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Abstract

This paper presents the modified method of characteristics for simulating multidimensional transient
radiative transfer in emitting, absorbing and scattering media. The method is based on the method of
characteristics that follows photons along their pathlines. It makes use of a fixed set of points, and unlike
the conventional method of characteristics, it follows the photons backward in space. Test problems
involving diffuse irradiation in 1-D and 3-D participating media and collimated irradiation in 1-D
participating media were considered. The results show good agreement with analytical and numerical
solutions reported in literature. The scheme is fast and was able to capture the sharp discontinuities
associated with the propagation of a radiation front in transient radiation transport.
r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditional analysis of radiation transfer neglects the transient effect of light propagation due
to the large speed of light compared to the local time and length scales [1]. Of late, with the advent
of ultra-short pulsed lasers, this assumption is no longer valid as the temporal width of the input
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

c speed of light in vacuum ¼ 2:998� 108 m=s
g scattering anisotropy factor in the Henyey–Greenstein phase function
I radiation intensity
L length
Nx number of nodes in the x-direction
Ny number of nodes in the y-direction
Nz number of nodes in the z-direction
Ny number of discrete polar angles for y varying from 0 to p
Nf number of discrete azimuthal angles for f varying from 0 to 2p
q heat flux
s geometric path length
S source term in the radiative transfer equation
t time
tc time at which the peak of an ultra-short pulse occurs
tp pulse width
Dt time step
ŝ direction unit vector
x, y, z Cartesian coordinates
Dz element size along z axis

Greek letters

b extinction coefficient ð¼ ss þ kÞ
y polar angle
k absorption coefficient
l wavelength
m direction cosine ð¼ cos yÞ
s Stefan–Boltzman constant ¼ 5:67� 10�8 W=m2K4

ss Scattering coefficient
t optical distance ð¼

R z

0 bdzÞ
f azimuthal angle
F scattering phase function
o scattering albedo ð¼ ss=b)
O solid angle

Subscripts

b refers to blackbody behavior
c refers to collimated intensity
d refers to diffuse intensity
L value at location z ¼ L
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w value at the boundary
l at a given wavelength l, or per unit wavelength
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pulse is similar to the order of the radiation propagation time in the system and usually of the
order of pico- and femto-seconds. Ultra-short pulsed lasers are used in a wide variety of
applications such as thin film property measurements, laser assisted micro-machining, laser
removal of contamination particles from surfaces, optical data storage, optical ablation and
ablation of polymers [2]. Ultra-short pulsed lasers are also used in remote sensing of the
atmosphere, combustion chambers and other environments which involve interaction of the laser
beam with scattering and absorbing particles of different sizes. Particle size distributions and their
optical properties can be reconstructed from measuring transmitted and reflected signals from
short-pulsed lasers [2]. Another interesting application of short-pulsed lasers is in biomedical
optical tomography where their use can potentially provide physiological and morphological
information about the interior of living tissues and organs in a non-intrusive manner. Yamada [3]
has described a technique to compute the properties of a tissue based on temporal intensity
measurements and an inverse method in order to determine the health of the tissue [3].
All the applications described above require models to predict transient radiation transport in

participating media. In the past, various analytical studies and numerical models of transient
radiative transfer have been reviewed by Mitra and Kumar [4]. They examined the transport of
light pulses through absorbing-scattering media with different approximate mathematical models.
They have shown that the propagation speed of scattered radiation, the magnitudes of the
transmitted and backscattered fluxes and the temporal shape of the optical signals are dependent
on the model used. This is because, the speeds of propagation are obtained by averaging over
different lines of sight oriented at different angles from the primary direction of propagation [4].
The diffusion approximation has been extensively used in biomedical applications [5,6] in order to
simplify the radiative transfer problem. However, its validity for transient light transport in
heterogeneous biological tissues with nonscattering or low-scattering regions has been questioned
[7]. Indeed, Elaloufi et al. [7] have shown that the diffusion approximation fails to describe both
short- and long-time radiation transport in optically thin slabs. In the case of optically thick slabs,
the diffusion approximation fails for short times. The authors have also shown that the diffusion
theory always fails to predict the long-time behavior of transmitted pulses in thin slabs whose
optical depth, defined by tL ¼ ssð1� gÞL, is less than eight. This issue has also been discussed by
Guo and Kim [8] in the transport of ultra-fast laser pulses in biological tissues. As a result,
alternatives to the diffusion approximation need to be formulated for accurately predicting
transient transport in optically thin and heterogeneous media.
The governing equation for radiation transfer in a participating medium is the radiative transfer

equation (RTE). The RTE expresses an energy balance in a unit solid angle of dO about the
direction ŝ within a wavelength interval dl about l. It can be written as [1],

1

c

qIl

qt
þ ðŝ � rÞIl ¼ klIbl � klIl � sslIl þ

ssl
4p

Z
4p

IlðŝiÞFlðŝi; ŝÞdOi, (1)
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where Il is the intensity in the ŝ direction and c, the speed of light in the medium. The linear
absorption and scattering coefficients are denoted by kl and ssl, respectively. The first term on the
right-hand side represents the contribution from emission in the ŝ direction; the second and third
terms represent attenuation by absorption and scattering, respectively. Finally, the last term on
the right-hand side corresponds to the augmentation of radiation due to in-scattering. The
scattering phase function Flðŝi; ŝÞ represents the probability that radiation propagating in the
solid angle dOi direction around ŝi be scattered into the cone dO around the direction ŝ.
As can be seen from Eq. (1), the RTE is an integro-differential equation involving seven

independent variables: (i) the wavelength of radiation l, (ii) three space coordinates x, y, and z,
(iii) two coordinates describing the direction of travel, polar angle y and azimuthal angle f, and
(iv) time t. Various other factors like geometry, temperature fields, and the radiation
characteristics of the medium make radiative transfer problems difficult to solve. The analysis
is further complicated by the fact that radiation characteristics ssl, kl, and Fl of materials may
depend on wavelength, temperature, and location. Moreover, they are difficult to measure and
often display irregular behavior [1]. Because of the nature of the radiative transfer equation and
various effects described above, exact solutions of the RTE are difficult and exact analytical
solutions exist for only a few simple cases [1].
The commonly used methods to solve the transient radiative transfer equation are the Monte

Carlo method, the integral equation solution, the finite volume method (FVM), the radiation
element method (REM), and the discrete ordinates method (DOM).
The Monte Carlo method is often used to simulate problems involving radiative heat transfer

because of its simplicity, the ease by which it can be applied to arbitrary configurations and its
ability to capture actual and often complex physical conditions [9]. The Monte Carlo technique
has been used by Guo et al. [9] to simulate short-pulsed laser transport in anisotropically
scattering and absorbing media. The authors studied the effects of pulse width, medium
properties, and the effects of Fresnel reflection on the transmissivity and reflectivity of the
medium. The Monte Carlo method has also been widely used in biomedical optics to simulate
steady-state laser transport in biological tissue [10]. Jacques used a Monte Carlo model to
simulate the propagation of femtosecond and picosecond laser pulses within turbid tissues [11].
However, the method has inherent statistical errors due to its stochastic nature [1]. It is also
computationally time consuming and demands a lot of computer memory as the histories of the
photons have to be stored at every instant of time [9]. Thus, the Monte-Carlo method is ruled out
in practical utilizations such as real-time clinical diagnostics where computational efficiency and
accuracy are major concerns [12].
The backward or reverse Monte Carlo has been developed as an alternative approach

when solutions are needed only at particular locations and times [13,14]. The method is similar to
the traditional Monte Carlo method, except that the photons are tracked in a time-reversal
manner. The photon bundles are traced backward from the detector to the source rather than
forward from the source to the detector as in the conventional Monte Carlo method. There is no
need to keep track of photons which do not reach the detector and so the reverse Monte Carlo
method is much faster than the traditional Monte Carlo method [13]. The method was
successfully applied by Lu and Hsu [14] to simulate transient radiative transport in a non-
emitting, absorbing, and anisotropically scattering one-dimensional slab subjected to ultra-short
light pulse irradiation.
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Analytical solutions of the radiation transfer equation in integral form for inhomogeneous and
non-scattering medium have been obtained by Pomraning [15] and Munier [16–19]. Wu and Co-
workers [20,21] and Tan and Hsu [22] have also used the integral equation formulation to solve
the transient radiative transfer problem. Wu [20] used the integral equation to compute the
temporal reflectivity and transmissivity of 1-D absorbing and isotropically scattering slabs with
various scattering albedos and optical thicknesses which compared well with results obtained
using the Monte Carlo method. Tan and Hsu [22] used the formulation to simulate radiative
transport in 1-D absorbing and isotropically scattering media with black boundaries exposed to
diffuse or collimated irradiation. The authors extended the method to solve the same problem in
3-D geometries [23].
Finite volume methods developed by Raithby and Chui [24] to solve the steady-state RTE have

also been employed to solve the transient RTE by Chai and co-workers [25,26]. They used the
finite volume technique with the ‘‘step’’ and CLAM spatial discretization schemes to model
transient radiative transfer in 1-D and 3-D geometries [25,26]. The authors found that the CLAM
scheme captures the penetration depths of radiation more accurately than the ‘‘step’’ scheme for
the same grid.
Moreover, Guo and Kumar [27] used the radiation element method to solve the transient RTE

in 1-D absorbing and scattering media exposed to both diffuse and collimated irradiation.
Finally, the discrete ordinates method has been used by various researchers to solve the

transient RTE. Sakami et al. [28] used the DOM to analyze the ultra-short light pulse propagation
in an anisotropically scattering 2-D medium. Guo and Kumar [12] used it to simulate short-pulse
laser transport in two-dimensional anisotropically scattering turbid media. They later extended
the technique to solve for 3-D geometries and compared the results with Monte Carlo simulations
[29]. They found that the transient discrete ordinates method cannot capture the abrupt changes
in the transmittance as predicted by the Monte Carlo method. Guo and Kim [8] further used the
DOM in 3-D geometries to model ultrafast laser pulses in heterogeneous biological tissues for the
purpose of detecting inhomogeneities in otherwise homogeneous tissue. Quan and Guo [30] also
used the same technique to model transport of fluorescence in tissue to detect tumors.
This paper aims at presenting the modified method of characteristics as a means of solving the

transient radiative transfer equation. First, a description of the method is given, followed by
simulations of test cases for which exact and numerical solutions have been reported in the literature.
2. Modified method of characteristics

The conventional method of characteristics (or direct marching method) is commonly used to
solve hyperbolic partial differential equations which often occur in compressible fluid flow [31]. It
is based on the Lagrangian formulation, which identifies photons at initial time t ¼ t0 and follows
them along the characteristic at subsequent times as they are transported. Characteristics are
pathlines of photons in physical space along which information propagates. Though the direct
method results in accurate solutions, it has several disadvantages. Time increments along different
characteristic curves may be different and so the solution may be obtained at different times on
each characteristic curve. Also, the characteristic curves may coalesce or spread apart due to non-
uniform velocities resulting in a highly distorted grid [31].
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The modified method of characteristics on the other hand, follows photons backward in space
and uses any arbitrary pre-specified set of points. Thus, the solution is obtained at the same times
at all points and overcomes the problems related to grid deformation [31,32]. The modified
method of characteristics has been successfully used for predicting high speed three-dimensional
single phase inviscid flows in subsonic and supersonic propulsion nozzles [33,34] and combined
with the finite element method for solving unsteady incompressible Navier–Stokes equations [32].
Recently, Pilon and co-workers used the modified method of characteristics to solve the
population balance equation for bubbles and solid particles [35–37] as well as for phonons [38].
The present study aims at applying the modified method of characteristics to the transient

radiative transfer equation. Consider a Cartesian coordinate system, the characteristic curve in
physical space is defined by

dx

dt
¼ c sin y cosf, ð2Þ

dy

dt
¼ c sin y sinf, ð3Þ

dz

dt
¼ c cos y. ð4Þ

By definition, the total derivative of Ilðx; y; z; tÞ can be written as

DIl

Dt
¼

qIl

qt
þ

dx

dt

qIl

qx
þ

dy

dt

qIl

qy
þ
dz

dt

qIl

qz
. (5)

Then, along the characteristic curves in ðx; y; z; tÞ space, the RTE [Eq. (1)] simplifies to

1

c

DIl

Dt
¼ �klIl � sslIl þ klIbl þ

ssl
4p

Z
4p

IlðŝiÞFlðŝi; ŝÞdOi. (6)

Thus, the spatio-temporal partial integro-differential Equation (1) is converted into three ordinary
differential equations in time, [Eqs. (2)–(4)] and one temporal integro-differential equation
[Eq. (6)]. Fig. 1 shows a 3-D computational cell in Cartesian coordinates. The modified method of
characteristics consists of determining the coordinates ðxn; yn; znÞ of the point in space from where
the particles located at the grid point ðxa; yb; zcÞ at time tþ Dt originate from at time t while
(xn,yn,zn)

(xi,yj,zk)

(xi+1,yj+1,zk) 

(xi,yj+1,zk+1) 

(xa,yb,zc) =
(xi+1 ,yj+1,zk+1)

(xi,yj,zk+1)

x

y
z

(xi+1,yj,zk+1)

t

t + ∆t 

pathline

θn 

(xi+1,yj,zk) 

φl

Fig. 1. Typical computational cell used for inverse marching method containing the pathline of the photons.
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travelling in direction of polar angle yn and azimuthal angle fm. In other words, for each point of
a specified grid, the pathline is projected rearward along the characteristic curve to the initial data
surface to determine the initial data point. For example, in Fig. 1, the point ðxa; yb; zcÞ is the point
ðxiþ1; yjþ1; zkþ1Þ. The solid line represents the section of the characteristic curve along which the
photon traveled from location ðxn; yn; znÞ to location ðxa; yb; zcÞ during the time interval between t
and tþ Dt. The general block diagrams of the numerical procedures for solving the RTE using the
modified method of characteristics is shown in Fig. 2.
To solve Eqs. (2)–(6), the radiation intensities and temperatures are initialized at all points in

the computational domain. Then, for a given polar angle yn, an azimuthal angle fl , and for all
internal grid points ðxa,yb,zcÞ where photons are present at time tþ Dt, the position of the photon
at time t is calculated as

xn ¼ xa � c sin yn cosflDt, ð7Þ

yn ¼ yb � c sin yn sinflDt, ð8Þ

zn ¼ zc � c cos ynDt. ð9Þ
Compute the time step ∆t

For a new value of φl

F
or all internal 

points (x
a , y

b , z
c ) 

Compute the coordinates (xn,yn,zn)

Solve the characteristic equations to obtain the Iλ
at all internal points at time t+∆t

Interpolate Iλ at location (xn,yn,zn)

n<nmax

l<lmax

m<mmax

no

yes

no

no

yes

Initialize t=0, T=T0, and Iλ(θ,φ)=I0(θ,φ)

For a new value of λm

For a new value of θn

t=t+∆t

yes

Impose boundary conditions

Compute the relaxation time at location (xn,yn,zn)

Fig. 2. Block diagram of the numerical procedure for solving the RTE by the modified method of characteristics.
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The values of the variables Il at ðxn; yn; znÞ and time t are obtained by Lagrangian interpolation
using their values at time t at the eight corners of the computational cell in which the point
ðxn; yn; znÞ is located (Fig. 1). Then, Eq. (6) is solved forward in time by the fourth order
Runge–Kutta method at location ðxa, yb, zcÞ and time tþ Dt. The integral on the right-hand side
of Eq. (6) is estimated by the 3

8
Simpson numerical integration with intensity values at time t.

Finally, the boundary conditions are imposed in directions pointing toward the medium
depending on whether the boundary is black, specularly or diffusely reflecting. For directions
leaving the computational domain (outflow), the intensities at the boundary are computed just
like any other internal point. The calculations are repeated for all the discretized values of polar
and azimuthal angles.
The modified method of characteristics has the following main advantages:
�
 Unlike finite volume techniques which propagate the information along the coordinate axis, the
modified method of characteristics propagates information along the photon pathlines. Like
the Monte Carlo method, it respects the physics of radiative transport resulting in accurate
numerical results.

�
 Since the method uses any arbitrary pre-specified set of points, it can be easily coupled with
other numerical techniques such as finite volume, finite element or finite difference schemes.
This is a valuable feature in situations involving multiple transport processes, for example,
ultra-short pulse laser heating of metals [39].

�
 It does not require any outflow boundary conditions. The radiative transport equation is a
hyperbolic equation and information propagates with finite speed, i.e., the speed of light in the
medium. In such equations, the solution at a point is determined only by the characteristics
from the upstream portion of the solution domain [31].

There are also a few disadvantages in using the modified method of characteristics to solve the
RTE. The backward projected characteristic curves do not necessarily intersect the known
solution surface at the pre-specified grid points and so the initial data at the backward projected
characteristics must be determined by interpolation. This takes up computational effort and
introduces interpolation errors into the solution.
The method described above could be considered as a hybrid method between the traditional

discrete ordinates and the ray tracing methods. It is similar to the discrete ordinates method in
that the RTE is solved along arbitrary directions. However, the modified method of
characteristics converts the RTE into ordinary differential equations in time and solved along
the characteristics, as opposed to the conventional implementation of the DOM [1], where the
RTE in the form of a partial differential equation is solved along the grid lines. The present
approach is comparable to that used by Coelho [40] to solve the RTE using the discrete ordinates
method. The author determined the dependent variable Il by the values at points located at the
intersection of the direction of propagation of radiation with the grid lines or surfaces, as opposed
to directly using the grid nodes in the conventional DOM. The present method also differs from
that used by Coelho in the sense that, the photons are traced back a distance which they would
travel in one time step rather than all the way to the grid lines or surfaces.
Finally, unlike ray-tracing methods, the modified method of characteristics does not trace

photon bundles from the source to the absorption point or to the boundaries. Instead photon
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bundles are traced backward in space only for the time interval between t and tþ Dt. At a new
time step, new photon bundles are traced back from all grid points and this procedure is repeated
for all time steps.
3. Results and discussion

For validation purposes, the numerical results obtained with the modified method of
characteristics for a set of test cases have been compared with analytical solutions or numerical
results reported in the literature using different numerical schemes. For the sake of clarity,
spectral dependencies were not considered in these cases but could have been included without
any modifications in the methodology. The spectral dependencies can be accounted for by using
the modified method of characteristics at multiple wavelengths or in combination with band
models [1]. The test cases considered consist of simulations of transient radiation transfer in
absorbing and isotropically scattering cold media namely, (1) a plane parallel slab exposed to
diffuse irradiation, (2) three-dimensional media exposed to diffuse irradiation, (3) a plane parallel
slab irradiated by continuous collimated radiation, (4) and a plane parallel slab irradiated by
pulsed collimated radiation.
For 1-D problems, a discretization of Nz points along the z-direction and Ny discrete directions

for y varying from 0 to p was used. In the case of 3-D problems, a discretization of Nx �Ny �Nz

along the x, y and z-directions respectively was used and the angular space of y varying from 0 to
p and f varying from 0 to 2p was discretized into Ny �Nf directions.
3.1. 1-D transient radiative transfer in scattering, absorbing, and emitting media exposed to diffuse
irradiation

Let us consider the case of a plane-parallel slab of a non-emitting, absorbing and isotropically
scattering medium of thickness L. It is subjected to a transient unit step function emissive power
on one side ðz ¼ 0Þ and the other side ðz ¼ LÞ is cold. The slab’s optical thickness defined as
tL ¼

R L

0 bdz is equal to 1 where b ¼ ss þ k and the scattering albedo o ¼ ss
b ¼ 0:5. Initially, the

medium is assumed to be at 0K and initial intensities everywhere in the medium are zero. Then, at
t ¼ 0 a diffuse intensity Iðz ¼ 0;m40; tÞ ¼ 1W=m2:sr is imposed. The time interval Dt is equal to
Dz=c where Dz ¼ L=100. After solving for the intensities in all directions at every grid point, the
heat flux can be calculated from

q ¼

Z
4p

IðŝÞŝdO. (10)

Fig. 3 compares the radiative flux distribution as a function of time obtained with the modified
method of characteristics and the integral equation solution reported by Tan and Hsu [22]. A
converged solution was obtained for a grid size Nz ¼ 101 and Ny ¼ 25 angular directions. The
CPU time for this calculation on a Pentium 4, 2.80GHz machine for 360 time steps was about 6 s.
Note that Tan and Hsu [22] reported an execution time of about 1800 s on a Pentium-Pro
200MHz PC with 100 elements and 400 time steps.
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Fig. 3. Radiative flux distribution at different times in a 1-D homogeneous medium with a diffusely emitting boundary.

K.M. Katika, L. Pilon / Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220–237 229
The error in the radiative flux computed by the present method with a grid size of Nz ¼ 101 and
Ny ¼ 25 angles and that reported by Tan and Hsu [22] was less than 1.3% for all values of t=Dt

except at the radiation front where it went up to 3% for t=Dt ¼ 30, 6% t=Dt ¼ 60 and 10% at a
single point for t=Dt ¼ 90.
The same problem was solved by Chai [25] using the finite volume method. The author used two

different spatial discretization schemes, namely the ‘‘step’’ and the CLAM scheme to solve the
transient RTE with 300 control volumes and Ny ¼ 40. The CLAM scheme resulted in better
accuracies than the ‘‘step’’ scheme for the same grid size. According to the author, ‘‘both schemes
predict the incident radiation and the radiative flux accurately once the radiation reaches the
opposite side ðz=L ¼ 1Þ of the slab. For t ¼ Dtcp90, the step scheme overpredicts both
the radiative flux and the incident radiation at the radiation front’’ [25]. On the other hand, the
modified method of characteristics captures the radiation front accurately even for t ¼ Dtp90
and with fewer control volumes (see Fig. 3).

3.2. 3-D transient radiative transfer in scattering, absorbing, and emitting media exposed to diffuse
irradiation

The same analysis done for the one-dimensional case can be extended to 3-D geometries and
applied to a cubic enclosure with one hot wall. The optical thickness of the medium defined by
tL ¼ bL was set at 1.0 and the scattering albedo o was 0.1. Initially, the medium is assumed to be
at a temperature of 0K and initial intensities everywhere in the medium are zero. Then, at t ¼ 0,
the intensity at the wall, z ¼ 0:0 in all directions pointing into the medium is set to 1.0. The
remaining walls are black and cold ðT ¼ 0KÞ.
A grid size of 35� 35� 35 points along the x, y and z-directions was used. The entire angular

space of y varying from 0 to p and f varying from 0 to 2p was divided into 30� 24 discrete
directions. Tan and Hsu [23] solved the same problem using the integral solution. The authors
verified the reliability of the integration scheme, namely the DRV method, by comparing their
results with those obtained by using the YIX method. They used a grid size of 17� 17� 17 volume
elements in the x, y and z-directions respectively in all the cases and 1982 angular quadrature
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points for the YIX method. Similarly, Chai et al. [26] solved this problem using the finite volume
method. Fig. 4 compares the heat flux along the center of the cube obtained using the present
method with those obtained by (i) Tan and Hsu [23] with the integral solution using the DRV
scheme and (ii) Chai et al. [26] using a grid size of 17� 17� 17, an angular discretization of
16� 12 and making use of the CLAM scheme. In order to quantify the relative difference in the
numerical results, we assumed that the values reported by Tan and Hsu [23] are converged and
correspond to the exact solution. For steady-state, the relative error for the results reported by
Chai et al. [26] compared to Tan and Hsu [23] was less than 2:5% while they were less than 6% for
the present method. For the intermediate transients, the results reported by Chai et al. [26] result in
infinite errors beyond the wavefront. Chai et al. [26] found that the finite volume method suffers
from false scattering and cannot capture the wavefront accurately. In contrast, the present method
is able to accurately capture the wavefront. However, there were large errors of up to 83% at the
point right before the wavefront. It was less than 6% at all other points. This could be attributed to
the fact that the solution was not converged in terms of the grid size or the number of directions. In
order to minimize the error, a further refinement in the grid size was attempted, but was out of
bounds in terms of memory and processing power for the single processor computer used. It is
anticipated that a refinement in grid size and directions will reduce the error.
3.3. 1-D transient radiative transfer with collimated irradiation

To solve the radiative transport equation for collimated irradiation, the intensity is split into
two parts, (i) the radiation scattered away from the collimated radiation and (ii) the remaining
collimated beam after partial extinction by absorption and scattering along its path. The
contribution from emission is usually negligible compared to the incident and scattered intensity.
Thus, the intensity for a gray medium is written as [1],

Iðr; ŝ; tÞ ¼ I cðr; ŝ; tÞ þ Idðr; ŝ; tÞ. (11)
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The incident irradiation is I iðrw; tÞ, where rw is the location on the bounding surface of the medium
where the radiation is incident. The collimated intensity I c, remnant of this incident irradiation
obeys the equation of transfer

1

c

qIcðr; ŝ; tÞ

qt
þ ŝ � rI cðr; ŝ; tÞ ¼ �bIcðr; ŝ; tÞ, (12)

subject to the boundary condition

Icðrw; ŝ; tÞ ¼ I iðrw; tÞd½ŝ� ŝcðrwÞ�. (13)

The solution of these equations is given by [15],

Icðr; ŝ; tÞ ¼ I iðrw; t� s=cÞd½ŝ� ŝcðrwÞ� � exp �

Z s

0

bðr� s0ŝÞds0
� �

Hðt� s=cÞ, (14)

where s ¼ jr� rwj and H is the Heaviside step function [HðuÞ ¼ 0 if uo0 and HðuÞ ¼ 1 if uX0].
Substituting Eqs. (11) and (12) into Eq. (1) for a gray medium gives the governing equation for the
noncollimated radiation intensity Id,

1

c

qIdðr; ŝ; tÞ

qt
þ ŝ � rIdðr; ŝ; tÞ ¼ � bðrÞIdðr; ŝ; tÞ þ kðrÞIbðr; ŝ; tÞ

þ
ssðrÞ
4p

Z
4p

Idðr; ŝi; tÞFðŝi; ŝÞdOi þ ssðrÞScðr; ŝ; tÞ, ð15Þ

where Scðr; ŝ; tÞ is the source term given by

Scðr; ŝ; tÞ ¼
1

4p

Z
4p

I cðr; ŝi; tÞFðŝi; ŝÞdOi. (16)

Note that Eqs. (12) and (15) sum up to give Eq. (1). Moreover, the heat flux is computed using

q ¼

Z
4p

IdðŝÞŝdOþ I iðrw; t� s=cÞ exp �

Z s

0

bðr� s0ŝcÞds0
� �

Hðt� s=cÞŝc. (17)

Consider a plane parallel slab of an absorbing and isotropically scattering medium with
constant and uniform optical properties exposed to time-dependent collimated radiation. In this
case, Eq. (14) simplifies to

Icðz; ŝ; tÞ ¼ I iðt� z=cÞd½ŝ� ŝc�e
�bz, (18)

where ŝc corresponds to cos y ¼ 1. Moreover, the source term defined in Eq. (16) simplifies to

Scðz; tÞ ¼
1

4p
I iðt� z=cÞe�bzHðt� z=cÞ. (19)

Eq. (6) then becomes

1

c

DIdðz; ŝ; tÞ

Dt
¼ �bIdðz; ŝ; tÞ þ

ss
4p

Z
4p

Idðz; ŝi; tÞdOi þ
ss
4p

I iðt� z=cÞe�bzHðt� z=cÞ (20)

with ŝ dependent only on the polar angle y, and the boundary conditions being Idðz ¼

0; cos y40; tÞ ¼ 0 and Idðz ¼ L; cos yo0; tÞ ¼ 0.
Two cases of incident radiation profiles were considered for comparison with solutions reported

in the literature.
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Continuous collimated pulse: The first case is a continuous collimated pulse corresponding to
I iðtÞ ¼ 0, to0 and I iðtÞ ¼ 1W=m2:sr, tX0. A converged solution was reached for a spatial
discretization of Nz ¼ 101 points and an angular discretization of Ny ¼ 25 directions. The time
interval Dt is equal to Dz=c where Dz ¼ L=100. The CPU time taken was about 6 s on a Pentium 4,
2.80GHz machine for 360 time steps. Fig. 5 compares the radiative heat fluxes obtained with the
present technique with those obtained by (i) Tan and Hsu [22] using the integral solution and by
(ii) Chai [25], using the finite volume technique with the CLAM scheme and the present technique.
As can be seen, the modified method of characteristics captures the sharp discontinuities better
than the finite volume technique. It should also be noted that Chai [25] used 300 control volumes
and 20� 1 angles per quadrant equivalent to Ny ¼ 40 angles for y varying from 0 to p compared
to 101 nodes and Ny ¼ 25 in the present study.

Ultra-short collimated pulse: The second incident radiation profile is a truncated Gaussian
distribution with a peak intensity at t ¼ tc and pulse width tp expressed as

I iðtÞ ¼ I0 exp �4 ln 2
t� tc

tp

� �2
" #

; 0oto2tc, ð21Þ

I iðtÞ ¼ 0; tX2tc. ð22Þ

Numerical convergence was achieved with a discretization of Nz ¼ 101 and Ny ¼ 25 for the case
of tL ¼ 0:5 and Nz ¼ 201 and Ny ¼ 25 for the case of tL ¼ 5:0. The time interval Dt had little
effect on the numerical results as long as DtpDz=c. Thus, it was set equal to Dz=c where Dz ¼
L=ðNz � 1Þ and Nz is the number of gridpoints in the z-direction. After solving for the intensities
in all directions at every grid point, the hemispherical reflectance RðtÞ and transmittance TðtÞ are
computed using the following formulae:

RðtÞ ¼ �2p
Z 0

�1

Idð0; m; tÞmdm=I0 (23)
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and

TðtÞ ¼ 2p
Z 1

0

IdðL; m; tÞmdmþ I iðt� L=cÞe�bLHðt� L=cÞ

� ��
I0. (24)

The integrals in the formulae for hemispherical reflectance and transmittance are computed using
the 3

8
Simpson numerical rule. The CPU time taken for computing the transmittance for the case

of tL ¼ 5:0 and o ¼ 1:0 using a spatial discretization of Nz ¼ 201 points and an angular
discretization of Ny ¼ 25 was about 41 s for a total dimensionless time t� ¼ 40 defined by t� ¼ bct.
The CPU time taken for computing the reflectance for the case of tL ¼ 0:5 and o ¼ 0:95 using a
spatial discretization of Nz ¼ 101 points and an angular discretization of Ny ¼ 25 directions per
octant was about 21 s for a total dimensionless time of t� ¼ 8.
Figs. 6 and 7 compare the transmittance and reflectance of homogeneous absorbing and

isotropically scattering slabs obtained by Wu [20] from the numerical solution of the integral
equation with those obtained with the modified method of characteristics. Fig. 6 corresponds to
the temporal transmittance of a slab of optical thickness tL ¼ 5:0 and scattering albedos o ¼ 1:0
and 0.5. Fig. 7 corresponds to the reflectance from a slab of optical thickness t ¼ 0:5 and
scattering albedos of o ¼ 0:95 and 0.5. Good agreement is observed for both the transmittance
and reflectance, and the mean error was less than 5% in all cases. Thus the modified method of
characteristics can be used to simulate transport of collimated radiation in a fast and accurate
manner. It can be seen from Fig. 6 that the temporal distribution of transmittance has two local
maxima for large values of the scattering albedo ðo ¼ 1:0Þ. The first peak occurs as soon as the
direct pulse or the unscattered radiation reaches the other end of the slab. The second peak is due
to the scattered radiation and so appears only in media where the scattering albedo is large. In
media where the scattering albedo is not as large, the contribution to the transmittance from
scattering is not large enough to produce a second peak [20]. The reflectance on the other hand
depends only on the back-scattered radiation and so has only one peak (see Fig. 7) while the peak
corresponding to the direct pulse or unscattered radiation is absent unlike the plot of the
transmittance. Fig. 7 also shows that there is a cusp in the reflectance and occurs at about the
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ARTICLE IN PRESS

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

0 1 3 5 72 4 6 8
Dimensionless Time (βct)

H
em

is
ph

er
ic

al
 R

ef
le

ct
an

ce

Wu [22]
Present Method

ω = 0.95 

ω = 0.5

Nondimensional Pulse Width = 0.15
τL = 0.5 

Fig. 7. Time-resolved hemispherical reflectance for tL ¼ 0:5, tc=tp ¼ 3 and bctp ¼ 0:15.

K.M. Katika, L. Pilon / Journal of Quantitative Spectroscopy & Radiative Transfer 98 (2006) 220–237234
same time for both values of scattering albedo. This cusp appears as there is no medium to back-
scatter the radiation once the pulse reaches the other end of the slab. It occurs at about the time it
takes for the peak of the pulse to travel back and forth between the two faces of the slab. Since the
peak occurs at t ¼ 3tp and it takes 2L=c time to travel from one end of the medium and return, the
total time taken is 3tp þ 2L=c or in dimensionless form, 3bctp þ 2tL ¼ 1:45 as shown inFig. 7.
4. Discussion

The results presented confirm the validity of the numerical scheme and its capability in handling
various transient problems. It has been shown that the modified method of characteristics is a fast
and accurate technique to simulate transient radiative transfer in absorbing and scattering media.
It can also be easily modified to handle various other geometries and phase functions, thus
enabling it to simulate radiative transfer in more complex situations such as those for biomedical
applications. The computer program used to implement the described method has not been
optimized neither has a thorough error and stability analysis been done. Instead, the study has
been aimed at demonstrating the applicability of the method to a range of problems encountered
in transient radiation transfer. A careful study of the errors introduced due to the Lagrangian
interpolation should be performed. This would be helpful in comparing the accuracy of this
method to other methods like the finite volume method which is prone to false scattering [26].
Also, various improvements can be made to decrease the computational time:
�
 The number of discrete directions can be reduced or replaced by quadrature as commonly used
in the discrete ordinate method to accelerate the computation of the in-scattering term. For
example, in situations which involve strong forward scattering, a quadrature with more angles
in the forward direction compared to other directions can be made use of thus making the
scheme more efficient. This has not been done here for the sake of accuracy, but could be easily
implemented.
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�
 To further accelerate the computations, the radiation wavefront can be tracked and
computations be performed only at points through which the wave has passed.

�
 Though the case of a diffusely reflecting boundary condition was not discussed here, it can be
easily implemented as done by Rukolaine et al. [41]. Also, specularly reflecting boundaries
using the modified method of characteristics have been successfully implemented recently for
phonon transport [38]. A similar treatment can be applied to partially reflecting and
transmitting boundaries.

�
 Also, since the method is fully explicit it can be easily adapted for parallel computing. This
could be a useful feature in inverse problems for biomedical diagnostics or other remote sensing
applications.

5. Concluding remark

The modified method of characteristics has been presented as a scheme for solving the radiative
transport equation. It has been shown that the method can handle various problems including
multidimensional, transient radiative transport in media exposed to both collimated or diffuse
irradiation. The method is fast and accurate and compares well with those obtained using
other methods and reported in literature. In particular, the method was able to capture the
sharp spatial discontinuities associated with transient radiative transport. Also, since the method
makes use of any arbitrary fixed grid, it can be coupled easily with other methods to solve
simultaneously occurring transport phenomena like in the case of short-pulse laser heating of
metals [39].
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