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Abstract

This paper investigates the possibility of tuning the optical properties of thin films by introducing nanopores with different shape, size, and
spatial distribution. The complex index of refraction of nanoporous thin films with various morphologies is determined for normally incident
transverse magnetic (TM) and transverse electric (TE) absorbing electromagnetic waves by numerically solving the two-dimensional Maxwell's
equations. The numerical results are compared with predictions from widely used effective medium approximations. For thin films with isotropic
morphology exposed to TM waves, good agreement is found with the parallel model. For thin films with anisotropic morphology, the numerical
results for TE waves are independent of the morphology and agree well with the Volume Averaging Theory model. By contrast, for incident TM
waves, the retrieved effective optical properties depend on both porosity and film morphology. These results can be used to design nanocomposite
materials with tunable optical properties and to determine their porosity and pore's spatial arrangement.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Nanoporous thin films have been studied extensively in
recent years [1–4]. Potential applications include dye-sensitized
solar cells [5–7], low-k dielectric materials [8,9], thermal barrier
coatings [10], catalysts [11], biosensors [12–14], and optical
devices such as waveguides [15–17], Bragg reflectors, and
Fabry–Perot filters [18–24]. In all the above applications,
understanding and predicting the effects of porosity as well as
pore shape, size, and spatial arrangement on optical properties
of nanoporous materials are essential for optimizing device
performance. Mesoporous silica thin films with cylindrical
nanopores and controlled inter-pore spacing can be synthesized
by calcinations of self-assembled surfactant micelles in a silica
precursor matrix as reported by Alberius et al. [3] among others.
Fig. 1 depicts a transmission electron microscopy (TEM) image
of the resulting hexagonal mesoporous silica thin film syn-
thesized in our laboratory with an inset clarifying the geometry

and dimensions. The pores are 4.12 nm in diameter, with inter-
pore spacing of 4.82 nm, and porosity estimated at 0.68.

Various effective medium approximations (EMA) have been
proposed to treat heterogeneous media as homogeneous with
some effective properties. The Maxwell–Garnett Theory
(MGT) [25] models the effective relative electrical permittivity
ɛr,eff of heterogeneous media consisting of monodispersed
metallic spheres in glass. The spheres are arranged in a cubic
lattice structure within a continuous matrix and their diameter is
much smaller than the wavelength of the incident electro-
magnetic (EM) wave. Then, ɛr,eff is expressed as,

er;eff ¼ er;c 1� 3/ er;c � er;d
� �

2er;c þ er;d þ / er;c � er;d
� �

" #
ð1Þ

where ɛr,c and ɛr,d are the dielectric constant of the continuous and
dispersed phases, respectively, and ϕ is the volume fraction
occupied by the dispersed phase. The MGT is not valid for
porosities greater than 52% since spheres begin to overlap.
However, it has been extensively used to determine effective
properties over the full range of porosities [26–30]. In addition,
for non-conducting particles, such as the dielectric spheres or
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cylinders, Eq. (1) is not valid. Nonetheless, it has been used for
non-conducting dispersed phase materials, non-spherical geome-
tries, and to model properties other than the effective dielectric
constant [28,29]. More recently, Grimvall [31] attempted to
account for non-spherical geometry through modification of the
MGT. Unfortunately, such a model is involved and/or requires
specific knowledge of the shape and orientation of the dispersed
phase.

The series and parallel models are examples of two other
commonly used models for predicting the effective electrical
dielectric constant [32,33], index of refraction [28,34], and both
thermal [10] and electrical conductivities [35] of two-phase
media. The parallel model states that the effective property ψeff

is a linear combination of the continuous and dispersed phases,
i.e.,

weff ¼ 1� /ð Þwc þ /wd ð2Þ
whereas the series model gives

1
weff

¼ 1� /
wc

þ /
wd

ð3Þ

On the other hand, the reciprocity theorem models the
effective property as [36],

weff ¼ wc

1þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wc=wd

p � 1
� �

1þ /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wd=wc

p � 1
� � ð4Þ

Alternatively, applying the Volume Averaging Theory (VAT)
to Maxwell's equations for arbitrarily shaped domains in a
continuous matrix predicts the effective dielectric constant
and effective electrical conductivity of a two-phase mixture as
[37,38],

er;eff ¼ 1� /ð Þer;c þ /er;d ð5Þ

reff ¼ 1� /ð Þrc þ /rd ð6Þ
where σc and σd are the electrical conductivity of the continuous
and dispersed phases, respectively. The authors discuss the
validity of these expressions in depth, and state a set of in-
equalities to be satisfied [37,38]. Garahan et al. [39] used Eqs. (5)
and (6) to derive the effective refraction and absorption indices of
a two-phase nanocomposite material as,

n2eff ¼
1
2

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

ph i
and k2eff ¼

1
2

�Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

ph i
ð7Þ

where

A ¼ er;eff ¼ / n2d � k2d
� �þ 1� /ð Þ n2c � k2c

� � ð8Þ

and

B ¼ kreff
2pc0e0

¼ 2ndkd/þ 2nckc 1� /ð Þ ð9Þ

Here, n and k respectively refer to the index of refraction and
absorption index of the continuous phase (subscript c) and of
the dispersed phase (subscript d). Unlike the other models, the
VAT model for neff and keff depends on the porosity ϕ and on
the real and imaginary parts of the complex index of refraction
(m=n− ik) of both the dispersed and continuous phases, i.e.,
neff=n(ϕ, nc, kc, nd, kd) [39]. In the limiting case of non-ab-
sorbing composite thin films (i.e., keff=kc=kd=0), the VATmodel
reduces to the Drude model given by neff

2 =ϕnd
2+(1−ϕ)nc2 [40].

Note that the above mentioned EMA do not account for the
polarization of the incident EM waves describing the direction of
the electric field with respect to the plane of incidence defined by
the Poynting vector and the normal vector of the surface onwhich
it is incident. In transverse electric (TE) plane waves, the electric
field is perpendicular to the plane of incidence while it is in that
plane for transverse magnetic (TM) plane waves. Any arbitrary
plane wave can be described as some combination of TE and TM
waves. For a dense homogeneous film, the normal vector of the
surface and the Poynting vector are collinear such that the plane of
incidence and hence polarization cannot be defined. For a
heterogeneous film such as that shown in Figs. 1 and 2, the surface
is cylindrical such that the normal vector is no longer collinear
with the Poynting vector allowing polarization to be defined that
causes changes in transmittance and reflectance.

Experimental data for the effective dielectric constant and
index of refraction of nanoporous media reported in the literature
for various materials, morphologies, porosities, and pore sizes
proves inconclusive for determining the best effective medium
model. For example, data reported by Loni et al. [15] for the
effective index of refraction of porous silicon, agrees with the
MGT model while data from Labbe–Lavigne et al. [28] for the
samematerial falls between the VATand parallel models. Data for
the effective dielectric constant of aerogels – an open-cell
mesoporous SiO2 thin film – measured by Hrubesh et al. [33]
follows the parallel model while data reported by Si et al. [32] for

Fig. 1. Transmission electron microscopy (TEM) image of hexagonal mesoporous
silica thin films with pore diameter D=4.12 nm and porosity ϕ=0.68.
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closed-cell morphology SiO2 thin films are best described by the
series model. Given the considerable contradictions among
experimental studies noted above, a numerical approach is
considered to assess the validity of the EMA.

Furthermore, For TEplanewaves incident on a nanocomposite
thin film, the effective index of refraction neff and the effective
absorption index keff determined from the VAT model agree well
with the numerical predictions of transmittance and reflectance
for non-absorbing [41] and absorbing [39] media while the other
models underpredict the numerical results. The results were
obtained for normally incident TE EM plane waves traveling
through (i) dielectric matrix with metallic nanowires as well as
(ii) nanoporous silicon dioxide (SiO2) and (iii) titanium dioxide
(TiO2) thin films consisting of aligned and equally spaced
cylindrical nanopores or nanowires with various diameterD, film
thickness L, porosity ϕ, and spatial distribution. Moreover, for
thick enough films L/D≥150, the effective index of refraction
depends only on porosity and on the optical properties of the two
constitutive phases [39,41]. In other words, the effective optical
properties do not depend on pore shape, size, and spatial dis-
tribution [41].

The present study investigates the effective index of refrac-
tion neff and the effective absorption index keff of nanoporous

thin films with isotropic and anisotropic morphology comprised
of horizontally aligned cylindrical nanopores with varying
diameters and porosities for incident TM plane waves.
Maxwell's equations are solved numerically to determine the
spectral normal-normal transmittance and reflectance, from
which, the effective index of refraction neff and the effective
absorption index keff can be retrieved. In addition, comparisons
are made with (i) various EMA and (ii) results obtained from
TE plane waves [39]. This study is limited to non-magnetic
materials whose relative magnetic permeability, μr, is unity, i.e.,
μr,c=μr,d=μr,eff=1.

2. Analysis

2.1. Governing equations and numerical implementation

Fig. 2 illustrates the physical model of the nanocomposite thin
film, along with the associated coordinate system, boundary
conditions, and finite element grid. The model corresponds to a
nanoporous thin film with three cylindrical pores with diameter
D=10 nm and cubic cell width W of 20 nm corresponding to a
porosity ϕ=πD2/4W 2=0.1963. Note that the model in Fig. 2 is
illustrative only with three pores i.e., L/D=6. However, actual
numerical computations are performed for a much larger number
of pores (L/D≥150), different porosities, and varying pore spatial
arrangement. Both continuous (mc=nc− ikc) and dispersed
(md=nd− ikd) phases are assumed to be homogenous and
isotropic and to have the same optical properties as the bulk
material. The thin film is deposited onto a non-absorbing dense
substrate (medium 3, n3, k3=0) and surrounded by vacuum
(medium 1, n1=1.0, k1=0). The nanocomposite thin film is
treated as homogeneous (medium 2) with some effective op-
tical properties neff and keff. A linearly polarized plane wave in
TMmode is incident normal to the top surface of the absorbing
thin film and travels in the x-direction through the two-
dimensional thin film with the following general time-har-
monic form,

H
Y

x; y; tð Þ ¼ Hz x; yð Þeixt eYz and

E
Y

x; y; tð Þ ¼ Ex x; yð Þ eYx þEy x; yð Þ eYy
h i

eixt

ð10Þ

whereH
Y
is the magnetic field vector, E

Y
is the electric field vector

while eYx, eYy, and eYz are the unit vectors, and ω=2πc0/λ is the
angular frequency of the wave. Maxwell's equations for general
time-varying fields in a conducting medium are given by [42],

j� 1
ArA0

j� E
Y

x; y; tð Þ
� �

� x2e4r e0 E
Y

x; y; tð Þ ¼ 0 ð11Þ

j� 1
e4r e0

j� H
Y

x; y; tð Þ
� �

� x2ArA0 H
Y

x; y; tð Þ ¼ 0 ð12Þ

where μ0 is the magnetic permeability of vacuum, μr is the
relative magnetic permeability, and ɛr⁎=m

2 =n2−k2− i2nk is the

Fig. 2. Schematic of the physical model for the absorbing nanocomposite
thin film, graphically depicting the location of the boundary conditions and
the finite element mesh. Here, ϕ=0.1963 and L/D=6. Note that actual
computations are performed for L/D≥150, different porosities and pore spatial
arrangement.
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complex dielectric constant. Maxwell's equations for TM
waves are subject to the following boundary conditions,

n
Y� EY1 �EY2

� � ¼ 0
Y

ð13Þ
at dispersed � continuous phase interfaces,

n
Y� E

Y ¼ 0
Y

ð14Þ
at symmetry boundaries,ffiffiffiffiffiffiffiffiffi
ArA0

p
H
Y� ffiffiffiffiffiffiffiffi

e0e⁎r
p

nY� E
Y� �

¼ 0
Y ð15Þ

at the film � substrate interface

ffiffiffiffiffiffiffiffi
e0e⁎r

p
nY� E

Y� �
� ffiffiffiffiffiffiffiffiffi

A0Ar
p

H
Y ¼ �2

ffiffiffiffiffiffiffiffiffi
A0Ar

p
HY0

at the source surface

ð16Þ

where nY is the normal vector to the appropriate interface, EY1 and
EY2 represent the electric fields in the surroundings and in
the film, respectively, and HY0 = H0 e

Y
z is the incident magnetic

field specified at the source surface (top surface of medium 1).
Eq. (13) is used at all continuous/dispersed phase interfaces
including the thin film top surface and the matrix/pore
interfaces. Finally, it is important to note that Maxwell's
equations are generally applied to macroscopic averages of the
fields which can vary widely in the vicinity of individual atoms
where they undergo quantum mechanical effects.

Moreover, the energy flux of the EM wave corresponds to the
magnitude of the Poynting vector pY, defined as, pY ¼ E

Y �H
Y
[42].

The x-component of the time-averaged Poynting vector at a given
point in space (x, y) averaged over the period 2π/ω for the time-
harmonic field is, jpxjavg x; yð Þ ¼ 1

2 Re EY �H
Y4

n o
[42], whereHY4

is the complex conjugate of HY given by Eq. (10). The numerically
calculated transmittance Tnum is determined by dividing the value
of the x-component of the Poynting vector averaged along the film-
substrate interface and denoted by |πx,t|avg by the incident average
Poynting vector |πx,0|avg, i.e., Tnum=|πx,t|avg|/|πx,0|avg. Likewise, the
numerically retrieved reflectance Rnum is computed by taking the
ratio of the x-component of the Poynting vector averaged along
the top boundary of the film denoted by |πx,r|avg to the incident
average Poynting vector, i.e., Rnum= |πx,r|avg|/|πx,0|avg.

Finally, FEMLAB 3.1 was used to numerically solve
Maxwell's equations in two-dimensions in the frequency
domain for a TM incident wave applying the Galerkin finite
element method on unstructured meshes.

2.2. Retrieval of effective complex index of refraction

The effective complex index of refraction is retrieved by
minimizing the root mean square of the relative error for
transmittance δT and reflectance δR given as,

dT2 ¼ 1
N

XN
i¼1

Tth kið Þ � Tnum kið Þ
Tth kið Þ

� �2
and

dR2 ¼ 1
N

XN
i¼1

Rth kið Þ � Rnum kið Þ
Rth kið Þ

� �2
ð17Þ

where Tth(λi) and Rth(λi) correspond to EM wave theory
predictions atN different incident wavelengths λi. The theoretical
transmittance and reflectance for a homogeneous and isotropic
thin film (medium 2) on a solid substrate (medium 3) surrounded
by air (medium 1) can be expressed as [42],

Tth kð Þ ¼ s12s23e�j2L

1þ 2r12r23e�j2L cos d12 þ d23 � f2ð Þ þ r212r
2
23e

�2j2L

ð18Þ

Rth kð Þ ¼ r212 þ 2r12r23e�j2L cos d12 � d23 þ f2ð Þ þ r223e
�2j2L

1þ 2r12r23e�j2L cos d12 þ d23 � f2ð Þ þ r212r
2
23e

�2j2L

ð19Þ
where

r2ij ¼
ni � nj
� �2þ ki � kj

� �2
ni þ nj
� �2þ ki þ kj

� �2 ; sij ¼ ni
nj

4 n2i þ k2i
� �

ni þ nj
� �2þ ki þ kj

� �2
tan dij ¼

2 nikj � njki
� �

n2i þ k2i � n2j þ k2j
� � ; j2 ¼ 4pk2=k; and f2 ¼ 4pn2L=k

ð20Þ

The Microsoft Excel Solver was utilized in finding the
optimum effective index of refraction neff and effective ab-
sorption index keff by minimizing δR and δT given by Eq. (17).
Note that these equations are valid provided that (i) all interfaces
are optically smooth, (ii) non-linear optical effects, and
(iii) surface waves can be ignored. This is the case in this study.

Moreover, scattering of the EM wave by the pores is
negligible since the size parameter χ=πD/λ in the present study
varies between 0.003 and 0.079, i.e., χbb1. In other words, the
nanoporous thin films considered in the presented study are
treated as homogeneous and non-scattering. These assumptions
have been verified quantitatively using the numerical results
and will be discussed after validating the numerical procedure.
For qualitative arguments, it is instructive to consider the well-
known limiting case of a spherical scatterer in a non-absorbing
medium such that χbb1. Then, Rayleigh scattering prevails
and the scattering and absorption efficiency factors denoted by
Qsca(χ) and Qabs(χ) are proportional to χ4 and χ, respectively
so that QabsNNQsca [42,43]. In addition, Yin and Pilon [44]
showed that for a non-absorbing spherical bubble (md=1.0)
with size parameter χbb1 embedded in an absorbing matrix
(mc=1.34− i0.01), the absorption and scattering efficiency
factors predicted by far field or near field approximations
accounting for absorption by the surrounding medium are nearly
identical to those predicted by the conventional Mie theory.

2.3. Validation of the numerical procedure and retrieval
method

The numerical model was validated with a dense homo-
genous thin film (n2=1.4, k2) deposited on a non-absorbing
silicon substrate (n3=3.39, k3=0) in air (n1=1.0, k1=0). The
normal transmittance and reflectance were computed as a
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function of wavelength between 400 and 900 nm for both a non-
absorbing (k2=0) and absorbing (k2=0.01) thin film of
thickness L=2.0 μm. The numerical results for transmittance
and reflectance agree with theoretical predictions from Eqs. (18)
and (19). For the non-absorbing thin film, the maximum relative
difference between the theoretical and numerical transmittance
and reflectance was 0.3% and 0.021%, respectively while for
the absorbing thin film, the maximum relative difference was
0.1% and 1.1%, respectively. Note also that, under normal
incidence, the transmittance and reflectance of a homogeneous
and isotropic thin film are identical for TE and TM incident
waves. Indeed, the plane of incidence and therefore polarization
cannot be defined when the normal vector and the incident
Poynting vector are collinear. This was verified numerically as a
way to further validate the numerical procedure.

Validation of the retrieval method was performed for the
same films. For the absorbing thin film, the inverse method
returned the effective index of refraction neff=1.39996 and the
effective absorption index keff=0.00994 which are within
2.9×10−3% and 0.6% of the input values, respectively while
for the non-absorbing thin film, neff=1.39998 fell within
1.1×10−3% of the input value. Therefore, the numerical simu-
lation and the above inverse method can be used to determine
the effective complex index of refraction for nanocomposite
thin films for TM polarization.

Finally, the assumption that scattering by the pores is neg-
ligible was numerically validated for all simulations. First, for a
given thin film, the x-component of the Poynting vector along
the film-substrate interface |πx,t| is always within 3% of its
average value |πx,t|avg. In addition, the amplitude of the y-
component of the time-averaged Poynting vector averaged
along the film-substrate interface, is negligible compared with
its x-component as the ratio |πy,t|avg/|πx,t|avg is between
2.4×10−3 and 5.6×10−2. In other words, it is established
numerically that |πx,t|avg>> |πy,t|avg.

3. Results and discussion

3.1. EMA for TM waves

First, the effect of film thickness L on the effective complex
index of refraction was considered for an imaginary nanoporous
thin film with nc=4.0, kc=0.01, nd=1.0, and kd=0 over the
visible spectrum from 400 to 900 nm. For a constant pore
diameter D=5 nm, film thickness L was varied between
0.75 μm and 2 μm corresponding to a L/D ratio between 150
and 400. Fig. 3 shows the retrieved effective index of refraction
neff and the effective absorption index keff as a function of
porosity ϕ for the imaginary nanoporous thin films previously
described. A numerically converged solution was obtained
with more than 50,000 triangular meshes for 250 wavelengths
with a 2 nm increment. The maximum difference in neff and keff
for L/D=300 and L/D=400 were 9.9×10−3% and 0.9%, res-
pectively. Thus, the effective optical properties neff and keff are
independent of L/D as previously observed for TE waves [39,41].

Moreover, the effect of pore diameter D on the effective
complex index of refraction was investigated for the same

imaginary nanoporous thin film defined in the previous
paragraph by holding L/D and ϕ fixed at 400 and 0.1,
respectively, while varying pore diameter D between 1 and
10 nm. For D equal to 1, 5, and 10 nm, the recovered effective
index of refraction neff was 3.6361, 3.6624, and 3.6406,
respectively while the recovered effective absorption index keff
was 0.0090, 0.0089, and 0.0088, respectively. This corresponds
to a maximum relative error in the retrieved neff and keff of 0.7%
and 2.7%, respectively. Therefore, the effective optical proper-
ties are considered to be independent of both the pore dia-
meter and the film thickness for D between 1 and 10 nm and
L/D≥300.

Furthermore, the above imaginary nanoporous thin films
were examined to assess the validity of the various EMA for
TM waves. With a continuous phase index of refraction nc=4.0,

Fig. 3. Effective complex index of refraction as a function of porosity for TM
waves incident on thin films with nc=4.0, kc=0.01, nd=1.0, kd=0, D=5 nm,
L/D=150, 300, and 400.
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the relative difference between the various effective medium
models for neff and keff can reach up to 46.0% and 72.7%,
respectively. This large difference allows for closer examination
and validation of the effective medium models for TM waves.
Fig. 3 establishes that the numerical predictions for neff and keff
agree well with the parallel model predicting neff=ϕnd+(1−ϕ)nc
and keff=ϕkd+(1−ϕ)kc. Indeed, the maximum relative error
between the numerical results and the predictions from the
parallel model for neff and keff was 4.3% and 1.6%, respectively.
The VAT and the Drude model overpredict the numerical results
while theMGT, reciprocity, and series models underpredict them.

Finally, applying the VAT to Maxwell's equations in two-
phase media introduces additional surface integral terms in
the volume averaged Maxwell's equations [38]. One can treat
a heterogeneous medium as homogeneous and solve the
Maxwell's equations for a single phase medium with some
effective properties only when these additional terms are
negligible, i.e., when the electric, magnetic, and electrodynamic
equilibria conditions are satisfied concurrently [37,38]. Mag-
netic equilibrium is always satisfied for non-magnetic materials
while electric equilibrium is satisfied for dielectric materials.
For TE waves, the surface integral terms (Eqs. (22) to (29) in
Ref.[38]) either vanish or cancel each other thanks to the
orientation of the electric and magnetic fields with respect to the
normal vector of the interfaces between the continuous and
dispersed phases. Therefore, the VAT is always valid for TE
waves traveling through non-magnetic nanocomposite materials
[38]. However, for TM waves, electrodynamic equilibrium is
not satisfied and thus the VAT model is not valid.

3.2. Comparison between TM and TE waves

Having established in the previous section that the effective
index of refraction neff and the effective absorption index keff
are independent of pore diameter D and of film thickness L over
the given range of L/D, comparisons between TM and TE
waves can now be made. Previously, TE waves were simulated
for absorbing nanoporous thin films for various porosities, film
thicknesses, pore sizes, and arrangements [39]. The present
study investigates the same thin films exposed to TM wave as
opposed to TE wave. Here also, the continuous phase is defined
with constant nc=1.44 and kc=0.01 over the spectral range
from 400 to 900 nm while nd=n1=1.0, kd=k1=k3=0, and
n3=3.39. Porosity ϕ varies from 0 to 0.7 for a given pore
diameter by altering the cubic cell dimensions. In all cases, a
numerically converged solution was obtained with more than
50,000 triangular meshes for 250 wavelengths between 400 and
900 nm. Fig. 4 compares the effective index of refraction neff
and absorption index keff for TM waves with various effective
medium models and previous results obtained for incident TE
waves [39] as a function of porosity ϕ. The series and recipro-
city models are excluded for the effective absorption index keff
since kd=0. As expected, neff and keff decrease with increasing
porosity. Results from Ref.[39] shows that the VAT model
agrees well with the numerical results for TE waves. For TM
waves, the maximum relative error between the numerical
results and the predictions from the parallel model for neff and

keff was 1.4% and 14.3%, respectively. It is also worth noticing
that the maximum difference between the different models is
only 4.7% for neff and 49.6% for keff. Thus, the parallel model
gives good predictions for TM waves. However, unlike the case
illustrated in Fig. 3, the MGT and reciprocity models appear
also acceptable for neff. For this reason, an imaginary thin film
with a higher continuous phase index of refraction nc=4.0 was
chosen in Section 3.1 in order to increase the maximum
difference between the effective medium models and identify
the best model for TM waves.

3.3. Effect of anisotropy on effective optical properties

In order to study the effect of pore spatial arrangement
on effective optical properties, thin films with anisotropic

Fig. 4. Effective complex index of refraction as a function of porosity for TE
[39] and TM waves incident on nanoporous thin films with nc=1.44, kc=0.01,
nd=1.0, kd=0, D=10 nm, and L/D=300.
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morphology were examined by varying the distance between
pores in the x-and y-directions (see Fig. 2). Fig. 5 illustrates the
physical model of absorbing nanocomposite thin films with
anisotropic morphology and various aspect ratios a/b where a
and b refer to the vertical and horizontal distance between
pores, respectively. Note that a/b=1 corresponds to a thin film
of isotropic morphology where the distance between pores is the
same in all directions. For optically anisotropic thin films, the
index of refraction and absorption index in the principle directions
i.e., neff,x, neff,y, neff,z, keff,x, keff,y, and keff,z, can be determined
from the theory presented byHeavens [45] (pp. 92–95). Applying
this theory to a non-absorbing thin film with a/b=0.4, nc=4.0,
nd=1.0, kc=kd=0, D=5 nm, L/D=300, and ϕ=0.4 returns
values for neff,x, neff,y, and neff,z within 0.6% of each other and
within 0.3% of neff predicted for an isotropic thin film. These
results justify characterizing heterogeneous thin films with
anisotropic morphology consisting of small pores as optically
isotropic and homogeneous with some effective optical proper-
ties. Thus, the retrieval method previously described can be
employed.

Fig. 6 shows the effective index of refraction neff and the
effective absorption index keff as functions of aspect ratio a/b
for both TE and TM waves incident on the nanoporous thin
films depicted in Fig. 5 and constant porosity ϕ of 0.4. The
solid vertical lines at a/b=0.51 and a/b=1.96 correspond to
lower and upper bounds of thin films with closed pores. For a/b
outside this interval, pores intersect with one another and are no
longer closed. Here also, a numerically converged solution was
obtained with more than 50,000 triangular meshes for 250
wavelengths with a 2 nm increment.

For TE waves, the maximum differences for the retrieved
effective index of refraction neff and the effective absorption
index keff are 0.22% and 0.11%, respectively as a/b varies from
zero to infinity. Furthermore, the relative errors between the
numerical data and the VAT model for neff and keff are 0.65%
and 1.0%, respectively. The small variations in neff and keff can
be attributed to numerical uncertainties in the values of Tnum
and Rnum and in the retrieval method. In brief, for TE
polarization, the effective optical properties are independent
of the pore spatial arrangement. They depend only on porosity
and are in good agreement with the VAT model. This can be
attributed to the fact that the normal vector of all cylindrical
pores simulated (see Fig. 2) is confined to the x–y plane and is
always perpendicular to the electric field of a TE polarized plane
wave, i.e., YE=Ez

Yez. Thus, polarization has no effect on
reflection and refraction across the interface.

In contrast, for TM waves, the effective index of refraction
neff and the effective absorption index keff increase with
increasing a/b. As a/b goes to infinity, neff and keff converge
to the numerical values found for TE polarization which
matches the VAT model predictions. Indeed, as a/b tends to
infinity, the morphology of the thin film approaches that of a
superlattice consisting of alternating thin films of continuous
and dispersed phases for which the normal vectors of all
interfaces are collinear with the Poynting vector. Then, the plane
of incidence and thus, the polarization cannot be defined.
However, for a/b ratios other than infinity, the normal vector of
the continuous-dispersed interfaces is not collinear to the
Poynting vector at all points around the cylindrical pores. Thus,
while the nanoporous thin film can be treated as optically

Fig. 5. Absorbing anisotropic nanoporous thin films with various 2D cross sections where a and b refer to the vertical and horizontal distance between pores,
respectively.
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isotropic and homogeneous, the presence of an interface and the
morphology causes different behavior for TE and TM polari-
zations. This is not observed for dense thin films as previously
discussed and as observed numerically. Finally, when a/b=0,
none of the effective medium models predict the effective
optical properties.

Finally, this study shows that the effective optical properties
of nanocomposite thin films can be tuned by changing not only
the porosity but also the pore spatial arrangement. The relatively
steep slope in Fig. 6 for neff and keff for a/b between 0.4 and 2.0
also indicates that small changes in pore spatial distribution lead
to large changes in the effective optical properties. Thus, mea-
suring the transmittance and reflectance of nanocomposite
materials for TM waves can provide a non-invasive optical

method to determine their morphology. Simultaneously, TE
waves can be used to measure the film porosity. This can also
explain or reconcile discrepancies in the experimental data
reported in the literature and reaching contradictory conclusions
regarding the validity of EMA [46].

4. Conclusions

This paper numerically assesses the effect of porosity and
pore shape, size, and spatial distribution on the effective optical
properties of nanocomposite thin films exposed to TM or TE
waves. Porosity was varied from 0 to 0.7 and pore diameter
between 1 and 10 nm. Finally, thin films with anisotropic
morphologies were examined by varying the interpore distances
in the plane of incidence. The effective complex index of
refraction meff=neff− ikeff was retrieved from the transmittance
and reflectance computed from the time-harmonic field solution
of Maxwell's equations over the spectrum between 400 nm and
900 nm. The effective index of refraction neff and the effective
absorption index keff were determined to be independent of pore
diameter D and film thickness L for L/D≥300. For TE incident
waves, neff and keff depend only on porosity and good
agreement was found with predictions from the VAT model
[39]. For TM waves, the effective optical properties depend on
both pore spatial arrangement and porosity. For equally spaced
pores, both neff and keff for TM waves are in good agreement
with predictions from the parallel model. These results extend
our previous studies [39] from TE to TM polarizations and serve
in the design of nanocomposite materials with tunable optical
properties. Finally, they also indicate that the film porosity
could be measured from transmittance and reflectance data for
TE waves while the morphology could be retrieved from TM
wave measurements.

Nomenclature
A Dimensionless parameter, Eq. (8)
a Distance between pores in the y-direction
B Dimensionless parameter, Eq. (9)
b Distance between pores in the x-direction
c Speed of light
D Pore diameter
EY Electric field vector
eY Unit vector
H
Y

Magnetic field vector
k Absorption index
L Thickness of the thin film
m Complex index of refraction, m = n − ik
n Real part of complex index of refraction
nY Normal vector
N Number of wavelengths considered
Q Efficiency factor
R Reflectance
r Interface reflectivity
T Transmittance
t Time
W Cubic cell width
x, y, z Spatial coordinates

Fig. 6. Effective complex index of refraction as a function of aspect ratio (a/b)
for TE and TM waves incident on thin films with nc=4.0, kc=0.01, nd=1.0,
kd=0, D=5 nm, ϕ=0.4, and L/D=300.
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Greek symbols
χ Size parameter
δ Phase angle
ε Dielectric constant
ϕ Porosity
κ Absorption coefficient
λ Wavelength
μ Magnetic permeability
pY Poynting vector
σ Electrical conductivity
τ Interface transmissivity
ω Angular frequency
ψ General property
ζ Dimensionless parameter, Eq. (20)

Subscripts
0 Refers to vacuum, or an incident wave
1 Refers to surroundings in thin-film system
2 Refers to thin-film
3 Refers to substrate
abs Refers to absorption
avg Refers to time averaged value
c Refers to continuous phase
d Refers to dispersed phase
eff refers to effective property
i Refers to medium i or summation index
j Refers to medium j or summation index
max Refers to a maximum value
num Refers to numerical result
r Refers to relative property
sca Refers to scattering
th Refers to theoretical calculation
x Refers to x-direction
y Refers to y-direction
z Refers to z-direction
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