our knowledge, no study has simulated CV

curves for electric double layer capacitors with asymmetric
electrolytes and/or with multiple ion species while accounting
for the finite ion size. This paper aims to develop, from first
principles, a model for simulating electric double-layer
dynamics valid for asymmetric electrolytes and/or for multiple
ion species. It simultaneously accounts for (1) asymmetric
electrolytes with (2) multiple ion species of (3) finite ion size,
and for (4) Stern and diffuse layers. The model will be useful
for simulating electric double layers in various electrochemical,
colloidal, and biological systems.

3. ANALYSIS
3.1. Generalized Modified Poisson−Nernst−Planck

Model. Previous studies21,22,65−69 established that the effect
of finite ion size on the electric double layer dynamics can be
generally accounted for by employing the activity coefficient
γi in the expression of the chemical potential of each ion species
“i”. The ion mass flux is proportional to the gradient of
chemical potential. Then, a generalized modified Poisson−
Nernst−Planck (GMPNP) model consisting of Gauss law
coupled with the mass conservation equations for each one of
the N ion species can be formulated as
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where ψ is the local electric potential, while ci and Di are the
molar concentration and diffusion coefficient of ion species “i”
in the electrolyte solution, respectively. Here, ε0 and εr are the
free space permittivity (ε0 = 8.854 × 10−12 F/m) and the
relative permittivity of the electrolyte solution, respectively.
The temperature is denoted by T (in K), while F and Ru are the
Faraday constant (F = 96485.3 sA/mol) and the universal gas
constant (Ru = 8.314 JK−1 mol−1), respectively.
Among various forms of activity coefficient existing in the

literature, the “Langmuir type” activity coefficient31−37,65,70−73

directly relates γi to the ion diameter ai to account for the
exclusion volume caused by the finite size of ion species. It is
expressed as70,71

γ =
− ∑ =

1
1i

i
N c

c1
i

i ,max (4)

where ci,max is the maximum ion concentration of ion species “i”
and is given by ci,max = 1/NAai

3 when assuming simple cubic ion
packing. Here, NA is the Avogadro’s number (NA = 6.022 ×
1023 mol−1). Note that as the ion diameter vanishes, i.e., ai = 0,
ci,max tends to infinity and γi approaches 1. It is also interesting
to note that eq 4 is a simplified expression of the activity
coefficient based on the Boublik−Mansoori−Carnahan−
Starling−Leland equation-of-state.21,56−58

By employing the “Langmuir type” activity coefficient given
by eq 4, the GMPNP model can be written as
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Note that for vanishing ion diameter (ai = 0), eqs 3 and 5
reduce to the classical PNP model.9 In addition, for binary and
symmetric electrolytes, N = 2, z1 = −z2, D1 = D2, and a1 = a2,
and eqs 3 and 5 reduce to the MPNP model developed in
refs 19 and 21. Note also that the GMPNP model can be also
derived by considering the excess chemical potential μi

ex for
each ion species “i” and by noting its direct relation to the
activity coefficient γi given by μi

ex = kBT ln(γi).
21,68,70

Compared with previous MPNP models,9,17−23,44−50,65−67

the present generalized MPNP (GMPNP) model, given by
eqs 3 to 5, has several attractive features. First, it applies to
asymmetric electrolytes and/or multiple ion species. Second, it
does not present any additional challenges in the numerical
solution procedure compared with the MPNP model for binary
symmetric electrolytes.9,17,19−23 Moreover, it can be conve-
niently applied to three-dimensional geometries unlike those
expressed as integral-differential equations.45−48 Third, it is
consistent with the classical or existing models when
considering ions as point charges or having identical diameters.
Fourth, it can be readily extended by employing other forms of
activity coefficient based on available expressions of excess
chemical potential μi

ex such as the Boublik−Mansoori−
Carnahan−Starling−Leland equation-of-state.21,58

3.2. Schematics and Assumptions. In the present study,
the double layer structure with multiple Stern layers proposed
in refs 36−40 was not adopted because this does not satisfy the
overall electroneutrality condition, as discussed previously.
Instead, the electric double layer was assumed to consist of (i) a
single Stern layer adjacent to the electrode surface and (ii) a
diffuse layer beyond. Wang et al.9,16 previously showed that the
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electrode curvature has negligible effect on the areal integral
capacitance for electrode or pore radii larger than 40 nm.
Therefore, analysis of planar electrodes is representative of
macroporous and mesoporous electrodes with large enough
radii of curvature.
Figure 1a shows the half domain used in previous simulations

for binary and symmetric electrolytes.9 By contrast, Figure 1b
shows the schematic of the computational domain used to
simulate the electrolyte solution consisting of binary asym-
metric electrolytes between two identical planar electrodes A
and B. In the present study, simulations with the former and
the latter domains were referred to as “half-domain simulations”
and “full-domain simulations”, respectively. Here, the effective
ion diameters of the larger and smaller ion species were
denoted by a1 and a2, respectively. The region of electrolyte
solution consisted of three layers including (1) the Stern layer
of thickness H near each electrode surface located at x = ± L
and (2) the diffuse layer between the Stern layers, i.e., −L +
H ≤ x ≤ L − H. Here, the thickness H was approximated as the
effective radius of the largest ion referred to as ion species 1, i.e.,
H = a1/2.
To make the problem mathematically tractable, the fol-

lowing assumptions were made: (1) the effective ion di-
ameter was assumed to be independent of electrolyte
concentration,19,21,74 (2) the electrolyte dielectric permittiv-
ity was constant and equal to that of water. Note that the
dielectric permittivity may depend on electric field and
temperature.13,16,75,76 However, it is typically assumed to
be constant in scaling analysis, as performed in refs 11, 12,
19−23, and 77. (3) isothermal conditions prevailed throughout
the electrode and electrolyte, (4) advection of the electrolyte
was assumed to be negligible, (5) the ions could only accu-
mulate at the electrode surface and could not diffuse into the
electrode, i.e., there was no ion insertion, and (6) the specific
ion adsorption due to nonelectrostatic forces was assumed to
be negligible.
3.3. One-Dimensional Formulation. The local electric

potential ψ(x,t) in the identical solid electrodes A and B of
electrical conductivity σs and thickness Ls was governed by the
Poisson equation expressed as9,78,79

σ ψ∂
∂
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Moreover, the local electric potential ψ(x,t) and molar ion
concentrations ci(x,t) at time t and location x in the binary
asymmetric electrolyte solution were computed by solving the
generalized MPNP model with a Stern layer. For planar
electrodes, the generalized MPNP model (eqs 5) in the diffuse
layer (−L + H ≤ x ≤ L − H) can be expressed in its one-
dimensional form as
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Here, Ni denotes the mass flux of ion species “i” expressed as
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Here, the surface potentials at the surface of electrode A (x =
−L − Ls) and B (x = L + Ls) were imposed to be −ψs(t) and
+ψs(t), respectively, where ψs(t) is given by eq 1. Moreover, the
Stern layers can be accounted for via the boundary conditions
relating the potential drop across the Stern layer and the
potential gradient at the Stern/diffuse layer interface located at
x = (L − H) and x = −(L −H).16,19,21 Then, it suffices to
simulate only the diffuse layer in the computational domain
defined by −L + H ≤ x ≤ L− H.16,19,21 For planar electrodes,
the boundary conditions accounting for the Stern layers are
given by16,19,21
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The electric potential and current density were continuous
across the electrode/electrolyte interface located at x = ± L so
that9,80
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Moreover, at the Stern/diffuse layer interface located at x = ±
(L− H), the mass fluxes of ion species vanish since there is no
ion insertion in the electrode material (assumption 5) such that

− + = − =N L H t N L H t( , ) 0 and ( , ) 0i i (11)

The initial conditions in the diffuse layer satisfy the
electroneutrality condition and are given by

ψ = = = =

= = −
∞

∞

x t c x t c

c x t c z z

( , 0) 0, ( , 0) and

( , 0) /

1 1,

2 1, 1 2 (12)

where ci,∞ represents the bulk ion concentration of ion species “i”.
Note that the Ohmic IR drop due to the electrolyte solution

is typically the major source of resistance. It is often accounted
for via a resistance in an equivalent RC circuit while ignoring
the electric double layer structure.1,81 By contrast, the present
study accounted for the detailed electric double layer structure.
Thus, the electric potential drop in the electrolyte solution was
rigorously obtained by numerically solving the GMPNP model
along with the boundary conditions (eqs 7−12).

3.4. Dimensional Analysis. Equations 6−12 constitute the
one-dimensional generalized MPNP model with a Stern layer
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for binary asymmetric electrolytes accounting for the electrodes.
Based on our previous studies,9 the following scaling param-
eters were introduced:
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for binary asymmetric electrolytes.82 Then, the governing
eq 6 in the electrode can be expressed, in dimensionless form,
as
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Similarly, the governing eqs 7 in the electrolyte were trans-
formed into the dimensionless as,
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where z2* = z2/z1 is the ratio of valencies between smaller
and larger ion species, i.e., z2* = −1 for symmetric electrolytes.
Here, the packing parameter for ion species “i” is defined as
vpi = 2c1∞/(1/ai

3NA). It represents the ratio of the total bulk ion
concentration to the maximum ion concentration 1/ai

3NA
assuming a simple cubic packing of ions of diameter ai.
The dimensionless potential ψs*(t) imposed at the electrode

surface in CV measurements is given by
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where τCV* = (ψmax* − ψmin* )/v* represents the dimensionless half
cycle period and v* = (λD

2 /D1)/[(RuT/z1F)/v] is the
dimensionless scan rate. It can be interpreted as the ratio of
the ion diffusion time scale (λD

2 /D1) and the characteristic time
for reaching the thermal potential RuT/z1F at scan rate v.
Moreover, ψmax* = ψmax/(RuT/z1F) and ψmin* = ψmin/(RuT/z1F)
are the maximum and minimum surface potentials, respectively,
scaled by the thermal potential. They can be also interpreted as
the ratio of characteristic times to reach ψmax or ψmin and the
characteristic time for reaching the thermal potential at scan
rate v.
Moreover, the boundary conditions [eqs 9 and 11] at the

Stern/diffuse layer interface located at x* = ± (L − a1/2)/λD
can be written in dimensionless form as
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where L* = L/λD and a1* = a1/λD are respectively the half
interelectrode distance and effective ion diameter scaled by
the Debye length representing the thickness of the electric
double layer. Similarly, the boundary conditions (eqs 10) at the
electrode/electrolyte interface located at x* = ± L/λD became,
in dimensionless form,

ψ λ ψ λ* * = ± = * * = ±± ∓x L x L( / ) ( / )D D (19a)
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where Ls* = Ls/λD is the electrode thickness scaled by the
Debye length. Note that σs* = [σs(ψmax − ψmin)/Ls(Fz1c1∞D1/L)]
represents the ratio of the characteristic current density in the
electrode to that in the electrolyte. It can be also interpreted as
the ratio of time scales for charge transport in the electrolyte
and in the electrode.
Similarly, the dimensionless initial conditions for ψ* and

ci* in the diffuse layer, for −L* + a1*/2 ≤ x* ≤ L*−a1*/2,
simplify as

ψ* * * = = * * * = =

* * * = = − *

x t c x t

c x t z

( , 0) 0, ( , 0) 1, and

( , 0) 1/
1

2 2 (20)

Considering the dimensionless governing equations and
associated boundary and initial conditions, eleven key
dimensionless similarity parameters can be identified as
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where vp1 represents the packing parameter due to finite ion
size of ion species “1”. Note that v*, ψmax* , ψmin* , L*, a1*, and vp1
were identical to or direct functions of those identified in ref
9 for the CV simulations of electric double layer capacitors
with binary symmetric electrolytes. When considering bi-
nary asymmetric electrolytes, three additional dimensionless
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numbers appear, namely, vp2, D2*, and z2*. The dimensionless
numbers σs* and Ls* account for the charge transport in the
electrode.
3.5. Constitutive Relations. In order to solve eqs 7−12 or

eqs 15−20, the electrolyte properties εr, ai, zi, Di, c1∞ along with
the temperature T, and the surface potential ψs(t) are needed.
The present study focuses on binary electrolytes at room
temperature T = 298 K with different ion diameter, diffusion
coefficient, and/or valency. The electrolyte relative permittivity
was taken as that of water εr = 78.5,24 while the effective ion
diameter ai ranged from 0.60 to 1.0 nm typical of solvated ion
diameters.74 The valencies (z1: z2) corresponded also to
realistic conditions including 1: − 1, 1: − 2, 2: − 2, or 1: − 3.
The ion diffusion coefficients Di varied from 1.957 × 10−9 m2/s
to 5.273 × 10−9 m2/s representative of aqueous and organic
electrolytes.24 The initial and bulk ion concentrations was
c1,∞ = 1.0 mol/L and c2 = −c1,∞z1/z2 satisfying the overall
electroneutrality condition. Moreover, the maximum and
minimum surface electric potentials were ψmax = 0.5 V and
ψmin = −0.5 V, respectively. The scan rate in actual CV
measurements for electrical energy storage devices ranges
typically from 10−3 to 200 V/s.4−8 Here, the scan rate v varied
over a wider range from 10−2 to 108 V/s. This was due to two
main reasons. First, small electrode thickness (0−100 nm) was
considered along with realistic values (>1 μm) to validate the
scaling analysis. The capacitance starts to decrease at very large
scan rate for such small electrode thickness.9 Second,
asymptotic behaviors of electric double layers were explored
at very large scan rates. Our previous study9 established that
electric double layers behave as a resistor under such
conditions. Finally, the electrode electrical conductivity was
chosen to be 10−5 to 102 S/m, typical of carbon materials.83,84

3.6. Method of Solution. The governing eqs 7 and 8 were
solved along with the boundary and initial conditions given by
eqs 9−12 using the commercial finite element solver COMSOL
4.2. CV measurements were simulated by numerically imposing
the periodic surface electric potential given by eq 1.
Simulations of CV measurements were performed for at least

three cycles. The numerical convergence criterion was defined
such that the maximum relative difference in the predicted
capacitive current density jC was less than 1% when (i) reducing
the mesh size by a factor of 2 and (ii) dividing the time step by
two. The mesh size was the smallest at the electrode surfaces
due to the large potential gradient and then gradually increased.
Converged solutions were achieved by imposing a time step of
Δt ≈ t0/800 = (ψmax − ψmin)/800v with the mesh size Δx/L =
5 × 10−14 at the Stern/diffuse layer interface with a growth rate
of 1.3 up to Δx/L = 1/250 in the rest of the domain. Based on
these convergence criteria, the total number of finite elements
was less than 1910 for all cases simulated in the present study.
3.7. Data Processing. The capacitive current density jC

from CV simulations was computed based on its definition
as9,85−88
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The corresponding dimensionless capacitive current density
jC* at xL* = L* − a1*/2 and −xL* = −L* + a1*/2 is expressed as
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In order to reproduce typical CV measurements, the current
densities jC(t) and jC*(t*) were plotted as functions of ψs(t) and
ψs*(t*), respectively.

3.8. Validation. The numerical tool was validated based on
existing solutions reported in the literature. The transient ion
concentration and electric potential profiles were predicted by
solving the PNP and MPNP models for binary and symmetric
electrolytes (N = 2, z1 = −z2 = z, and a1 = a2) with constant
surface electric potential. The results were successfully
compared with the reported numerical solutions for ci(x,t)
and ψ(x,t) for a wide range of packing parameter vp and
dimensionless surface potential ψs*.

19

4. RESULTS AND DISCUSSION
Results in the Supporting Information (Figures S2 and S3)
demonstrate that half-domain CV simulations should only be
used for symmetric electrolytes while the full domain must be
simulated for asymmetric electrolytes. Consequently, all the
following CV simulations were performed for the entire domain
consisting of electrolyte solution between two identical planar
electrodes.

4.1. Asymmetric versus Symmetric Electrolytes.
4.1.1. Effect of Asymmetric Ion Diameter. Figure 2 shows

CV curves predicted for three cases with different ion
diameters, namely (i) a1 = a2 = 0.60 nm, (ii) a1 = 0.66 nm
and a2 = 0.60 nm, and (iii) a1 = a2 = 0.66 nm. The ion valencies
and diffusion coefficients were z1 = −z2 = 1 and D1 = D2 =
1.957 × 10−9 m2/s, respectively. Other parameters were c1,∞ =
1 mol/L, v = 104 V/s, L = 200 μm, ψmax = ψmin = 0.5 V,
T = 298 K, and εr = 78.5. Results were obtained by solving the
GMPNP model with a Stern layer (eqs 6−12) without
accounting for the potential drop across the electrodes
corresponding to σs → ∞ S/m or Ls = 0 m. Figure 2 dem-
onstrates that the current density jC for asymmetric electrolyte
with a1 = 0.66 nm and a2 = 0.60 nm lay between those obtained

Figure 2. Predicted jC versus ψs curves from CV simulations for three
cases with different ion diameters, namely, (i) a1 = a2 = 0.60 nm, (ii)
a1 = 0.66 and a2 = 0.60 nm, and (iii) a1 = a2 = 0.66 nm. Results were
obtained by solving the GMPNP model with a Stern layer (eqs 6−12)
without accounting for the potential drop across the electrodes
corresponding to σs → ∞ S/m or Ls = 0 m. Other parameters were
c1,∞ = 1 mol/L, υ = 104 V/s, L = 200 μm, ψmax = ψmin = 0.5 V,
T = 298 K, and εr = 78.5.
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for symmetric electrolytes with ion diameter a equal to 0.66
and 0.60 nm. The relative difference in jC between asymmetric
and symmetric electrolytes was about 9%. Figure 2 also
indicates that the predicted current density jC increased with
decreasing ion diameter. This can be attributed to the fact that
smaller ions have larger maximum ion concentrations ci,max and
thus feature a larger gradient in electric potential near the
electrode surface.21 This, in turn, led to a larger capacitive
current density according to eq 22. Overall, these results
demonstrate that the unequal ion size needs to be accounted
for in order to accurately predict the current density for
asymmetric electrolytes.
4.1.2. Effect of Asymmetric Valency. Figure 3 shows the CV

curves predicted for electrolytes with different valencies, namely

(i) z1 = −z2 = 1, (ii) z1 = 1 and z2 = −2, and (iii) z1 = −z2 = 2.
Here, the ion diameters and diffusion coefficients were identical
such that a1 = a2 = 0.60 nm, D1 = D2 = 1.957 × 10−9 m2/s, and
Ls = 0 m. It is evident that the predicted current density jC for
asymmetric valency z1 = 1 and z2 = −2 lay between those
obtained for symmetric valency with z1 = −z2 = 1 and z1 =
−z2 = 2. The relative difference in current density jC between
asymmetric and symmetric electrolytes was about 9%. More-
over, jC increased with increasing valency |zi|. This can be
attributed to the fact that increasing the valency |zi| led to
increasing the amount of charges accumulated near the
electrode surface. This, in turn, led to a larger local electric
field near the electrode surface and thus larger current density.
4.1.3. Effect of Asymmetric Diffusion Coefficient. Figures 4

show jC versus ψs predicted at (a) low scan rate v = 102 V/s and
(b) high scan rate v = 105 V/s for three cases with different ion
diffusion coefficients, namely (i) D1 = D2 = 2.69D0, (ii) D1 = D0
and D2 = 2.69D0, and (iii) D1 = D2 = D0 with D0 = 1.957 ×
10−9 m2/s. The ion diameter and valency were identical,
namely, a1 = a2 = 0.60 nm and z1 = −z2 = 1, while the electrode
thickness was zero, i.e., Ls = 0 m. Figure 4a demonstrates that,
at low scan rate v = 102 V/s, the predicted CV curves
overlapped for all three cases despite differences in diffusion
coefficients. Moreover, the CV curves were symmetric about
the jC = 0 axis. Note that similar phenomena were also
observed in CV simulations for binary and symmetric
electrolytes.9 This can be attributed to the fact that ion
transport is diffusion-independent at low scan rates9 and is
controlled by the electric field. On the other hand, Figure 4b

demonstrates that the predicted CV curves became distorted at
large scan rate v = 105 V/s. Here, the predicted current density
jC and thus the capacitance increased with increasing ion
diffusion coefficient D1 or D2. Indeed, larger diffusion
coefficients enable ions to better follow the rapid variations
in electric potential.9 These results demonstrate that asym-
metric ion diffusion coefficients must be accounted for in CV
simulations at large scan rates but have no effect on CV curves
at low scan rates.

4.2. Dimensional Analysis. Table 1 summarizes the
different values of v, L, T, ψmax, ψmin, ai, Di, zi, and ci∞ for four
different cases of binary asymmetric electrolytes considered.
Parameters used in Case 1 corresponded to aqueous asymmetric
electrolyte KOH.9,24,74 Note that the dimensionless numbers for
all four cases were identical, namely, v* = 1.8 × 10−5, ψmax* =
−ψmin* = 19.5, L* = 3.29 × 105, a1* = 2.17, vp1 = 0.346, vp2 = 0.26,
D2* = 2.5, z2* = −1, σs* → ∞, and Ls* = 0. Figures 5a shows the
predicted jC versus ψs curves obtained for these four cases.
Results were obtained by numerically solving the generalized
MPNP model with a Stern layer (eqs 7−12). Figure 5a
indicates that the CV curves were significantly different in these
four cases. However, Figure 5b shows that the same data
plotted in terms of dimensionless current density jC* versus
dimensionless surface potential ψs* collapsed on a single CV
curve. Note that such self-similar behaviors were also observed
for cases with z2* = −2 and z2* = −3. Overall, these results
illustrated that the governing equations and the boundary and
initial conditions were properly scaled by parameters defined in

Figure 3. Predicted jC versus ψs curves from CV simulations for three
cases with different valencies, namely, (i) z1 = −z2 = 2, (ii) z1 = 1 and
z2 = −2, and (iii) z1 = −z2 = 1. The model and other parameters were
identical to those used to generate the results shown in Figure 2.

Figure 4. Predicted jC versus ψs curves from CV simulations for (a)
υ = 102 V/s and (b) υ = 105 V/s. Three cases with different ion
diffusion coefficients were considered, namely, (i) D1 = D2 = 2.69D0,
(ii) D1 = D0 and D2 = 2.69D0, and (iii) D1 = D2 = D0 along with D0 =
1.957 × 10−9 m2/s. The model and other parameters were identical to
those used to generate the results shown in Figure 2.
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eqs 13. More importantly, they show that the electric double
layer dynamics for binary asymmetric electrolytes near planar
electrodes in CV measurements were governed by 11
dimensionless similarity parameters, namely, v*, ψmax* , ψmin* ,
L*, a1*, vp1, vp2, D2*, z2*, σs*, and Ls* given by eq 21.
Moreover, a dimensionless areal integral capacitance can be

defined as

∮λ υ ψ ψ υ
ψ* = = * − *
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*
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where Cs is defined in eq 1. Graphically, Cs* corresponds to the
area enclosed by the jC* versus ψs* curve. Figure 5b dem-
onstrates that Cs* depends only on the eleven dimensionless
numbers so that Cs* = f(v*, ψmax* , ψmin* , L*, a1*, vp1, vp2, D2*, z2*,
σs*, Ls*). This relation can be used to formulate design rules for

Table 1. Parameters Used in CV Simulations Reported in Figure 5a

v (V/s) L (μm) T (K) ψmax = −ψmin (V) εr a1 (nm) a2 (nm) D1 (m
2/s) D2 (m

2/s) z1 z2 c1∞ (mol/L)

Case 1 104 100 298 0.5 78.5 0.66 0.60 2 × 10−9 5 × 10−9 1 −1 1
Case 2 2 × 104 50 298 0.5 157 0.33 0.30 1 × 10−9 2.5 × 10−9 1 −1 8
Case 3 1.33 × 104 75 298 0.5 104.7 0.495 0.45 1.5 × 10−9 3.75 × 10−9 1 −1 2.37
Case 4 1.33 × 104 75 89.4 0.15 348.9 0.495 0.45 5 × 10−8 1.25 × 10−9 1 −1 2.37

aIn these four cases, the dimensionless numbers were identical and equal to v* = 1.8 × 10−5, ψmax* = −ψmin* = 19.5, L* = 3.29 × 105, a1* = 2.17, νp1 =
0.346, νp2 = 0.26, D2* = 2.5, z2* = −1, σs* → ∞, and Ls* = 0.

Figure 5. Predicted (a) jC versus ψs curves and (b) jC* versus ψs* curves
from CV simulations for four cases with parameters given in Table 1.
Results were obtained by numerically solving the generalized MPNP
model with a Stern layer (eqs 7−12) for υ* = 1.8 × 10−5, ψmax* =
−ψmin* = 19.5, L* = 3.29 × 105, a1* = 2.17, vp1 = 0.346, vp2 = 0.26,
D2* = 2.5, z2* = −1, σs* → ∞, and Ls* = 0.

Figure 6. Predicted jC* versus ψs* curves from CV simulations for three
different values of z2*, namely, z2* = −1, −2, and −3. The model and
other dimensionless numbers were identical to those used to generate
the results shown in Figure 5.

Figure 7. Predicted (a) capacitance Cs as a function of scan rate υ and
(b) ratio Cs/Cs,0 as a function of 2υ*L*/[(1 + D2*)(ψmax* − ψmin* )]
obtained from CV simulations for cases 1 to 17 without accounting for
the potential drop across the electrodes (i.e., σs* → ∞ or Ls* = 0) with
dimensionless parameters L*, z2*, ψmax* = −ψmin* , D2*, a1*, vp1, and vp2
summarized in Table 2.
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EDLCs with asymmetric electrolytes. However, finding this
multidimensional function falls beyond the scope of this study.
Finally, Figure 6 shows the predicted jC* versus ψs* curves for

three cases with z2* = −1, −2, and −3, respectively. The model
and the other ten dimensionless numbers were identical to
those used to generate the results shown in Figure 5. It is
evident that jC* and therefore Cs* increased as z2* decreased (i.e.,
increasing |z2*|) due to the increase in the amount of charges
accumulated at the electrode surface which induced a larger
electric current.
4.3. Capacitance versus Scan Rate. Figure 7a shows the

double layer areal integral capacitance Cs predicted from CV
simulations and estimated using eq 1 as a function of scan rate v
ranging from 10−2 to 107 V/s for 17 cases of binary asymmetric
electrolytes without accounting for the potential drop across
the electrodes. This corresponds to cases with infinitely large
electrode electrical conductivity (σs → ∞ S/m) or zero
electrode thickness (Ls → 0 m). Table 2 summarizes the values
of the 10 dimensionless parameters L*, z2*, ψmax* = −ψmin* , D2*,
a1*, vp1, vp2, σs*, and Ls* along with the maximum capacitances
Cs,0 corresponding to the plateau observed in Cs versus v at low
scan rates. Note that Cs,0 depends on a variety of parameters
including ψs, a1, a2, z1, z2, and c1∞. However, it falls beyond the
scope of this manuscript to find an analytical expression relating
these parameters for asymmetric electrolytes. A remarkably
broad range of values were considered for each dimensionless
number. It is evident that these Cs versus v curves as well as Cs,0

were significantly different from one another. Figure 7b shows
the same data as those shown in Figure 7a but plotted in terms

of Cs/Cs,0 as a function of 2v*L*/[(1 + D2*)](ψmax* − ψmin* ). It is
interesting to note that all the curves collapsed on a single line,
irrespective of the different values of L*, z2*, ψmax* = −ψmin* , D2*,
a1*, vp1, and vp2. The Supporting Information presents the
effects of each parameter separately. To the best of our
knowledge, the present study is the first to identify this self-
similar behavior of electric double layer integral capacitance in
CV measurements with binary asymmetric electrolytes. Fitting
the dimensionless data shown in Figure 7b yields the following
correlation with a coefficient of determination equal to 0.999

=
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The dimensionless abscissa in Figure 7b can be interpreted as
the ratio of two time scales,
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where τRC is the “RC time scale” for binary asymmetric elec-
trolytes corresponding to the characteristic time of ions’ elec-
trodiffusion77 and τCV is the half cycle period of CV
measurements. They are expressed as
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Table 2. Dimensionless Parameters for 29 Cases of CV Simulations Reported in Figures 7 and 8 along with the Respective
Values of Maximum Capacitance Cs,0

L* z2* ψmax* = −ψmin* D2* a1* νp1 νp2 σs* Ls* Cs,0 (μF/cm
2)

Case 1 32900 −3 19.5 1 2.17 0.346 0.346 ∞ 0 160.1
Case 2 329000 −3 19.5 1 2.17 0.346 0.346 ∞ 0 160.1
Case 3 32900 −2 19.5 1 2.17 0.346 0.346 ∞ 0 127.1
Case 4 329000 −2 19.5 1 2.17 0.346 0.346 ∞ 0 127.1
Case 5 32900 −1 19.5 1 2.17 0.346 0.346 ∞ 0 87.5
Case 6 329000 −1 19.5 1 2.17 0.346 0.346 ∞ 0 87.5
Case 7 329000 −1 0.195 1 2.17 0.346 0.346 ∞ 0 109.6
Case 8 329000 −1 1.95 1 2.17 0.346 0.346 ∞ 0 109.5
Case 9 329000 −1 9.75 1 2.17 0.346 0.346 ∞ 0 102.2
Case 10 329000 −1 14.625 1 2.17 0.346 0.346 ∞ 0 94.44
Case 11 329000 −1 25.35 1 2.17 0.346 0.346 ∞ 0 87.77
Case 12 329000 −1 19.5 0.01 2.17 0.346 0.346 ∞ 0 87.5
Case 13 329000 −1 19.5 0.1 2.17 0.346 0.346 ∞ 0 87.5
Case 14 329000 −1 19.5 10 2.17 0.346 0.346 ∞ 0 87.5
Case 15 329000 −1 19.5 100 2.17 0.346 0.346 ∞ 0 87.5
Case 16 329000 −1 19.5 1 3.06 0.97 0.26 ∞ 0 65.6
Case 17 329000 −1 19.5 1 1.97 0.26 0.26 ∞ 0 98.5
Case 18 263.1 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−7 329 87.5
Case 19 263.1 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−4 329 87.5
Case 20 263.1 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−1 329 87.5
Case 21 263.1 −1 19.5 1 2.17 0.346 0.346 ∞ 329 87.5
Case 22 32900 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−4 0 87.5
Case 23 32900 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−4 329 87.5
Case 24 32900 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−4 3290 87.5
Case 25 32900 −1 19.5 1 2.17 0.346 0.346 1.61 × 10−4 98400 87.5
Case 26 16400 −3 19.5 100 2.17 0.346 0.346 1.61 × 10−4 233000 101.4
Case 27 32900 −2 19.5 10 2.17 0.346 0.346 1.61 × 10−4 98400 97.0
Case 28 403000 −2 19.5 1 2.17 0.346 0.346 0.0566 121000 97.0
Case 29 403000 −2 19.5 10 2.17 0.346 0.346 0.0566 121000 97.0

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp402181e | J. Phys. Chem. C 2013, 117, 18286−1829718294



Here, τL = 2L2/(D1 + D2) is the time scale for ion diffusion in
binary asymmetric electrolytes and τD = 2λD

2 /(D1 + D2) has
been termed as the “charge relaxation time scale”.77 Note that
τRC reduces to the corresponding “RC time scale” of binary
symmetric electrolytes when D2* = 1 as considered in refs 22,
23, and 77. Figure 7b indicates that two regimes can be
clearly identified: (i) 2v*L*/[(D1 + D2*)(ψmax* − ψmin* )] ≪ 1
or τRC ≪ τCV corresponds to the quasi-equilibrium or ion
diffusion-independent regime and (ii) 2v*L*/[(D1+D2*)-
(ψmax* − ψmin* )]≪ 1 or τRC ≪ τCV, corresponds to ion diffusion-
limited regime.
4.4. Effect of the Electrode. The above simulations

ignored the potential drop across the electrodes. Figure 8a

shows the double-layer areal integral capacitance Cs predicted
from CV simulations as a function of scan rate v ranging from
10−2 to 108 V/s for 12 cases accounting for charge transport in
the electrodes. Table 2 summarizes the values of the eleven
dimensionless parameters L*, z2*, ψmax* = −ψmin* , D2*, a1*, vp1, vp2,
σs*, and Ls* along with the maximum capacitances Cs,0 for cases
18 to 29. It is evident that the curves Cs versus v were
significantly different from one another due to the broad range
of parameters considered. Figure 8b shows the same data as
those shown in Figure 8a but plotted in terms of Cs/Cs,0 as a
function of τRC/τCV(1 + 80/σs*). The fitted curve given by
eq 25 for cases ignoring the potential drop across the
electrodes (σs*→∞ or Ls*→0) was also shown in Figure 8b
for comparison purposes. It is interesting to note that
all the curves collapsed on a single line, irrespective of the

different values of L*, z2*, ψmax* = −ψmin* , D2*, a1*, vp1, vp2, σs*,
and Ls*.
The dimensionless abscissa in Figure 7b can be interpreted as
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where σs* = τd/τs represents the ratio of characteristic charge
transport time scale in the electrolyte τd to that in the electrode
τs as discussed previously. Note that when σs* is very large (e.g.,
σs* ≫ 80), the charge transport in the electrode is much faster
than that in the electrolyte. Then, it suffices to simulate the
electrolyte in CV simulations.

5. CONCLUSIONS
This paper developed a MPNP model for simulating electric
double layer dynamics. This model was derived from first
principles based on excess chemical potential and Langmuir
activity coefficient accounting simultaneously for (1) asym-
metric electrolytes with (2) multiple ion species of (3) finite
ion size, and (4) Stern and diffuse layers. This study established
that asymmetric ion diameters and valencies must be accounted
for in CV simulations with asymmetric electrolytes for all scan
rates. By contrast, asymmetric ion diffusion coefficient affected
the CV curves only at large scan rates.
Dimensional analysis of the governing equations was also

performed for CV measurements with planar electrodes. Eleven
dimensionless numbers given by eq 21 were identified to
govern the CV measurements of electric double layer in binary
asymmetric electrolytes between two identical planar electrodes
of finite thickness. For the first time, a self-similar behavior was
identified for the electric double layer integral capacitance
estimated from CV measurements with binary asymmetric
electrolytes and planar electrodes. The physical interpretations
were also provided. This model provides a theoretical
framework to investigate more complex situations with
asymmetric electrolytes and/or multiple ion species such as
redox reactions in pseudocapacitors and the interplay of
Faradaic and capacitive currents encountered in fast-scan cyclic
voltammetry.
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Figure 8. Predicted (a) capacitance Cs as a function of scan rate υ and
(b) ratio Cs/Cs,0 as a function of TRC/TCV (1 + 80/σs*) obtained from
CV simulations for cases 18 to 29 with dimensionless parameters L*,
z2*, ψmax* = −ψmin* , D2*, a1*, vp1, vp2, σs*, and Ls* summarized in Table 2.
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Volume Effect on the Electrophoretic Mobility of Colloidal Particles. J.
Colloid Interface Sci. 2008, 323, 146−152.
(32) Aranda-Rascon, M. J.; Grosse, C.; Lopez-Garcia, J. J.; Horno, J.
Electrokinetics of Suspended Charged Particles Taking into Account
the Excluded Volume Effect. J. Colloid Interface Sci. 2009, 335, 250−
256.
(33) Lopez-García, J. J.; Horno, J.; Grosse, C. Equilibrium Properties
of Charged Spherical Colloidal Particles Suspended in Aqueous
Electrolytes: Finite Ion Size and Effective Ion Permittivity Effects. J.
Colloid Interface Sci. 2012, 380, 213−221.
(34) Lopez-García, J. J.; Aranda-Rascoń, M. J.; Horno, J. Electrical
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