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Radiative characteristics such as the extinction coefficient, the scattering albedo, and the scattering phase function

of fused quartz containing closed cells are determined by using an inverse method based on theoretical and

experimental bidirectional transmittances. The theoretical transmittances are obtained by solving the radiative

transfer equation with the discrete ordinate method. Improvements have been made over previously reported

experimental determination of porous fused quartz radiative characteristics byusing amore accurate phase function

and an adaptive quadrature to compute more precisely the intensities in the measurement directions. In addition, a

two-step inverse method to compute accurately and simultaneously the radiative parameters has been developed.

The results are shown to be independent of samples thickness. Exhaustive comparison between experimental

measurements of hemispherical transmittance and reflectance and computational results using the retrieved

radiative characteristics shows good agreement. The retrieved absorption coefficient of porous fused quartz appears

to be more realistic than that reported in our earlier publication.

Nomenclature

a = bubble radius, m
b = corrective factor used in Eq. (10)
cij = matrix elements of the sensitivity coefficients J
e = sample thickness, m
f1, f2 = spectral weights of the Henyey–Greenstein

phase function �HG

g = spectral asymmetry factor
g1, g2 = spectral parameters of the Henyey–Greenstein

phase function �HG

I = spectral radiation intensity, W �m�2 � sr�1
J = matrix of the sensitivity coefficients
k = volumetric absorption coefficient, m�1

Mb = quadrature order of the discrete ordinate method
m = fused quartz refractive index
Nb = number of measurement directions
n = number of unknown parameters including !, �,

f1, g1, and/or g2

p = unknown parameter such as !, �, f1, g1, or g2

Q = ratio of the measured scattered to the incident
radiation fluxes

r = interface reflectivity
S = minimization function
T = spectral transmittance or reflectance, sr�1
�T = average spectral transmittance or reflectance,

sr�1

w = angular weight of the discrete ordinate method
w0 = angular weight of the two Gaussian quadratures

associated to the experimental directions
x = bubble size parameter
y = spatial coordinate along the sample thickness, m
� = angle between incident radiation and

measurement directions, rad
� = volumetric extinction coefficient, m�1

� = relaxation factor used in Eq. (5)
�� = divergence angle of the incident radiation, rad
�� = solid angle, sr
� = Kronecker delta function
"0, "1, "2, "3 = coefficients of the third order polynomial

estimating Tsca in Eq. (17)
� = cosine of the angle �
� = scattering angle defined in Eq. (21), rad
� = angle between incident radiation direction and

radiation inside the porous medium, rad
� = fused quartz absorption index
� = radiation wavelength, m
	 = cosine of the angle �

i = weight associated to measurement in the

direction i� 1 to Nb
� = random number defined between 0 and 1
� = dimensionless sensitivity coefficient
� = standard deviation
0 = optical thickness
� = spectral phase function
’ = azimuthal angle, rad
� = experimental error, %
! = volumetric scattering albedo

Superscripts

� = refers to hemispherical transmittance
� = refers to hemispherical reflectance

Subscripts

bulk = refers to the continuous phase (quartz)
coll = refers to collimated radiation
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d = refers to detection
e = refers to experimentally measured value
exact = refers to the exact radiative parameters
HG = Henyey–Greenstein phase function
max, min = refers to the higher and lower integration bound

in Eq. (30), respectively
NC = refers to the Nicolau phase function
sca = refers to the scattered
t = refers to the theoretical value
TPF = refers to the truncated phase function
� = refers to spectral value
0 = refers to incident radiation
12 = refers to radiation from the air to the air-glass

interface
21 = refers to radiation from the glass to the glass-air

interface

I. Introduction

F OAM and cellular materials have practical importance in many
applications. Examples range from food processes, where foam

can disrupt the process, to space and building applications where
they are used as insulating materials. Thermal radiation in cellular
materials is a significant mode of energy transfer in most of these ap-
plications. Thus, the modeling of radiative transfer in cellular
materials is of primary importance for optimizing performance in
engineering applications. An extensive reviewof radiative transfer in
dispersed media was carried out by Viskanta andMengüç [1] and by
Baillis and Sacadura [2]. A porous medium is often treated as a con-
tinuous, homogeneous, absorbing, and scattering medium. To
evaluate the radiative heat transfer, radiative characteristics such as
the extinction coefficient, the scattering albedo, and the scattering
phase function are required. They can be determined by different
approaches:

1) Radiative characteristics can be predicted from porosity and
bubble size distribution by considering a random arrangement of
particles and by using, for example, the Mie theory or the geometric
optics laws assuming independent scattering [3–8].

2) Other methods consist of determining the radiative character-
istics from a Monte Carlo approach at the microscopic scale, taking
into account the complexmorphology of the porous medium [9–14].

3) Finally, other approaches are based on the experimental mea-
surement of reflectance and transmittance of the medium on a
macroscopic scale combinedwith an inversemethod [15–20]. Hemi-
spherical emittance measurements have also been exploited to
retrieve the radiative characteristics of porous media [21,22].

The present study focuses on radiative characteristics of fused
quartz containing bubbles or closed cells as illustrated in Fig. 1. Few

studies on such media have been reported. Pilon and Viskanta [6]
have studied the effects of volumetric void fraction and bubble size
distribution on the radiative characteristics of semitransparent media
containing gas bubbles. They used the model proposed by Fedorov
and Viskanta [7], which is based on the anomalous-diffraction ap-
proximation. Wong andMengüç [12] used a ray-tracing method in a
porous medium composed of spherical air pockets embedded in a
nonabsorbing matrix to study the depolarization of the incident
radiation. More recently, experimental determination of radiative
characteristics of fused quartz containing bubbles [18] based on an
inverse method has been carried out. The Henyey–Greenstein phase
function model was adopted and theoretical transmittance in the
experimental directions was interpolated from the solution of the
radiative transfer equation (RTE). The retrieved absorption
coefficient of the porous fused quartz was found to be greater than
that of dense fused quartz which, a priori, seems to contradict
physical intuition because bubbles entrapped in the glass matrix are
transparent [23,24]. On the other hand, the larger absorption
coefficient could be attributed to trapping of radiation by successive
interreflections within the bubbles [18] or to the increased optical
path within the glass matrix due to reflections at the surface of the
bubbles. These apparent contradictions are due to the choice of the
phase function model used in the calculations of the theoretical
bidirectional transmittance and reflectance and will be clarified in
this paper.

The present study aims at completing the previous one [18] by
investigating 1) the influences of the phase function model on the
retrieved radiative characteristics, 2) the best way to calculate the
transmitted intensity in the specific measurement directions, and
3) the development of a more efficient identification technique. First,
the inverse method using experimental and theoretical trans-
mittances is described, including details regarding 1) different forms
of the minimization and 2) different models of scattering phase
functions, as well as 3) the direct computation of the extinction
coefficient. Then, the experimental setup and the measurements are
briefly presented whereas the theoretical model for calculating the
bidirectional transmittance and reflectance is explained in detail.
Finally, the results are presented and discussed.

II. Parameter Identification Method

A. Description

The spectral radiative characteristics of semitransparent media are
the single scattering albedo !�, the extinction coefficient ��, and the
scattering phase function��, which depends on n-2 parameters that
will be here denoted by �pl�l�3;n. As a result, the n unknown param-
eters are �pl�l�1;...n � �!; �; pl�3;n�. For a given sample, the param-
eter identification method is based on 1) the experimental measure-
ments of the bidirectional reflectance and transmittance (Te) obtained
for several directions (i) and 2) the theoretical bidirectional
reflectance and transmittance (Tt) calculated for the same directions.

For each wavelength �, the goal is to determine the radiative
parameters �pl�l�1;...n, which minimize a function S characterized by
the quadratic differences between the experimentally measured
bidirectional transmittances Te;i and the corresponding numerically
calculated value Tt;i for Nb measurement directions:

S�p1; . . . ; pn� �
XNb
i�1


2i �Tti�p1; . . . ; pn� � Tei�2 (1)

The bidirectional transmittance or reflectance Ti for normal
incident intensity are defined by the following expression:

Ti �
Ii

I0��0

(2)

where Ii is the transmitted or reflected intensity in the direction i and
I0 is the intensity of the collimated beam normally incident on the
sample within the incident solid angle ��0. The weight 
i, associ-
ated with the direction i, is introduced to decrease the importance of
inaccurate measurements.Fig. 1 Photo of the studied samples.
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The optimization method adopted is the Gauss linearization method [25], which minimizes S by setting to zero the derivatives of Eq. (1) with
respect to each of the unknown parameters. As the system is nonlinear, an iterative procedure is performed over j iterations:
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(3)

The solution of the system of Eq. (3) gives the variation parameter
�pj

l added to the value of each parameter pj
l at the jth iteration, i.e.,

pj�1
l � pj

l ��pj
l with l� 1; 2; . . . ; n (4)

The use of Eq. (4) limits the convergence of the inverse process
due to large values of�pj

l during thefirst few iterations. In this study,
we propose to weight the parameter �pj

l with a relaxation factor
��1 	 � > 0�:

pj�1
l � pj

l � ��pj
l with l� 1; 2; . . . ; n (5)

The converged solution is estimated to be reached when
�pj

l=p
j
l < 10�3. The matrix on the left-hand side of Eq. (3) will be

termed J. It is composed of the sensitivity coefficients @Tti=@pl

calculated from the theoretical model. The condition number (CN) of
the matrix J can be calculated from the following relation:

CN�J� � kJ�1k � kJk (6)

where kJk is the norm of the matrix, calculated from the matrix
elements cij as follows:

kJk �max
i�1;n

Xn
j�1

cij (7)

Note that the condition number is always larger than unity. The
larger CN is, the more ill-conditioned the system. Thus, small
uncertainties in the measurements can result in very large changes in
the�p vector. A large condition number occurs when at least two of
the sensitivity coefficients are quasilinearly interdependent and/or
when at least one is very small or very large compared with the
others. The analysis of the sensitivity coefficients and the condition
number is an efficient tool for understanding the physical behavior of
the problem and for studying the feasibility of simultaneous
determination of the unknown parameters [26].

B. Measurements Weights

Two common expressions for the weights can be used [17–19]:


i � 1 for i� 1 to Nb (8)


i �
1

Tei

for i� 1 to Nb (9)

When using Eq. (8), the minimization gives more importance to
the highest measurement values. This is inconvenient in the situation
where physical information is “hidden” behind small values of
transmittances. Instead, using Eq. (9) enables one to give the same
importance to eachmeasurement and appears to bemore appropriate.

Usually, some measurements feature large experimental uncer-
tainties as detailed hereafter in Section III.B. Such data can poten-
tially contain information about the porous material. It is therefore
preferable to decrease the importance of that data in the identification

procedure rather than to discard them completely. This can be done
by modifying the weight 
i by a corrective factor bi as follows [20]:


i �
bi

Tei

for i� 1 to Nb (10)

The value of the parameter bi depends on the accuracy of the
measurements estimated through the experimental errors� discussed
in Section V.C. In this study, the following values were used for
different measurement error ranges:

8><
>:
�i < 10% ) bi � 1

10%< �i < 20% ) bi � 0:1 for i� 1 to Nb

�i > 20% ) bi � 0:01
(11)

Theweights given by Eqs. (10) and (11) for different experimental
uncertainties are adopted in this study.

C. Models for the Scattering Phase Function

The expression for the phase function plays an important role in
describing the appropriate directional scattering behavior. In
practice, the representation of the scattering phase function as an
expansion in Legendre polynomial [27] is not suitable in the case of
highly anisotropic material due to the larger number of unknown
parameters [20]. Among the useful models, the Henyey–Greenstein
approximation [28] is the most popular with only one unknown
parameter g�:

�HG��; g�� �
1 � g2

�

�1� g2
� � 2g� cos��3=2 (12)

where � is the angle between the directions of the incident and
scattered radiation intensities at a scattering point.

However, some materials having a more complex anisotropic
scattering pattern require the use of a more complex scattering
function to properly describe the directional scattering behavior. For
example, Nicolau et al. [19] proposed a combination of Heyney–
Greenstein functions for fibrous media:

�NC��; g1�; g2�; f1�; f2�� � f2��f1��HG��; g1��
� �1 � f1���HG��; g2��� � �1 � f2�� (13)

where f1� and f2� are the weights associated to the scattering
functions �HG��; g1�� and �f1��HG��; g1�� � �1� f1���HG��;
g2���, respectively.

According to the previous study [19], the simultaneous
computation of these parameters combined with the extinction
coefficient and the scattering albedo remains critical. The reduction
of the number of unknown parameters (!, �, f1, f2, g1, and g2) to be
simultaneously identified is required.

This study proposes a new combination of scattering functions
called the truncated phase function (TPF) depending only on three
parameters (f1, g1, and g2):
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i=2 to Nb/2 

i=1; j=1: direct 
transmission direction

i=Nb/2+1
to Nb-1

i=Nb; j=Mb: direct 
backscattering direction
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Fig. 3 Measurement and ACQ directions.
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Fig. 2 Mie scattering function of an optically large bubble of size

parameter x� 2000 and TPF function characterized by f1 � 0:2,
g1 � 0:98, and g2 � 0:45.

�
����; f1; g1; g2� ��1���; f1; g1; g2� � f1�HG���; g1� � �1 � f1��HG���; g2� for 0 
 � 
 �=2
����; f1; g1; g2� � 0:03�1���; f1; g1; g2� elsewhere

(14)

Figure 2 compares the TPF to the exact Mie scattering phase
function [29] in the case of an optically large bubble (x� 2�a=��
2000) located in a refracting medium (m� � 1:44). The cor-
responding TPF parameters are f1 � 0:2, g1 � 0:98, and g2 � 0:45.
One can note that the TPF function can properly approximate the
exact phase function.

The method previously adopted by Nicolau et al. [19] is used to
normalize this function. The resulting function satisfies

1

2

Z
�

0

����; f1; g1; g2� sin� d�� 1 (15)

The asymmetry factor corresponding to this phase function is
given by [29]

g� �
1

2

Z
�

0

����; f1; g1; g2� cos� sin d� (16)

D. Direct Estimation of the Extinction Coefficient

The collimated transmittance Tcoll in the incident radiation
direction which is attenuated only by extinction and reflection at
interfaces can be written as [28]

Tcoll � Te1 � Tsca1 �
�1� r12�2 exp���e�
1 � r212 exp��2�e�

(17)

where Te1 refers to the measured transmittance in the incident
direction whereas Tsca1 refers to the scattered transmittance toward
the same direction. The subscript 1 refers to the first direction of
measurement (i� 1) which is, in this study, the same as the incident
radiation direction. The Fresnel reflectivity is denoted r12 at the air-
glass interface for normal incidence and e is the sample thickness.

Here, Tsca1 is estimated by a third order polynomial in terms of the
measurement direction cosine ��� cos��, i.e., Tscai � "3�

3
i �

"2�
2
i � "1�i � "0 with i� 1 and �1 � 1. The four coefficients "0, "1,

"2, and "3 are obtained by matching the conditions Tscai � Tei for the
four directions i� 2–5.

After some manipulations of Eq. (17), the extinction coefficient
can be expressed as

��� 1

e
ln

0
@

��������������������������������������������
�1 � r12�4 � 4T2

collr
2
12

p
� �1 � r12�2

2Tcollr
2
12

1
A (18)

The extinction coefficient can be directly calculated from Eq. (18).
Thus, the set of unknown parameters to be simultaneously identified
is reduced to !, f1, g1, and g2.

III. Experimental Measurements

A. Experimental Setup

The experimental data of spectral bidirectional transmittance and
reflectance are obtained from an experimental setup including a
Fourier–Transform infrared spectrometer (FTS 60 A, Bio-Rad Inc.)
associated with a detector (liquid nitrogen cooled MCT detector)
mounted on a goniometric system [17–19]. The incident radiation
emitted by the source ismodulated afterwhich the resulting spectrum
range varies from 1.67 to 14 	m. The collimated beam is per-
pendicularly incident on the sample with a divergence half-angle of
��0 � 2:21 10�2 rad and a beam size d equal to 40mm.We assume
that the samples are thin enough (see Section V.A) to guarantee one-
dimensional radiation transfer. Unfortunately, to the best of our
knowledge, no criteria for the ratio of sample thickness to beam
diameter is available in the literature. Note that measurements were
performed with and without a gold coating deposited on the edges
of the slab. No noticeable effects were recorded indicating that the
side boundary conditions have no effect on the directional trans-
mittance and reflectance. Therefore, the problem can be treated as
one-dimensional.
The intensity transmitted or reflected by the sample is collected by

a spherical mirror which focuses it on the detector. The cor-
responding detection solid angle (��d) is characterized by a
detection half-angle equal to ��d � 0:33 10�2 rad.
Then, the measured bidirectional transmittance in the direction i

can be computed from [30]

874 RANDRIANALISOA, BAILLIS, AND PILON



Tei �
I��i�
I0��0

� Qi

�i max���d;��0�
(19)

where Qi is the ratio of the radiation flux transmitted or reflected by
the sample to that incident on the sample, directly estimated from the
FTIR measurement in the direction i. The incident and detection
solid angles can be expressed as ��0 � 2��1� cos��0� and
��d � 2��1� cos��d�, respectively [30].

The bidirectional measurements are carried out over Nb� 24
directions as shown inFig. 3: 12 directions in the forward hemisphere
(transmittances) and 12 directions in the backward hemisphere
(reflectances). These directions are chosen by combining twoGauss-
ian quadratures aimed at increasing the number of measurements
around the direction of the incident radiation and suitable for forward
and/or backward scattering media [19]. Note that Nb must be a
positive even number and is maintained equal to 24 in this study.

B. Measurement Uncertainties

There are two major sources of experimental uncertainties
involved in the bidirectional FTIR measurements, namely noise and
misalignment. Indeed, the measurements become erroneous when
the signal to noise ratio is too small. It is the case for our mea-
surements 1) at wavelengths beyond 4:04 	m for which the fused
quartz becomes optically thick and 2) far from the incident radiation
direction (from 48 to 90 deg for transmittances and from 90 to
148 deg for reflectances) where the magnitude of the scattered
radiative flux is small.

Moreover, for themeasurement in the second direction (the closest
to the incident radiation direction), the signal decreases sharply and a
slight overestimation of the measured signal occurs due to the
diffraction of the incident beam from the aperture inside the FTIR
spectrometer. Also, the same problem occurs for measurement close
to the backward specular direction (i.e., the direction Nb-1). Mea-
suring precisely the specular reflectance is also difficult with our
goniometric system due to the optical misalignments.

To reduce these uncertainties, the measurements are repeated five
times (each one corresponding to a new goniometric system align-
ment) and the resulting average bidirectional transmittances and
reflectances are used in the inversion procedure. Moreover, only the
essential measurements which are required for identification are
retained. These measurements are presented and analyzed in
Sections V.B and V.C.

IV. Theoretical Model

The theoretical spectral bidirectional transmittance and
reflectance are computed by solving the radiative transfer equation
based on the assumptions that 1) radiative transfer is one-
dimensional, 2) a steady-state regime is established, 3) azimuthal
symmetry prevails, and 4) medium emission can be disregarded
thanks to the radiation modulation and the phase sensitive detection.

A. RTE and Boundary Conditions

Under the preceding assumptions, the RTE can be written as
follows [18]:

	
@I��y; 	�
��@y

� I��y; 	� �
!�

2

Z
1

�1
I��y; 	0������ d	0 (20)

where y indicates the spatial coordinate along the sample thickness
and	 is the direction cosine of the intensitywith respect to the y-axis.

The scattering angle � can be expressed in terms of the direction
cosines 	 and 	0 as [31]

�� cos�1f		0 � ��1 � 	2��1� 	02��1=2 cos’g (21)

where ’ is the azimuthal angle which can take any arbitrary value in
case of azimuthal symmetry [31].

The boundary conditions are obtained by assuming that the
interfaces are optically smooth, i.e., the surface roughness is much
smaller than the wavelength of the incident radiation and the area

associated with the open bubbles at the sample surfaces is negligible
due to the small void fraction. In fact, the sample surfaces are
mechanically polished as described in the previous work [18] and the
open bubbles occupy only 7.5% of the total sample surface exposed
to the incident radiation. Then, the boundary conditions associated
with the RTE for normal incident radiation are [18]

I��0; 	� � r21I��0;�	� �m2
��1� r12��	0;	

I��0; 	0� 	 > 0

(22)

I��e; 	� � r21I��e;�	� 	 < 0 (23)

where r12 and r21 are the interfacial reflectivities at the air-glass and
glass-air interfaces, respectively. The Kronecker delta function is
defined as �	0 ;	

� 1, if 	� 	0 and �	0 ;	
� 0, otherwise where

	0 � 1 in the case of normal incident radiation.
When the absorption index �� is small, such as �� < 10�3, which is

the case for fused quartz in the spectral range of interest from 1.67 to
4:04 	m as one can see in Fig. 4 , the reflectivities r12 and r21 are
determined entirely from the refractive index m� by means of
Fresnel’s equations [28,31]. The air-glass reflectivity r12 for normal
incident radiation can be calculated as [31]

r12 �
�m� � 1�2
�m� � 1�2 (24)

Because of scattering by bubbles embedded in the continuous
phase, the radiation field inside the porous slab does not reach the
back face of the slab perpendicularly. Thus, the glass-air reflectivity
r21 is given by [31]

r21 �
1

2

�
sin2�� � ��
sin2��� �� �

tg2 �� � ��
tg2 ��� ��

�
(25)

where �� cos�1	 is the angle between the internal radiation towards
the surface of the slab and the y-axis, and �� cos�1� is the angle
between the refracted radiation leaving the slab and the unit normal to
the interface. The angles � and � are related by Snell’s law [31]
expressed as

m� sin �� sin� (26)

B. Method of Solution of the RTE

The discrete ordinate method (DOM) [28,31,35] is applied to
solve the RTE [Eq. (20)]. It consists of replacing the integral term in
the RTE by a sum over Mb directions, constituting a “quadrature.”
Several standard quadratures such as the Gaussian, Radau, and
Fiveland quadratures [36] can be used in the integral calculation.
Then, a system of partial differential equations is obtained.

2.0 2.4 2.8 3.2 3.6 4.0

0

2

4

6

  Dombrovsky et al.23

  Beder et al.32

  Touloukian and DeWitt 33

  Khashan and Nassif 34

κ,
 1

0+5

λ, µm
Fig. 4 Index of absorption of fused quartz from literature.
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Previously reported studies on the experimental determination of
radiative characteristics of open-cell porous media [17,19] neglected
the reflection at the interfaces due to the large porosity of themedium.
Then, a simpler system of equations could be solved analytically by
separating the collimated and scattered radiation. In the present
study, however, the system ismore complicated due to the reflections
at the front and back interfaces. Thus, the space is discretized along
the y-direction to solve numerically the system of partial differential
equations with the associated boundary conditions [Eqs. (22) and
(23)] by using the control volume method [35]. A linear scheme
(diamond) is employed to evaluate the radiative intensity in the
middle of the control volume knowing the radiative intensities on the
control volume boundaries [35]. For a number of control volumes
larger than 190, the numerical results were found to be independent
of the number of control volumes [18], i.e., numerical convergence
was reached.

C. Transmitted and Reflected Intensity Calculations

The intensities leaving the sample with smooth interfaces can be
written as [18]

I��0; �� � r12�	0;��I��0;��� �
�

1

m�

�
2

�1 � r12�I��0; 	�

� < 0; 	 < 0 (27)

I��e; �� �
�

1

m�

�
2

�1� r21�I��e; 	� � > 0; 	 > 0 (28)

where the direction cos �� cos � with � is the measurement angle
whereas 	� cos � is related to � through Eq. (26).

In general, the measurement angle � is different from one of the
quadrature angles �i selected for the numerical calculations due to
refraction at the interfaces of the slab except for the direct trans-
mission and backscattering directions (i.e., for ���1). To circum-
vent this difficulty, an interpolation can be used to evaluate the
intensity in the measurement angle � using the computed intensity in
the quadrature directions [18]. Different interpolation laws such as
linear law (LL), exponential law (EL) and combined exponential-
linear law (ELL) can be used.

D. Adaptive Composite Quadrature

Another way of avoiding the difficulty related to interpolation is to
use an adaptive composite quadrature (ACQ) [37] to solve Eq. (20).
In the present study, the ACQ quadrature depends on the radiation
wavelength and consists of Mb=2 directions in each hemisphere
such that Mb> Nb (Fig. 3). Here also, Mb must be a positive even
number.

In the forward hemisphere, the first Nb=2 directions among the
Mb=2 directions are related directly to the experimental direction
through Snell’s law. Rearranging Eq. (26) yields

	i � cosfsin�1�m�1
� sin�cos�1�i��g for i� 1 to Nb=2 (29)

The weight wi associated to direction i from 1 to Nb=2 can be
geometrically interpreted as the solid angle ��i around each
direction divided by 2�, i.e.,

wi �
��i

2�
�

Z
�i;max

�i;min

sin � d���
Z

	i;max

	i;min

d	� 	i;min � 	i;max

for i� 1 to Nb=2 (30)

where �i;min and �i;max are the minimum and maximum polar angles
around direction i, respectively. For i� 1, 	1;min � 1 and 	1;max �
cosfsin�1�m�1

� sin�cos�1�1;max��g with �1;max � 1 ���0=2�. For i
from 2 to Nb=2, 	i;min � 	i�1;max and 	i;max �
cosfsin�1�m�1

� sin�cos�1�i;max��g with �i;max � �i�1;max � w0
i. Here

w0 refers to the angular weight of the two Gaussian quadratures
associated to the experimental direction i.

Because of the refraction mismatch between the sample and the
surrounding medium, these Nb=2 directions are confined under a

critical angle defined by

	Nb=2;max � cos�sin�1�1=m��� (31)

Then, the Mb=2-Nb=2 remaining directions between 	Nb=2;max

and	Nb=2 � 0 can be defined by using the standard quadrature rules.
However, because the intensity variation outside the critical angle is
quasilinear, a regular discretization is sufficient.
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Therefore, the remaining direction cosines can be expressed as�
	Nb=2�1 � cos��Nb=2;max ���=2�
	i � cos��i�1 ���� for i� Nb=2� 2 to Mb=2

(32)

with��� �� � 2�Nb=2;max�=�Mb � Nb�. The associatedweights are
given by

wi � cos��i ���� � cos��i ����
for i� Nb=2� 1 to Mb=2 (33)

TheMb=2 directions in the backward hemisphere and those in the
forward hemisphere are symmetrical with respect to sample surface,
i.e.,�

	i ��	j

wi �wj
for i� 1 to Mb=2 and j�Mb=2� 1 to Mb

(34)

The theoretical bidirectional transmittance obtained by using the
interpolation methods with a Gaussian quadrature and the ACQ are
compared. The quadrature order considered are Mb� 30 and 40.
Two cases of refracting, absorbing, and scattering but nonemitting
medium assuming the HG phase function are considered: 1) m� �
1:41, �e� 0 � 1, !� 0:9, and g� 0:75; and 2) m� � 1:40,
�e� 0 � 2, !� 0:3, and g� 0:5.

Figure 5a shows the computed transmittances in the experimental
directions using three different interpolation laws, namely linear,
exponential, and combined exponential-linear laws, and theACQ for
quadrature orders 30 and 40. Figures 5b and 5c depict the relative dif-
ferences in directional transmittance obtained for each interpolation
law with respect to the ACQ quadrature order 40. One can note that
the same conclusions can be drawn for the two media considered.
When the added directions (Mb-Nb) in the ACQ exceed six, cor-
responding to Mb� 30, the solution of the RTE converges
numerically, i.e., it is independent of the number of directions and
control volumes, the relative difference in transmittance falls below
1%. The linear interpolation with quadrature order Mb� 30
overestimates significantly the intensities near the incident direction,
the error exceeds 1000% and decreases to 100% for a quadrature
orderMb� 40. The exponential interpolation with quadrature order
Mb� 30 gives errors reaching 100% in directions far either from the
incident direction or from the backward direction. These errors
decrease to 20% for quadrature order Mb� 40. The combined
exponential-linear law gives better results. The maximum deviation
appears only in the directions around 90 deg and does not exceed
10% for quadrature order Mb� 40. The results for each inter-
polation laws can be improved by increasing the quadrature order but
this approach increases the CPU time and is not convenient for the
inverse method. Thus, the ACQ quadrature order Mb� 30 is
adopted in the present study.

V. Results

A. Sample Characteristics

Three samples of different thickness (e� 5, 6, and 9.9 mm) are
studied; all of them feature an average void fraction of 4% and an
average bubble radius a equal to 0.64 mm. As one can see in Fig. 1,
the bubbles are spherical in shape and randomly distributed. The
sample thickness e and the fused quartz refractive indexm� are used
as input data in the identification process. Different correlations for
m� have been suggested in the literature for different spectral regions
[38–41]. The most widely accepted is the Malitson’s correlation,
which is valid over the spectral range from 0.21 to 3:71 	m at 20�C:

m2
� � 1� 0:696�2

�2 � �0:068�2 �
0:408�2

�2 � �0:116�2 �
0:897�2

�2 � �9:896�2 (35)

The validity of Eq. (35) was also confirmed by Tan [41] up to
6:7 	m. Therefore, due to its wide range of validity at room

temperature, Eq. (35) is used in the present study. The identification
of parameter has been performed for more than 100 different
wavelengths in the spectral region from 1.67 to 4:04 	m.

B. Sensitivity Coefficients

To investigate the influence of each measurement direction on the
inverse method, the sensitivity coefficients of the theoretical model
based on the TPF phase function [Eq. (14)] are investigated. For
illustration purposes, we consider three cases of semitransparent
media with Fresnel interfaces characterized by 1) for �� 1:89 	m,
m� � 1:44, �e� 0 � 0:5, !� 0:90, f1 � 0:22, g1 � 0:98, and
g2 � 0:50; 2) for �� 3:20 	m, m� � 1:40, �e� 0 � 1:0,
!� 0:70, f1 � 0:21, g1 � 0:98, and g2 � 0:45; and 3) for
�� 3:96 	m, m� � 1:39, �e� 0 � 2:5, !� 0:35, f1 � 0:17,
g1 � 0:96, and g2 � 0:35. The variations of the absolute
dimensionless sensitivity coefficients defined as ��
pl=Tei�@Tti=@pl� for l� �, !, f1, g1, and g2 and i� 1 to Nb, are
depicted in Figs. 6a–6c versus the measurement angle �. The
sensitivity of the theoretical bidirectional transmittance and
reflectance to � increases when the optical thickness increases
particularly in the incident direction. The sensitivity to ! tends to 0
near the incident direction and increaseswith themeasurement angle.
This sensitivity decreases slightly as the optical thickness increases
but remains significant and close to unity. For optically thin medium,
the sensitivity to ! has similar trend to those of �. As far as the
parameter f1 is concerned, the model is sensitive only to directions
near the forward and backward directions. The parameter g2 has the
lowest sensitivity for optically thin medium. On the contrary, the
sensitivity coefficient is the largest for the parameter g1, especially
around the forward and backward directions.

It is clear that the first direction is essential to determine the
extinction coefficient of media with moderate optical thickness
(0 � 1 and 2.5). In addition, measurements in the scattering
directions are required to identify! and � for 0 � 0:5. In the case of
optically thin media (0 < 1), ! and � may be linearly dependent
resulting in a high condition number, i.e., an ill-conditioned system,
such that their simultaneous estimation appears difficult. Some
directions near the forward (i� 2–5) and backward directions
(i� Nb-4 to Nb) are certainly sufficient to determine the parameters
f1 and g1. Finally, the computation of the parameter g2 requires
measurements in the scattering directions.

C. Influence of the Number of Measurements and the Experimental

Uncertainties

To investigate the influence of the number ofmeasurements on the
parameter identification, a parametric study was performed by con-
sidering different combinations of forward and backward measure-
ments such as 12=12, 12=5, 7=12, 9=7, and 9=9. The first number
refers to the number of forward measurements counted from the
incident direction (�� 	0 � 1) and the second one corresponds to
the number of backward measurements counted from the specular
direction (���1). The relaxation factor � used in Eq. (5) is chosen
equal to 0.5. Instead of using experimental measurements where the
exact solutions are unknown, we used simulated measurements
based on the solutions of Eq. (20) by using the TPF model and the
radiative characteristics obtained from the identification results
(Section V.G): 1) for �� 1:89 	m, m� � 1:44, �e� 0 � 0:5,
!� 0:90, f1 � 0:22, g1 � 0:98, and g2 � 0:50; 2) for ��
3:20 	m, m� � 1:40, �e� 0 � 1:0, !� 0:70, f1 � 0:21,
g1 � 0:98, and g2 � 0:45; and 3) for �� 3:96 	m, m� � 1:39,
�e� 0 � 2:5, !� 0:35, f1 � 0:17, g1 � 0:96, and g2 � 0:35. To
take into account the experimental uncertainties, the simulated
measurements (Tt) are corrupted by adding normally distributed
random errors [42]

Tet � Ttt � ��i for i� 1 to Nb (36)

where 0< � < 1 is a normally distributed random number and �i is
the standard deviation for an experimental error�i corresponding to a
confidence interval of 99%. The standard deviation �i for direction i
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is expressed as

�i �
�i

�Ti

2:58
(37)

where �Ti is the average transmittance defined as
8>>>>>>><
>>>>>>>:

�Ti � Tti for i� 1; 2;Nb � 1; andNb

�Ti � 1
�Nb=2�3��1

XNb=2
j�3

Ttj for i� 3;Nb=2

�Ti � 1
�Nb�2��Nb=2�1���1

XNb�2
Nb=2�1

Ttj for i� Nb=2� 1;Nb � 2

(38)

The relative error �i associated with the direction i is chosen to be
equal to the largest experimental error whose origins have been
discussed in Section III.B. After several measurements, they are
estimated as: 8>>>>>><

>>>>>>:

�1 �10%

�2 �20%

�i �10%

�Nb�1 �20%

�Nb �40%

for i� 3;Nb � 2 (39)

The exact and corrupted bidirectional transmittances are shown in
Figs. 7a–7c as a function of themeasurement angle�. As one can see,
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the largest absolute errors correspond to the directions far from the
direction of the incident radiation.

Moreover, two identification approaches are tested: approach A1
consists of direct computation of � from Eq. (18) and simultaneous
estimation of !, f1, g1, and g2 parameters; approach A2 consists of
estimating simultaneously �, !, f1, g1, and g2. The initial values of
these parameters are taken identical in both cases. The difference
between the identified parameters and the exact solutions, the
number of iterations and the condition number are summarized in
Tables 1–3. The following conclusions can be drawn:

1) The parameters !, f1, and g2 are the most sensitive to the
experimental uncertainties. Their deviations from the exact solutions
increase as the optical thickness increases. On the contrary, the
parameter g1 is not influenced by the experimental uncertainty and is
in good agreement with the exact solution (the deviation is less than
4% in all cases).

2) When an insufficient number of measurements is used such as
12=5, 7=12, and/or 9=7, either the inverse process does not converge
or it converges toward a wrong solution (the errors can reach 300%).
However, if too many noisy measurements are used, such as 12=12,
the computation leads to large errors that may reach up to 20% and
60% depending on the optical thickness. In our case, the 9=9 com-
bination gives a good compromise between convergence and
accuracy for every wavelength, and will be used in the identification
using experimental data.

3) The condition number obtained by simultaneous estimation of
all parameters (approach A2), is very large (10�6 to 10�13) for all the
optical thicknesses studied. When the CN is greater than 10�10, the
inversion procedure converges toward erroneous solutions. On the
other hand, the independent computation of the extinction coefficient
(approach A1) leads to an acceptable condition number (10�3).

4) The directly computed extinction coefficient (approach A1) is
less precise than that retrieved from the approachA2 for small optical
thickness (0 � 0:5). This deviation is due to the approximation of
the intensity variation as a third order polynomial function.

D. Influence of the Parameters’ Initial Values

The parameter identification is performed by using the simulated
experimental transmittance and reflectance described in Section V.C
with nine forward and nine backward measurements. To investigate
the effect of the parameters’ initial value on the identification results,
three combinations of initial parameters are considered as reported in
Tables 4–6. In addition, the two identification approaches A1 andA2
are compared. The relative difference between the computed and
exact parameters, the number of iterations, and the condition number
are summarized in Tables 4–6. One can note that the initial guesses
for the unknown parameters do not affect the results of approach A1
but only the number of iterations, i.e., the CPU time. However, the
approachA2 is influenced by the parameters’ initial values especially
for absorbing materials (0 � 2:5). Therefore, approach A1 is more
stable than A2 with respect to the initial guesses for the radiation
characteristics to be identified.

E. The Two-Step Inverse Process

The analysis in Sections V.C and V.D show that nine forward and
nine backward measurements are sufficient for the current identi-
fication of parameter. The approach A1 using the direct computation
of � is more robust than the simultaneous parameter estimation
(approach A2). It avoids dealing with a very ill-conditioned system,
which reduces the efficiency of the method. However, it is less
precise for small optical thickness. The approach A2 is always

Table 1 Influence of bidirectional measurement number (MN) on the identified parameters from the approaches Al and A2 for �� 1:89 �m and

m� � 1:44, with the exact parameters �exact � 50 m�1, !exact � 0:9, f1exact � 0:22, g1exact � 0:98, and g2exact � 0:5, and the initial parameters

�0 � 70 m�1, w0 � 0:5, f10 � 0:5, g10 � 0:7, and g20 � 0:2.

MN ��=�exact, % �!=!exact, % �f1=f1exact, % �g1=g1exact, % �g2=g2exact, % Iteration number (IN) CN

A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1

12=12 4.52 13.92 �9:09 �10:41 5.12 5.56 �0:32 �0:16 �5:29 �7:72 24 15 3:1 � 107 1:1 � 103

12=5 �2:58 13.92 �7:02 �8:88 �0:47 2.48 �0:46 �0:10 �4:76 �7:27 27 15 9:3 � 107 1:2 � 103

7=12 —— 13.92 - �10:56 —— 6.83 —— �0:12 —— �12:53 —— 35 —— 1:5 � 103

9=7 —— 13.92 - �8:32 —— 4.66 —— 0.07 —— 0.37 —— 17 —— 1:4 � 103

9=9 2.12 13.92 �6:63 �8:68 3.42 7.57 �0:21 0.15 �2:44 2.38 23 70 2:2 � 107 1:0 � 103

Table 2 Influence of bidirectional MN on the identified parameters from the approaches Al and A2 for �� 3:20 �m and m� � 1:40, with the exact

parameters �exact � 100 m�1, !exact � 0:7, f1exact � 0:21, g1exact � 0:98, and g2exact � 0:45, and the initial parameters �0 � 70 m�1, w0 � 0:5,
f10 � 0:5, g10 � 0:7, and g20 � 0:2.

MN ��=�exact, % �!=!exact, % �f1=f1exact, % �g1=g1exact, % �g2=g2exact, % IN CN

A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1

12=12 1.47 1.98 �13:78 �13:80 21.83 22.19 0.27 0.29 22.32 22.38 25 16 7:3 � 106 7:2 � 102

12=5 �132:89 1.98 �30:15 �13:24 �61:10 19.51 �1:50 0.22 �7:23 21.24 31 20 2:8 � 1011 1:0 � 103

7=12 1.41 —— �16:45 —— 21.14 —— 0.10 —— �0:75 —— 34 —— 1:1 � 107 ——

9=7 2.61 1.98 �10:57 �10:67 14.92 14.59 0.25 0.20 14.76 14.48 21 16 7:4 � 106 9:5 � 102

9=9 2.19 1.98 �11:92 �11:91 19.14 19.21 0.36 0.35 19.04 19.01 24 14 5:9 � 106 8:0 � 102

Table 3 Influence of bidirectionalmeasurement number on the identified parameters from the approaches Al andA2 for�� 3:96 �m andm� � 1:39,
with the exact parameters �exact � 250 m�1, !exact � 0:35, f1exact � 0:17, g1exact � 0:96, and g2exact � 0:35, and the initial parameters �0 � 70 m�1,

w0 � 0:5, f10 � 0:5, g10 � 0:7, and g20 � 0:2, Nb� 24.

MN ��=�exact, % �!=!exact, % �f1=f1exact, % �g1=g1exact, % �g2=g2exact, % IN CN

A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1

12=12 1.21 1.27 �35:41 �35:33 40.25 40.23 �0:30 �0:26 59.60 59.62 24 14 1:8 � 106 1:6 � 102

12=5 �318:91 1.27 �149:57 �32:84 �206:36 36.32 �3:93 �0:36 �75:51 50.59 31 15 2:8 � 1013 1:8 � 102

7=12 1.10 1.27 �39:78 58.47 39.50 �102:13 �0:41 �0:46 37.63 �171:85 26 15 1:6 � 106 2:5 � 105

9=7 1.40 1.27 �31:94 �32:18 39.18 39.01 �0:14 �0:11 68.78 68.64 38 15 2:0 � 106 4:4 � 102

9=9 1.45 1.27 �31:77 �32:04 38.90 38.75 �0:15 �0:12 68.07 68.06 24 15 2:0 � 106 4:3 � 102
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characterized by a large CN and requires a better knowledge of the
initial parameters.

Moreover, one can note that these two identification schemes are
complementary. Thus, this suggests performing two successive
inversion procedures to optimize the final results. First, a preliminary
calculation using approach A1 is carried out which provides an ap-
proximate value of the unknown parameters. Then, a second
identification step based on approach A2 is performed using the
results from approach A1 as initial guesses. This second step can be
done without estimating g1 because it can be determined precisely
from the first step (see Section V.D). By using this two-step inverse
procedure, there are no restrictions either on the parameters’ initial
value or on the optical thickness range. This two-step inversion
scheme is applied in the current study.

F. Influence of the Phase Function Model

To investigate the effects of the scattering phase function model,
the radiative parameters are identified by using measurements
corresponding to the 6 mm thick sample. The two phase function
models considered are the HG and the TPF. The identified param-
eters are summarized in Table 7 for typical wavelengths. The
absorption coefficient of the fused quartz kbulk � 4��bulk=� is also
reported on the same table where the absorption index �bulk is taken

from Dombrovsky et al. [23] The resulting bidirectional trans-
mittances are shown in Figs. 8a and 8b.

Table 7 indicates that the phase function model has significant
influence on the retrieved radiative characteristics, especially in the
spectral region where fused quartz is transparent (from 1.67 to
2:7 	m and 2.9 to 3:5 	m in this study but the case for�� 1:89 	m
is presented in Table 7). As for the bidirectional transmittance and
reflectance reported in Fig. 8, one can note that the theoretical results
obtained using the TPF function gives good agreement with the
measured bidirectional transmittance and reflectance whereas results
from the HG function agree only for the five forward (i� 1 to 5) and
three backward directions (i� Nb-4 to Nb-1). Overall, the HG
function fails to properly describe the directional scattering behavior
of the studied material.

G. Identified Radiative Characteristics

The radiative characteristics (Figs. 9a–9f) are determined from the
three samples of different thickness previously described. For
comparison, the bulk quartz radiative characteristic and the average
results obtained by Baillis et al. [18] using the HG phase function are
also reported.

First, one can conclude that the retrieved parameters are
independent of samples thickness. The observed dispersion of data is

Table 5 Influence of the parameters’ initial values on the identification results from the approaches A1 and A2 for �� 3:20 �m andm� � 1:41, with
nine forward and nine backward measurements and the exact parameters �exact � 100 m�1, !exact � 0:7, f1exact � 0:21, g1exact � 0:98, and

g2exact � 0:45. The initial parameters are piv 1: �0 � 70 m�1, w0 � 0:5, f10 � 0:5, g10 � 0:7, and g20 � 0:2; piv 2: �0 � 500 m�1, w0 � 0:1, f10 � 0:8,
g10 � 0:2, and g20 � 0:1; and piv 3: �0 � 100 m�1, w0 � 0:8, f10 � 0:1, g10 � 0:7, and g20 � 0:2.

piv ��=�exact, % �!=!exact, % �f1=f1exact, % �g1=g1exact, % �g2=g2exact, % IN CN

A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1

1 2.19 1.98 �11:92 �10:67 19.14 14.59 0.36 0.20 19.04 14.48 24 16 5:9 � 106 9:4 � 102

2 0.04 1.52 �15:06 �15:46 10.88 15.75 �0:19 �0:01 12.95 17.00 50 25 3:3 � 107 1:4 � 103

3 �0:04 1.52 �15:10 �15:46 10.76 15.81 �0:20 0.00 12.86 16.99 37 16 3:7 � 107 1:4 � 103

Table 4 Influence of the parameters’ initial values (piv) on the identification results from the approaches A1 and A2 for �� 1:89 �m andm� � 1:44
with nine forward and nine backward measurements and the exact parameters �exact � 50 m�1, !exact � 0:90, f1exact � 0:22, g1exact � 0:98, and

g2exact � 0:5. The initial parameters are piv 1: �0 � 70 m�1, w0 � 0:5, f10 � 0:5, g10 � 0:7, and g20 � 0:2; piv 2: �0 � 500 m�1, w0 � 0:1, f10 � 0:8,
g10 � 0:2, and g20 � 0:1; and piv 3: �0 � 100 m�1, w0 � 0:8, f10 � 0:1, g10 � 0:7, and g20 � 0:2.

piv ��=�exact, % �!=!exact, % �f1=f1exact, % �g1=g1exact, % �g2=g2exact, % IN CN

A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1

1 2.1 13.92 �6:63 �8:32 3.42 4.66 �0:21 0.07 �2:44 0.37 23 17 2:2 � 107 1:4 � 103

2 1.22 13.92 �7:47 �8:32 7.80 4.65 �0:04 0.07 4.42 0.37 62 32 1:2 � 107 1:1 � 103

3 1.18 13.92 �7:47 �8:30 7.78 4.73 �0:04 0.07 4.40 0.49 25 15 1:2 � 107 1:2 � 103

Table 6 Influence of the parameters’ initial values on the identification results from the approaches A1 and A2 for �� 3:96 �m andm� � 1:39, with
nine forward and nine backward measurements and the exact parameters �exact � 250 m�1, !exact � 0:35, f1exact � 0:17, g1exact � 0:96, and

g2exact � 0:35. The initial parameters are piv 1: �0 � 70 m�1, w0 � 0:5, f10 � 0:5, g10 � 0:7, and g20 � 0:2; piv 2: �0 � 500 m�1, w0 � 0:1, f10 � 0:8,
g10 � 0:2, and g20 � 0:1; and piv 3: �0 � 100 m�1, w0 � 0:8, f10 � 0:1, g10 � 0:7, and g20 � 0:2.

piv ��=�exact, % �!=!exact, % �f1=f1exact, % �g1=g1exact, % �g2=g2exact, % IN CN

A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1

1 2.19 1.98 �11:92 �10:67 19.14 14.59 0.36 0.20 19.04 14.48 24 16 5:9 � 106 9:4 � 102

2 0.04 1.52 �15:06 �15:46 10.88 15.75 �0:19 �0:01 12.95 17.00 50 25 3:3 � 107 1:4 � 103

3 �0:04 1.52 �15:10 �15:46 10.76 15.81 �0:20 0.00 12.86 16.99 37 16 3:7 � 107 1:4 � 103

Table 7 Influence of the phase function model on the radiative characteristics for 6 mm sample thickness at different wavelengths.

�, 	m kbulk, m
�1 �HG, m

�1 �TPF, m
�1 !HG !TPF kHG, m

�1 kTPF, m
�1 gHG gTPF

1.89 5.94 75.2 78.23 0.47 0.94 39.85 4.06 0.95 0.70
2.76 151.61 170.74 176.48 0.17 0.27 141.71 128.28 0.93 0.84
3.96 204.04 262.21 264.18 0.14 0.23 225.50 201.97 0.94 0.81
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mainly attributed to the measurement uncertainties. The standard
deviation is especially large for the parameterg2 reaching about 12%.

Overall, the retrieved radiation characteristics tend to disagree
with previously reported data [18] except for the extinction coef-
ficient which can be estimated properly using the HG function. This
is mainly due to the phase function model adopted in the theoretical
formulations because it was shown to have little effect on the
extinction coefficient but a significant one on the absorption and
scattering coefficients (see Sec. V.F). However, in all cases, results
using the HGmodel gives a small scattering albedo associated with a
highly forward anisotropic phase function and an absorption
coefficient 8–10 times higher than that of bulk quartz (kbulk). On the
contrary, the retrieved absorption coefficient using the TPF model is
of the same order of magnitude as that of bulk quartz.

Moreover, the scattering behavior of the porous quartz is generally
forward anisotropic with g about 0.78, its absorption coefficient is
slightly smaller than that of the bulk material, and the scattering
dominates the extinction (! 0:8–0:9) in the transparency bands of
fused quartz. This means that the bubbles are nonabsorbing but only
scatter radiation and the quartz matrix is the only absorbing
substance.

H. Comparison with Hemispherical Measurements and Influences of

Experimental Uncertainties

To verify that the retrieved parameters represent accurately the
radiative characteristics of the material studied, the calculated
hemispherical transmittance termed T�

t and reflectance termed T�
t

based on 1) the current identified parameters and 2) the results of
Baillis et al. [18] are compared with those measured experimentally
and denoted T�

e and T�
e . The Fourier–Transform InfraRed

spectrometer is used in combination with a gold-coated integrating
sphere (CSTM RSA-DI-40D) to measure the spectral hemispherical
transmittance T�

e and reflectance T�
e . The experimental errors are

evaluated for each sample from five different measurements. De-
pending on the wavelength, errors range from 3 to 8% for trans-
mittance and from 9 to 16% for reflectance. The average radiative
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Fig. 8 Influences of the phase functionmodel on the transmittances for

the sample e� 6 mm a) at �� 1:89 �m and b) at �� 3:96 �m.
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characteristics are introduced in the RTE [Eq. (20)] to compute the
hemispherical transmittance and reflectance (after integration of the
bidirectional transmittance over each hemisphere). The computa-
tional errors are evaluated as follows: First, Eq. (20) is solved for each
sample thickness by using the associated radiative parameters, then
the standard deviation are determined from the computed hemi-
spherical transmittances and reflectances of different thicknesses.
The comparisons are reported in Figs. 10a–10c. Overall, good
agreement is observed between the measured hemispherical trans-
mittances and reflectances, and their values computed using the
radiative characteristics retrievedwith the TPF function.On the other

hand, the numerical results obtained using the radiative parameters
reported by Baillis et al. [18] are always smaller than the hemi-
spherical transmittance T�

e and reflectance T�
e measurements. This

can be attributed to the underestimation of the scattering albedo and
overestimation of the absorption coefficient obtained when the HG
phase function is adopted.

Finally, the comparison of numerical results with hemispherical
measurements not only enables one to quantify the experimental
errors but also offers an efficient validation tool.

VI. Conclusions

Recently, the experimental determination of radiative character-
istics of fused quartz containing bubbles was performed using an
inverse method based on bidirectional transmittance measurements.
The Henyey–Greenstein phase function was used in the theoretical
model based on the RTE. Because of refraction at both interfaces of
the slab, the theoretical transmittance and reflectance in the measure-
ment directions were evaluated by using an interpolation law. In the
present study, several improvements are proposed particularly for
1) the scattering phase function model, 2) the identification
procedure, and 3) the quadrature used in the theoretical calculations.
From the preceding discussion, the following conclusions can be
drawn:

1) The importance of the phase function model on the inverse
method based on bidirectional transmittance measurements has been
demonstrated. The use of a common scattering phase function such
as the Henyey–Greenstein function underestimates the scattering
coefficient and overestimates the absorption coefficient whereas it
properly estimates the extinction coefficient. The present study
proposed a more elaborate phase function, the so-called truncated
phase function, which depends on three parameters and enables one
to take into account the complex scattering behavior of the samples.
The hemispherical transmittance and reflectance computed using
these newly retrieved coefficients gives better agreement with the
experimentalmeasurements than those obtained using the previously
reported radiative characteristics [18].

2) The interpolation methods used to evaluate the theoretical
transmittance in the measurement directions were shown to be less
accurate than the proposed adaptive composite quadrature unless a
high quadrature order was used. The use of an adaptive quadrature
has been proposed and found to be advantageous in terms of both
computational time and precision.

3) The importance of the choice of the measurement directions on
the identification results has been highlighted. It is recommended to
perform the sensitivity coefficients analysis for similar study using
bidirectional transmittance and reflectance measurements.

4) A new inverse method based on a two-step inversion procedure
is proposed. It uses a preliminary parameters estimation step. This
technique enables one a) to avoid the errors induced by the direct
computation of the extinction coefficient from the collimated
transmittance and b) to accelerate the convergence.

5) The radiative characteristics of the porous fused quartz were
then identified and shown to be independent of the sample thickness.
Unlike the results obtained using the Henyey–Greenstein function,
the absorption coefficient of porous samples of porosity equal to 4%
obtained using the TPF phase function is slightly smaller than that of
the dense matrix. Compared with the previously published data, the
current radiative characteristics appear to be in better agreement with
physical intuition.

6) The limitations of the experimental setup to measure the
bidirectional measurements have been pointed out. In particular, the
influence of the measurement number, the measurement noises, and
the alignment uncertainties on the results of the inverse method have
been observed. To obtain more reliable measurements, a more
sensitive detector is required to improve accuracy.

7) Finally, the same experimental methodology can be used to
characterize other semitransparent materials.
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