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Many living organisms present the unique capability of 
directionally moving towards sources of certain envi-
ronmental stimuli. For example, cells and bacteria can 

migrate towards sources of chemical gradients, known as chemo-
taxis, for food (for example, glucose), fertilization (for example, 
sperm moving towards the egg) or immune functions1. Plants can 
self-orient to face light sources perpendicularly, known as photot-
ropism (Fig. 1a), for energy harvesting and reproduction. All their 
direction of locomotion is strictly determined by the direction of 
an environmental stimulus, namely, tropistic movement, in con-
trast to nastic movement, which is a non-directional response to 
stimuli and simply determined by organism anatomy2. In tropistic 
movement, organisms not only sense and respond to the stimuli 
positions, but also spontaneously and constantly adjust their move-
ments to tightly follow the signal directions. This presents the intel-
ligence of self-regulation via the feedback control inherent in the 
dynamic interactions between their bodies and the stimulus.

Artificial materials, however, have not realized tropistic behav-
iours, in spite of many nastic behaviours presented with various 
stimuli-responsive materials that change volume or actuate on light, 
electrical or magnetic fields, pH or temperature changes2. For exam-
ple, photoresponsive liquid crystalline elastomers bend under the 
light illumination3. However, the bending direction is determined by 
the anisotropic molecular orientation rather than the illumination 
direction and also varies with the ambient condition fluctuations 
(for example, temperature, light intensity and so on), which shows 
the lack of a robust movement-control mechanism. Recently, photo-
responsive polymers were found capable of following the illumina-
tion direction in a non-steady oscillatory manner due to inertia4–6. 
However, achieving synthetic tropistic behaviour that can steadily 
track input energy has proved a daunting challenge2,7. Realizing  

self-regulation in synthetic materials, such as in artificial homeo-
stasis8, requires a conceptually new broad-based design that owns 
a built-in feedback control to tightly regulate the multiple physics 
coupling and steadily rectify its resultant motion. Such self-adaptive, 
tropistic materials would be capable of a variety of plant-like auton-
omous motions and enable novel functions useful, for example,  
in soft robotics and automated systems.

Phototropism is developed by many plants as a strategy to 
recover the oblique-incidence energy-density loss (OEL), the input 
power density reduction when emissive energy projects on a sur-
face obliquely. The loss can be enormous when the incident angle 
is large (for example, 75% loss at 75° incidence) (Fig. 1b). By main-
taining normal incidence, sunflowers raise the temperature of floral 
discs to attract more pollinators with warmth and show an effec-
tive recovery of the input loss caused by oblique illumination if no 
phototropism was present9. Artificial phototropism, if realized, may 
provide an efficient solution to overcome this universal OEL issue 
faced by almost all existing optical and electromagnetic devices10–13. 
As a bioinspired concept illustrates in Fig. 1b, when a surface is 
covered with sunflower-like pillars that can bend towards the light 
source and maintain normal incidence, the original maximum 
power density (Pmax = P0) can be restored. The capability to harness 
tropistic behaviour autonomously, without external instruction and 
power supply (for example, via electromechanically programmed 
systems), would enable highly efficient energy-harvesting platforms 
that can adapt autonomously to complex ambient environments. 
However, current state-of-the-art photoactuations remain primarily  
nastic14–18, unable to sense, track and harvest the emissive energy 
from varying incident directions self-adaptively.

Here we present a general principle of creating artificial  
phototropism with a series of reversibly photoresponsive polymers. 
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These phototropic systems, termed sunflower-like biomimetic 
omnidirectional tracker (SunBOT) (Fig. 1a), can autonomously and 
instantaneously detect and track incident light in three-dimensional 
space at broad ambient temperatures with high accuracy and fast 
response, without auxiliary power supply or human intervention. 
We demonstrated that the artificial phototropism can achieve up 
to 400% energy-harvesting enhancement over conventional, non-
tropistic materials under oblique illuminations. Owing to the broad 
choice of materials, tunable mechanics, and physical simplicity, the 
artificial phototropism is a broad-based platform, with potential 
impact in energy, robotics, and environmental applications.

Design principle and operation mechanism
Plants track light through photoreceptors in their stems that detect 
the incident light and lead to cell elongation on the shaded side, due 
to a distribution gradient of a growth factor (for example, auxin) 
between the illuminated and the shaded side9. To mimic the bio-
logical asymmetric growth, we leverage the capabilities of reversibly 
photothermoresponsive soft materials that shrink on illumination 
and adopt the symmetric stem-like cylindrical pillar shape for the 
design of SunBOTs. Like a stem, SunBOTs bend towards stimuli due 
to the asymmetric deformation between the illuminated high-tem-
perature region and the shaded low-temperature region, as shown 
in Fig. 2f. SunBOT is a versatile platform that can be constructed 
using almost any reversibly photoresponsive soft materials, for 
example, hydrogels8,14,19–22, liquid crystal elastomers (LCEs)3,23,24 and 
azobenzene/spiropyran-based polymers16,25. Here we demonstrate 
the generality of the principle with four different photothermally 
responsive polymers. They are (1) a thermoresponsive hydrogel, 
poly(N-isopropylacrylamide) (PNIPAAm)4,8,26, with homogeneously 
distributed nanophotoabsorbers, either gold nanoparticles (AuNPs) 
or reduced graphene oxide (rGO), which simultaneously act as 
photoreceptors and photothermal converters, respectively, termed 
AuNP–PNIPAAm SunBOTs (Figs. 2–4) and rGO–PNIPAAm 
SunBOTs (Fig. 5), (2) copolymerization of PNIPAAm and poly-
acrylamide (PAM) with polypyrrole as the photoabsorber, termed a 
PAM-co-PNIPAAm SunBOT (Fig. 2c), (3) poly(2-dimethylamino)
ethyl methacrylate (PDMAEMA) hydrogel with polyanaline (PANI) 
as the photoabsorber, termed a PANI–PDMAEMA SunBOT  
(Fig. 2b) and (4) LCE (Fig. 2d) specifically based on diacrylate 
mesogen RM257 with a homogeneously distributed indigo dye as 
the photoabsorber, termed an indigo–LCE SunBOT.

As Fig. 2a and Supplementary Videos 1–4 show, SunBOTs can 
adaptively reconfigure to follow and to orient themselves perpen-
dicular to the incident light from arbitrary and constantly varying 
directions (−150 to 150° zenith, 360° azimuth) at room temperature. 

This artificial phototropism capability achieves a remarkably high 
tracking accuracy (that is, the ratio of the pillar final bending angle 
and the light incident angle) of >99.8% (Fig. 2e), a fast response rate 
of 0.03 s deg–1 and up to a 400% energy-harvest enhancement.

Similar to sunflowers, the phototracking process of SunBOTs 
involves four steps: detection, actuation, aiming and recovery, as 
shown in Fig. 2f(i)–(iv). On illumination, the SunBOT detects the 
incident light via surface plasmon resonance of the incorporated 
nanophotoabsorbers (Fig. 2f(i)) and actuates towards the source due 
to local heating and asymmetric deformation (Fig. 2f(ii)). The asym-
metric deformation is induced by establishing an appropriate tem-
perature gradient across the pillar, where the illuminated front-side 
temperature (Tf) is greater than the hydrogel’s lower critical solution 
temperature (LCST) and the shaded back-side temperature (Tb) 
remains below the LCST. This illuminated-side shrinkage results in 
a bending effect similar to that observed in plant stems. As soon as 
the SunBOT aims at the light source, it spontaneously terminates the 
actuation motion (Fig. 2f(iii)). The aiming as a self-regulated actua-
tion is modulated by the negative feedback loop inherent in the tight 
hydrogel–stimuli interactions. As illustrated in Fig. 2g, localized 
exposure to the incident photonic energy results in a local shrink-
age of the hydrogel and mechanical bending of the SunBOT pillar, 
which consequently blocks the light as an overshooting protection, 
allowing the hydrogel to reswell and repeat the cycles automatically, 
which results in a steady state of aiming. This self-shading effect is 
proved by the measured temperature evolution, as both Tf and Tb 
converge to be tightly around the LCST (Fig. 2h). Unlike previously 
reported nastic motions, which are sensitive to the intensity of the 
stimuli and/or the ambient temperature, the rigorous self-regulating 
mechanism generates similar temperature gradients in SunBOTs 
under different illumination powers and environment conditions 
(Supplementary Fig. 10), which guarantee a stable and accurate  
aiming at broad power and temperature ranges (Supplementary 
Section 2.4.2). When the illumination is turned off or changes posi-
tion, the bent SunBOT immediately recovers its original shape or 
quickly adjusts its orientation to accommodate the position of a new 
stimulus (Fig. 2f(iv)), to perform another tropistic cycle in real time.

Overall, artificial phototropism is a self-regulatory effect that 
results from an elegant balance of the fully coupled participating 
physical processes: photothermal conversion, thermal diffusion, 
mass (water) diffusion and mechanical deformation. Comprehensive 
theoretical efforts, specifically a multiphysics model that couples  
the light, heat, mass transfer and mechanics across nano-to- 
millimetre scales, have been developed to understand the funda-
mentals of the phototropic process and to guide the rational design 
predictively (Supplementary Section 4).
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Fig. 1 | The concept of the artificial phototropism and the SunBoTs. a, Phototropism of sunflowers and the SunBOT. b, The concept of OEL recovery 
by phototropism. The OEL from Pmax under the normal incidence (left) to Pθ = Pmaxcosθ under an oblique incidence at a θ zenith angle (Pmax = Pθ (θ = 0°)) 
suffered by a conventional non-phototropic surface (middle) can be fully recovered by a surface covered with a phototropic array (right).
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operation performance of tracking
The simulated thermal and stretch fields within the SunBOT pil-
lar (Fig. 3b,c) reveal that this wide-angle tracking ability is induced 
primarily by contraction at the illuminated region rather than gov-
erned by the material stiffness or flexural modulus, as in typical 
elastic beam bending (Supplementary Section 2.5). This mechan-
ics further highlights the freedom in material selection. Moreover, 
the phototropism of SunBOTs is energy efficient. As this light-
powered hydrogel reconfiguration is essentially a volumetric phase 
transition with a tunable LCST27, it consumes a minute amount of 
photonic power to locally heat the hydrogel and trigger the release 
of a large amount of mechanical energy for the phase transition 
(Supplementary Section 2.6).

The SunBOT has a truly broad and tunable operation window 
that can guarantee successful phototropism over a wide range of 
light intensities (Fig. 3h, Supplementary Fig. 16 and Supplementary 
Table 1), ambient temperatures (Supplementary Fig. 15), lighting 
conditions (Fig. 3a–f), irregular geometric shapes (Fig. 3g) and 
spatiotemporal rhythms of illumination (Fig. 3i). These can be 
achieved by tuning the material properties, including the nanopho-
toabsorber concentration, transition temperature, dimension of the 
material and the coupling between the properties (Supplementary 
Section 2.4). Figure 3 presents the versatility of SunBOTs through 
more-complex direction-cognitive behaviours under various condi-
tions. The SunBOT can track not only a spot light but also large-
area lighting (Fig. 3a–f and Supplementary Video 5), which shows 
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its applicability to ambient light conditions. The optical beam width 
can also effectively manipulate bending curvatures, which are 
accurately reproduced by multiphysics modelling (Supplementary  
Fig. 34). Interestingly, SunBOTs with arbitrary contorted pillar 
shapes can be straightened by the light (Fig. 3g, Supplementary 
Video 6 and Supplementary Fig. 17). Such high-fidelity tropism 
presents adaptive learning and self-optimization through continu-
ous dynamic light–matter interactions. Ultimately, attributed to 
the fast recovery (reswelling) of the hydrogel when not being illu-
minated, the SunBOT can successfully track a light source in real 
time, continuously moving 360° azimuthally at a fast speed up  
to 0.03 s deg–1 (Fig. 3i and Supplementary Video 3). At these inten-
tionally designed pausing steps, the fast-moving SunBOT precisely 
stops at the light-source direction without any over- or underbend-
ing, which confirms an extremely strict spatiotemporal control  

of the tracking behaviour by the light (Supplementary Fig. 8).  
Being both compositionally and geometrically symmetric,  
the design simplicity of SunBOTs endows them an infinite degree  
of freedom to fulfil a truly omnidirectional tracking and energy  
harvesting (Fig. 2a).

Kinetics study of the SunBoT
How fast a SunBOT can track the directional variation of the emis-
sive energy is directly correlated to the ability to aim at the moving 
light source and hence the final energy production. Based on steady-
state studies, we further investigated the kinetics of the dynamic 
tropistic locomotion, which was jointly determined by the thermal 
diffusion and the mass (water) diffusion. The timescale associated 
with thermal diffusion in the hydrogel remained the same during the 
deformation (Supplementary Section 2.4.3) and its dynamics were 
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simulated in the multiphysics modelling (Fig. 4 and Supplementary 
Video 2). However, the mass diffusion can be manipulated by con-
trolling the nano/microstructure of the hydrogel. Figure 4a,b exhibit 
distinct phototropic kinetics with different diffusion-dominated 
mechanisms. When the mass diffusion is relatively fast, that is, the 
water diffusion in the hydrogel matrix is completed by the time the 
steady-state temperature gradient is established, the tracking speed 
is limited by the thermal diffusion, and the SunBOT is thermal- 
diffusion dominated (TDD). As shown in Fig. 4a, the TDD SunBOT 
can track to 90° within 3.5 seconds (much faster than its natural 
counterparts), which is comparable to the time required to reach 
the thermal steady state (Fig. 4c). By contrast, the mass-diffusion 
dominated (MDD) SunBOT has much smaller pore sizes (Fig. 4d), 
and hence a much slower water diffusion. Consequently, it takes a 
longer time to reach a 90° tracking than that for the TDD SunBOT 
(Fig. 4b). To better understand these dynamic phototropic behav-
iours, we studied the temporal evolution of temperatures Tf and Tb 
near the incident site of the SunBOT experimentally and numerically 
(Fig. 4e). With the quantitative agreement between simulation and 
experimental results of the kinetic studies shown in Fig. 4a,b,e and 
Supplementary Video 2, we validated our numerical model, which 
applies the recorded dynamic swelling ratio of the hydrogel (Fig. 4f) 
to fit the mass diffusivity. The validation enabled a rational design 
and dynamic behaviour prediction by providing a comprehensive 
insight and clear physical picture of the fundamental mechanism.

As the microstructure of the hydrogel matrix provides a flex-
ible tunability of the phototropic kinetics that the SunBOT achieves 
once the material system has been fabricated, one can still readily 
control its temporal response by varying the incident light power 

(Fig. 4g). The time cost of the successful 90° tracking of the SunBOT 
varies from hundreds of seconds to seconds, as long as the input 
power falls into the operation window discussed above.

Artificial phototropism enhanced energy harvesting
Ultimately, we demonstrated the efficacy of SunBOTs in solving 
practical OEL problems (Fig. 1b) by applying an array of micro-
SunBOTs (500 µm diameter with a pitch of 1 mm) in solar energy 
harvesting. The micro-SunBOT array that incorporates rGO as a 
broadband photoabsorber can successfully track white-light inci-
dence from the entire hemispheric space. This further demonstrated 
that the modular design can accommodate either single-wavelength 
or broad-spectrum light sources. Owing to the phototropism, the 
tips of the micro-SunBOT fibrils always received the maximum 
photonic power density (Fig. 5a–c) and thus compensated for the 
OEL. Comparing with a non-tropistic textured surface as the con-
trol sample (Supplementary Fig. 22), we evaluated the benefits of the 
tropistic oblique-loss compensation (OLC) enabled by the SunBOT.

By keeping the SunBOT array at the water–air interface under 
variable-angle illumination, which serves as a phototropic solar 
vapour generation (SVG) system, we evaluated the angle-dependent 
performances of the photonic energy absorption and conversion by 
measuring the generated water vapour mass flux (Gθ, the mass of 
vapour produced per unit area per unit time at incident angle θ). 
The area used to characterize Gθ is the effective area of the SVG 
device, that is, the area positioned at the water–air interface and 
contributing to vapour generation due to the localized heating at the 
interface (Supplementary Section 3.2). To exclude the contribution 
to the vapour generation from the photothermal energy produced 
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by water (thermal mass) under illumination, Gθ has the baseline 
subtracted. The baseline was measured by recording the evapo-
ration rate of a water bath with a total area equivalent to the total 
footprint of the SunBOT sample (including the pillar top and gap 
areas) under the same illuminating power but without the SunBOT. 
For a non-tropistic surface, the angle-dependent input photonic 
power density Pθ = Pmaxcosθ decreases as incident angle (θ) increases  
(Fig. 1b). This work focuses on studying the angle dependency of the 
energy harvesting by maximizing the input power density instead 
of the absolute SVG efficiency (Supplementary Section 3.2). Hence, 
we evaluated the phototropism-enabled OLC by defining a dimen-
sionless value derived from Gθ, the normalized SVG (N = GθhLV/
(PmaxCopt)), where hLV is the specific enthalpy of water vaporization 
(J kg–1), Copt is the optic concentration, which uses the constant pho-
tonic power density at normal incidence Pmax = Pθ (θ = 0°) = 1 kW m–2 
as the normalizing factor, instead of an angle-dependent Pθ. Under 
normal incidence, the normalized SVG degenerates to the efficien-
cies regularly defined in other previously reported SVG studies28–30 
(mostly under normal illumination).

When θ = 0°, the SunBOT exhibited an SVG efficiency of 70% 
under a 1 Sun illumination and 80% under a 2 Sun illumination, 
which are comparable to the previously reported values28–35. When 
θ = 60° (P60° = 50% Pmax), for non-tropistic surfaces the vapour flux Gθ 
reduced to 50% of Gθ = 0°. By contrast, the SunBOT array maintained 
90% of Gθ = 0° under normal incidence, which compensated the lost 
40% of the input (Fig. 5f). Under 1 Sun and 2 Sun illuminations, 
the SunBOT phototropic SVG outperformed the control samples 
(Supplementary Section 3.1) at all incident angles (zenith and azi-
muth) in the entire hemisphere (Fig. 5d,e). At 60° (zenith), the pho-
totropic SunBOT generated an SVG double that of a theoretical flat 
surface, the control samples and previous reports (Supplementary 
Section 3.2). The SunBOTs showed an omnidirectional SVG, which 
is defined as generating >90% of the maximum SVG (θ = 0°) under 
oblique incidence, over a wide operation window of angles, that is, 
−60 to 60° for 1 Sun and −75 to 75° for 2 Sun, in contrast to the 
drastic reduction in both the theoretical estimation and control 
samples. In addition, the SunBOT array demonstrates an up to 
400% enhancement (fivefold) of SVG with an operation window 
of 164° (−82 to 82°) (Fig. 5g). With varying incident angles daily 
and seasonally, the energy-harvesting enhancement on different 
seasonal days and throughout the time of year at different latitudes 
in the world are demonstrated in Supplementary Figs. 27–30 and 
Supplementary Section 3.3.4. For example, at the latitude of the Los 
Angeles area in the United States, the SunBOTs can theoretically 
improve the annual SVG by 165–200% compared to that of a flat 
surface at the same latitude, which recovers up to 77% of the lost 
solar power density due to the oblique illumination (Supplementary 
Fig. 30 and Supplementary Table 2). From the equator to high-lat-
itude (60° N and 60° S) locations, where the majority of the popu-
lation live, SunBOT is predicted to harvest 1.3–2.1 times more 
solar energy compared to a non-tropistic surface on equinox days 
(Supplementary Figs. 27 and 28).

Conclusions
We report here a synthetic phototropism via a sunflower-inspired, 
self-adaptive reconfigurable material system with a built-in feed-
back loop. The phototropic material features an omnidirectional 
self-orienting capability, in contrast to other actuating systems for 
energy harvesting that are typically made of uncontrollable or pre-
programmed systems. Our experimental and numerical investiga-
tion generates new insight into the mechanism behind the plant-like 
phototropic motion, and also establishes a predictive model to guar-
antee a high fidelity and energy efficiency in the harvesting of broad 
forms of energy. The numerical framework that can couple a large 
number of physical fields provides a powerful tool to study our sys-
tems in depth. The SunBOTs exhibit biological sensorimotor-like 

behaviour, controlled by a feedback loop inherent in the intricately 
coupled photochemomechanical interactions. This behaviour mim-
ics the elegant agility of living systems, which leads to novel intel-
ligent materials. Practically, our SunBOTs provide a long-sought 
solution to energy harvesting via the autonomous maximization of 
the input power density. The nearly infinite degree of freedom in 
their adaptive locomotion may lead to self-sustained, untethered 
soft robots36, autonomously capable of real-time learning and per-
forming complex tasks in various environments37,38. This work may 
be useful for enhanced solar harvesters28–30, adaptive signal receiv-
ers39, smart windows40,41, self-contained robotics42,43, solar sails for 
spaceships44,45, guided surgery, self-regulating optical devices46,47 
and intelligent energy generation (for example, solar cells and bio-
fuels48), as well as energetic emission detection and tracking with 
telescopes, radars and hydrophones.
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Methods
Fabrication of SunBOTs. The PNIPAAm hydrogel precursor solution 
was prepared with a 40 wt% NIPAAM monomer, 2 wt% crosslinker N,N′-
methylenebisacrylamide, 0.5 vol% ultraviolet-initiator Darocur 1173 in 
dimethylsulfoxide (DMSO), followed by adding photoabsorbers AuNPs or 
rGO to fabricate SunBOTs based on AuNP–PNIPAAm or rGO–PNIPAAm, 
respectively. For the AuNP-incorporated SunBOT (AuNP–SunBOT), 0.8 wt% 
AuNPs and 0.1 vol% allyl disulfide (optional, used in MDD SunBOTs only and 
not used in TDD SunBOTs (Supplementary Section 1.3.1)) were added into the 
PNIPAAm precursor solution in DMSO, in which the allyl disulfide serves as 
a linker between the AuNPs and hydrogel matrix via hydrogen bonds. For the 
rGO-incorporated SunBOT (rGO–SunBOT), 0.3 wt% rGO was added to the 
PNIPAAm precursor solution in DMSO. The mixture solution was then poured 
into the polydimethylsiloxane mould and covered with a 3-(trimethoxysilyl)propyl 
methacrylate-treated glass slide, followed by ultraviolet curing for 60 s. The cured 
gel structure was carefully pulled out from the mould to yield a SunBOT, and 
then immersed into deionized water to remove DMSO. For the rGO–SunBOTs, 
the gel structure was soaked in a 0.33 M hydrazine aqueous solution to reduce 
the graphene oxide to rGO. If not specifically identified, the fully hydrated 
SunBOT (single pillar) had a diameter of 1 mm and a length of 10–20 mm at room 
temperature; each fully hydrated pillar in the SunBOT arrays had a diameter of 
0.5 mm at room temperature.

Characterization of the artificial phototropism. A 532 nm continuous wave 
laser (Genesis MX STM-Series), with a beam diameter of 1 mm and a maximum 
power of 1 W, was used as a monochromatic light source. Without further tuning 
of the beam width, the laser is termed the ‘spotlight’ as it shines on samples with a 
smaller diameter of illumination. A beam expander (10×) was used to expand the 
laser beam diameter to 10 mm, which is termed the ‘area light’. A white light source 
equipped with a collimator was designed and fabricated to serve as a broadband 
light source (50 mm in diameter with a maximum power of 1 W). The SunBOT 
was immersed in a water bath inside a glass container with a precise temperature 
control (0.1 °C precision). An optical power meter (Newport 1830-C) was used 
to calibrate the power output of the light sources. The real-time azimuth-angle 
variation was performed by rotating a rotation stage on which the SunBOT was 
placed on its concentric point. The light sources were fixed and shone on the 
SunBOT with different zenith angles. All the photos and videos were recorded  
by a camera (Olympus E-M10). Detailed characterizations are given in 
Supplementary Section 2.

Characterization of the omnidirectional SVG. The SunBOT array (5 × 7) was 
designed to contain micropillars 300 µm in diameter and 1 mm in height with 
a 700 µm spacing. The pillars became wider (500 μm in diameter and 500 μm 
in spacing) after washing off the solvent DMSO with water. The SunBOT array 
with a 70% filling ratio was fabricated by the same method, but with a different 
mould. The SunBOT array was maintained floating at the water/air interface 
of a water reservoir inside a container placed on a precision scale (USS-DBS8). 

The light sources were illuminated on the SunBOT array with different oblique 
angles. The vapour generation was characterized by the mass reduction 
recorded by the precision scale. A detailed characterization method is given in 
Supplementary Section 3.

Simulation. The light tracking of the hydrogel pillar of the SunBOT is a 
transient multiphysics process that mainly involves a mass diffusion of water 
into and/or out of the gel, a large deformation of the gel network and a heat-
transfer process. To model this complicated behaviour, the nonlinear field 
theory that couples large deformation and mass diffusion and heat transfer 
theory were used and implemented in the environment of commercial  
multi-physics modelling software COMSOL. Details of the simulation  
methods are given in Supplementary Section 4.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding author upon reasonable request.
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