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1 Vectors

1.1 Average and norm. Use the Cauchy–Schwarz inequality to prove that

− 1√
n
‖x‖ ≤ 1

n

n∑

i=1

xi ≤
1√
n
‖x‖

for all n-vectors x. In other words, − rms(x) ≤ avg(x) ≤ rms(x). What are the conditions on x to have
equality in the upper bound? When do we have equality in the lower bound?

1.2 Use the Cauchy–Schwarz inequality to prove that

1

n

n∑

k=1

xk ≥
(
1

n

n∑

k=1

1

xk

)−1

for all n-vectors x with positive elements xk. The left-hand side of the inequality is the arithmetic mean
(average) of the numbers xk; the right-hand side is called the harmonic mean.

1.3 Cauchy–Schwarz inequality for complex vectors. Extend the proof of the Cauchy–Schwarz inequality on
page 57 of the textbook to complex vectors, i.e., show that |bHa| ≤ ‖a‖‖b‖ holds for all complex n-vectors
a, b. What are the conditions on a and b to have equality |aHb| = ‖a‖‖b‖?
Hint. Define γ = arg(bHa) (where arg denotes phase angle), so that bHa = |bHa|ejγ , and start from the
inequality 0 ≤ ‖βa− αejγb‖2, where α = ‖a‖ and β = ‖β‖.

1.4 Decoding using inner products. An input signal is sent over a noisy communication channel. The channel
attenuates the input signal by an unknown factor α and adds noise to it. We represent the input signal as an
n-vector u, the output signal as an n-vector v, and the noise signal as an n-vector w. Therefore v = αu+w,
where the elements uk, vk, wk of the three vectors give the values of the signals at time k. The two plots
below show an example with α = 0.5.
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Suppose we know that the input signal u was chosen from a set of four possible signals x(1), x(2), x(3), x(4).
We know these signals x(i), but we don’t know which one was used as input signal u. A simple method for
estimating the input signal, based on the received signal v, is to calculate the angles between v and x(k) and
pick the signal x(k) that makes the smallest angle with v.

Download the file decoding.m from the class webpage, save it in your working directory, and execute it in
MATLAB using the command [x1, x2, x3, x4, v] = decoding. The first four output arguments are the
possible input signals x(k), k = 1, 2, 3, 4. The fifth output argument is the received (output) signal v. The
length of the signals is n = 200.

(a) Plot the vectors v, x(1), x(2), x(3), x(4). Visually, it should be obvious which input signal was used to
generate v.
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(b) Calculate the angle θk of v with each of the four signals x(k). Which signal x(k) makes the smallest
angle with v? Does this confirm your conclusion in part (a)?

1.5 Multiaccess communication. A communication channel is shared by several users (transmitters), who use it
to send binary sequences (sequences with values +1 and −1) to a receiver. The following technique allows
the receiver to separate the sequences transmitted by each transmitter. We explain the idea for the case
with two transmitters.

We assign to each transmitter a different signal or code. The codes are represented as n-vectors u and v: u
is the code for user 1, v is the code for user 2. The codes are chosen to be orthogonal (uT v = 0). The figure
shows a simple example of two orthogonal codes of length n = 100.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

k

u
k

0 20 40 60 80 100
−1

−0.5

0

0.5

1

k

v k

Suppose user 1 transmits a binary sequence b1, b2, . . . , bm (with values bi = 1 or bi = −1), and user 2
transmits a sequence c1, c2, . . . , cm (with values ci = 1 or ci = −1). From these sequences and the user
codes, we construct two signals x and y, both of length mn, as follows:

x =




b1u
b2u
...

bmu


 , y =




c1v
c2v
...

cmv


 .

(Note that here we use block vector notation: x and y consist of m blocks, each of size n. The first block of
x is b1u, the code vector u multiplied with the scalar b1, etc.) User 1 sends the signal x over the channel,
and user 2 sends the signal y. The receiver receives the sum of the two signals. We write the received signal
as z:

z = x+ y =




b1u
b2u
...

bmu


+




c1v
c2v
...

cmv


 .

The figure shows an example where we use the two code vectors u and v shown before. In this example
m = 5, and the two transmitted sequences are b = (1,−1, 1,−1,−1) and c = (−1,−1, 1, 1,−1).
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How can the receiver recover the two sequences bk and ck from the received signal z? Let us denote the first
block (consisting of the first n values) of the received signal z as z(1): z(1) = b1u+ c1v. If we make the inner
product of z(1) with u, and use the fact that uT v = 0, we get

uT z(1) = uT (b1u+ c1v) = b1u
Tu+ c1u

T v = b1‖u‖2.

Similarly, the inner product with v gives

vT z(1) = vT (b1u+ c1v) = b1v
Tu+ c1v

T v = c1‖v‖2.

We see that b1 and c1 can be computed from the received signal as

b1 =
uT z(1)

‖u‖2 , c1 =
vT z(1)

‖v‖2 .

Repeating this for the other blocks of z allows us to recover the rest of the sequences b and c:

bk =
uT z(k)

‖u‖2 , ck =
vT z(k)

‖v‖2 ,

if z(k) is the kth block of z.

Download the file multiaccess.m from the class webpage, and run it in MATLAB as [u,v,z] = multiaccess.
This generates two code vectors u and v of length n = 100, and a received signal z of length mn = 500.
(The code vectors u and v are different from those used in the figures above.) In addition we added a small
noise vector to the received signal z, i.e., we have

z =




b1u
b2u
...

bmu


+




c1v
c2v
...

cmv


+ w

where w is unknown but small compared to u and v.

(a) Calculate the angle between the code vectors u and v. Verify that they are nearly (but not quite)
orthogonal. As a result, and because of the presence of noise, the formulas for bk and ck are not correct
anymore. How does this affect the decoding scheme? Is it still possible to compute the binary sequences
b and c from z?

(b) Compute (b1, b2, b3, b4, b5) and (c1, c2, c3, c4, c5).
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1.6 Distance between two lines. Consider two lines

L1 = {a+ tb | t ∈ R}, L2 = {c+ sd | s ∈ R}.
The vectors a, b, c, d are given n-vectors with b 6= 0, d 6= 0. The distance between L1 and L2 is the minimum
of ‖(a+ tb)− (c+ sd)‖ over all values of s, t ∈ R. Derive a formula for this distance in terms of a, b, c, d.

1.7 Regression line. Let a, b be two real n-vectors. To simplify notation we write the vector averages as

ma = avg(a) =
1T a

n
, mb = avg(b) =

1T b

n
,

and their standard deviations as

sa = std(a) =
1√
n
‖a−ma1‖, sb = std(b) =

1√
n
‖b−mb1‖.

We assume the vectors are not constant (sa 6= 0 and sb 6= 0) and write the correlation coefficient as

ρ =
1

n

(a−ma1)
T (b−mb1)

sasb
.

In lecture 2, we considered the problem of fitting a straight line to the points (ak, bk), by minimizing

J =
1

n

n∑

k=1

(c1 + c2ak − bk)
2 =

1

n
‖c11+ c2a− b‖2.

We found that the optimal coefficients are c2 = ρsb/sa and c1 = mb −mac2. Show that for those values of
c1 and c2, we have J = (1− ρ2)s2b .

1.8 Orthogonal distance regression. We use the same notation as in exercise 1.7: a, b are non-constant n-vectors,
with means ma, mb, standard deviations sa, sb, and correlation coefficient ρ.

x

y

y = c1 + c2x(ak, bk)

ek

dk

For each point (ak, bk), the vertical deviation from the straight line defined by y = c1 + c2x is given by

ek = |c1 + c2ak − bk|.
The least squares regression method of the lecture minimizes the sum

∑
k e

2
k of the squared vertical deviations.

The orthogonal (shortest) distance of (ak, bk) to the line is

dk =
|c1 + c2ak − bk|√

1 + c22
.

As an alternative to the least squares method, we can find the straight line that minimizes the sum of the
squared orthogonal distances

∑
k d

2
k. Define

J =
1

n

n∑

k=1

d2k =
‖c11+ c2a− b‖2

n(1 + c22)
.
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(a) Show that the optimal value of c1 is c1 = mb −mac2, as for the least squares fit.

(b) If we substitute c1 = mb −mac2 in the expression for J , we obtain

J =
‖c2(a−ma1)− (b−mb1)‖2

n(1 + c22)
.

Simplify this expression and show that it is equal to

J =
s2ac

2
2 + s2b − 2ρsasbc2

1 + c22
.

Set the derivative of J with respect to c2 to zero, to derive a quadratic equation for c2:

ρc22 +

(
sa
sb

− sb
sa

)
c2 − ρ = 0.

If ρ = 0 and sa = sb, any value of c2 is optimal. If ρ = 0 and sa 6= sb the quadratic equation has a
unique solution c2 = 0. If ρ 6= 0, the quadratic equation has a positive and a negative root. Show that
the solution that minimizes J is the root c2 with the same sign as ρ.

(c) Download the file orthregdata.m and execute it in MATLAB to create two arrays a, b of length 100.
Fit a straight line to the data points (ak, bk) using orthogonal distance regression and compare with
the least squares solution. Make a MATLAB plot of the two lines and the data points.

Julia users can import the data using the command include("orthregdata.m").

1.9 Distance between parallel hyperplanes. Consider two hyperplanes

H1 = {x ∈ Rn | aTx = b}, H2 = {y ∈ Rn | aT y = c},

where a is a nonzero n-vector, and b and c are scalars. The hyperplanes are parallel because they have the
same coefficient vectors a. The distance between the hyperplanes is defined as

d = min
x∈H1

y∈H2

‖x− y‖.

Which of the following three expressions for d is correct? Explain your answer.

(a) d = |b− c|, (b) d =
|b− c|
‖a‖ , (c) d =

|b− c|
‖a‖2 .

1.10 The k-means algorithm. In this exercise we apply the k-means algorithm to the example in §4.4.1 of the
textbook. We first describe the problem assuming you use MATLAB or Octave, and then comment on the
differences for Julia at the end of the problem.

Download the file mnist_train.mat from the course website and load it in MATLAB or Octave using the
command load mnist_train. This creates two variables: a 784 × 60000 matrix digits and a 1 × 60000
matrix labels. We will not need labels. Each column of digits is a 28 × 28 grayscale image, stored as
a vector of length 282 = 784 with elements between 0 and 1 (0 denotes a black pixel and 1 a white pixel).
Figure 4.6 in the book shows the first 25 images. To display the image in the ith column of digits you can
use the commands

X = reshape(digits(:,i), 28, 28);

imshow(X);

The first line converts column i of digits to a 28× 28 matrix. The second command displays the matrix as
an image. To speed up the computations we will use only the first 10000 digits:
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digits = digits(:, 1:10000);

You are asked to apply the k-means algorithm to this set of N = 10000 vectors, with k = 20 groups, and
starting from a random initial group assignment (as opposed to starting from 20 randomly generated group
representatives, as in Algorithm 4.1 (page 72–73).

In the following list of MATLAB hints and comments we assume that the 20 group representatives are stored
as columns of a 784× 20 matrix Z, and that the group assignment is represented by a 1× 10000 matrix (i.e.,
row vector) group. The ith element group(i) is an integer between 1 and 20, with the index of the group
that column i of digits is assigned to.

• You can create an initial group assignment using the randi function:

group = randi(20, 1, 10000);

This generates a pseudorandom 1× 10000 matrix of integers between 1 and 20.

• Since we start from a random partition, the order of the two steps in algorithm 4.1 is switched. The
first step in each cycle is to compute the group representatives for the current assignment. We can find
the columns of digits that are assigned to group i using the function find. The command

I = find(group == i);

defines an index vector I such that digits(:,I) is the submatrix of digits with the columns assigned
to class i. To find the average of the columns in this matrix, you can use for-loops, or the MATLAB
functions sum or mean. (Be sure to look up what sum or mean do when applied to a matrix; see help sum

and help mean.)

• We evaluate the quality of the clustering using the clustering objective

J =
1

N

N∑

i=1

min
j=1,...,k

‖xi − zj‖2.

The algorithm is terminated when J is nearly equal in two successive iterations (e.g., we terminate
when |J − Jprev| ≤ 10−5J , where Jprev is the value of J after the previous iteration).

• After running the k-means algorithm you can display the representative vectors of the 20 groups as
follows:

for k=1:20

subplot(4,5,k)

imshow(reshape(Z(:,k), 28, 28));

end

This produces a figure similar to figures 4.8 and 4.9 in the textbook. Your results will be different
because figures 4.8 and 4.9 were computed using the full set of 60000 digits and, moreover, the result
of the k-means algorithm depends on the starting point.

• Include the code and a figure of a typical set of group representatives with your solution.

Comments for Julia users. Julia users can install and use the MAT package to read the MATLAB data
file and the ImageView package to display the images. For example, the following code creates a 784×10000
array digits with the first 10000 digits in the set and an array labels with the corresponding labels, and
then shows the first ten images.

julia> using MAT, ImageView

julia> f = matopen("mnist_train.mat");

julia> labels = read(f, "labels");
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julia> labels = labels[1:10000];

julia> digits = read(f, "digits");

julia> digits = digits[:, 1:10000];

julia> imshow(reshape(digits[:, 1:10], (28, 280)));

The code for the k-means algorithm on page 34 in the Julia Language Companion on the textbook website
can be followed as a template, and requires very few changes for this exercise. The main difference is that the
input argument x in the kmeans function on page 34 is an array of vectors, not a matrix. Also, if you use the
for-loop on page 34 outside a function, you need to add global Jprevious inside the loop. Alternatively,
you can use the kmeans function in the VMLS package described in the appendix of the companion.

1.11 The k-means algorithm. We apply the k-means algorithm to the example in §4.4.2 of the textbook. In this
example we cluster the word histogram vectors of 500 Wikipedia articles, using a dictionary of 4423 words.

We first explain how to obtain the data.

• MATLAB users should download the binary file wikipedia_m.mat from the dataset directory on the
course webpage, and import it in MATLAB using the command load wikipedia_m.

• Octave users should download the file wikipedia_o.mat, and import it in Octave using the command
load wikipedia_o.

• Julia users should download the two files wikipedia.jl and tdmatrix.txt, and import the data as
follows:

julia> include("wikipedia.jl");

julia> using DelimitedFiles

julia> tdmatrix = readdlm("tdmatrix.txt");

In each case, three variables will be defined: tdmatrix (which stands for term-document matrix), articles,
dictionary. The variable tdmatrix is a 4423 × 500 matrix with the 500 word histogram vectors as its
columns. The variable articles is an array of length 500 with the article titles: articles(j) (in MAT-
LAB), articles(j,:) (in Octave), or articles[j] (in Julia) is the title of the article represented by
column j in tdmatrix. The variable dictionary is an array of length 4423 with the words in the dictionary:
dictionary(i) (in MATLAB), dictionary(i,:) (in Octave), or dictionary[i] (in Julia) is the word
referred to by row i of tdmatrix.

You are asked to apply the k-means algorithm to this set of N = 500 vectors, with k = 8 groups and
starting from a random initial group assignment (as opposed to starting from randomly generated group
representatives, as in Algorithm 4.1 in the textbook). To evaluate the quality of the clustering we use the
clustering objective

J =
1

N

N∑

i=1

min
j=1,...,k

‖xi − zj‖2.

The algorithm is terminated when J is nearly equal in two successive iterations (e.g., we terminate when
|J − Jprev| ≤ 10−8J , where Jprev is the value of J after the previous iteration).

Test your code with different random initial assignments, and summarize the results for the best clustering
you find (with the lowest clustering objective). To summarize the result, give the five top terms for each
cluster (the words associated with the highest five components of the cluster representative) and the titles
of the five articles in the cluster closest to the representative.

MATLAB/Octave suggestions

• You can create an initial group assignment using the randi function: the command
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group = randi(8, 1, 500);

creates a pseudorandom 1× 500 array group of integers between 1 and 8.

• Since we start from a random partition, the order of the two steps in Algorithm 4.1 is switched. The
first step in each cycle is to compute the group representatives for the current assignment. Suppose we
store the assignment in an array group of length 500, as initialized above. We can find the columns of
tdmatrix (i.e., the articles) that are assigned to group i using the function find. The command

I = find(group == i);

defines an index vector I with the indexes of the articles in group i, so that tdmatrix(:,I) is the
submatrix of tdmatrix with the columns assigned to group i. To find the average of the columns in
this matrix, you can use for-loops, or the functions sum or mean. (Be sure to look up what sum or mean
do when applied to a matrix; see help sum and help mean.)

• The function sort with two output arguments is useful to find the top terms for each group represen-
tative, and the articles in each cluster closest to the representative.

Julia suggestions

• The code on page 34 in the Julia Language Companion on the textbook website can be followed as
a template, and requires very few changes for this exercise. The main difference is that the input
argument x in the kmeans function in the companion is an array of vectors, not a matrix. Also, if you
use the for-loop on page 34 outside a function, you will need to add global Jprevious inside the loop.

• The Julia function sortperm is useful to find the top terms for each group representative, and the
articles in each cluster closest to the representative.

1.12 Tomography. Download the file tomography.mat from the class webpage and load it in MATLAB using the
command load tomography. This creates a matrix A of size 576 × 784 and a vector b of length 576. The
matrix A and the vector b describe a toy tomography example and were constructed using the MATLAB
AIR Tools package that can be found at www2.compute.dtu.dk/~pcha/AIRtools. (You do not need this
package for the exercise.) The geometry is shown in the figure below.

The image at the center is a black-and-white image of size 28 × 28. The figure shows a random image but
in the actual problem we used one of the images of handwritten digits of exercise 1.10. The green dots are
twelve source locations. For each source location we generate 48 rays emanating from the source. (The figure
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shows the rays for two sources only.) For each ray, we calculate the line integral of the pixel intensities along
the ray. This gives 12 · 48 = 576 linear equations

784∑

j=1

Aijxj = bi, i = 1, . . . , 576.

Here xj denotes the intensity in pixel j of the image (images are stored as vectors of length 784, as in
exercise 1.10), Aij is the length of the intersection of ray i with pixel j, and bi is the value of the line integral
along ray i. These equations can be written in matrix form as Ax = b where A and b are the data in
tomography.mat, or as

aTi x = bi, i = 1, . . . , 576,

where aTi is row i of A.

The purpose is to reconstruct the image x from the line integral measurements. We will use Kaczmarz’s
iterative algorithm for this purpose. Note that this is a small problem and easy to solve using the standard
non-iterative methods that are discussed later in the course.

Kaczmarz’s algorithm starts at an arbitrary point x (for example, a zero vector) and then cycles through the
equations. At each iteration we take a new equation, and update x by replacing it with its projection on the
hyperplane defined by the equation. If K is the number of cycles and m = 576 is the number of equations,
the algorithm can be summarized as follows.

Initialize x.
For k = 1, . . . ,K:

For i = 1, . . . ,m:
Project x on the ith hyperplane:

x := x− aTi x− bi
‖ai‖2

ai.

end
end

Run the algorithm forK = 10 cycles, starting at x = 0 (a black image). Compute the error ‖Ax−b‖/‖b‖ after
each cycle. Also display the reconstructed image x (using the command imshow(reshape(x, 28, 28))).
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2 Matrices

2.1 Projection on a line through the origin. Let y be a nonzero n-vector, and consider the function f : Rn → Rn,
defined as

f(x) =
xT y

‖y‖2 y.

It can be shown that that f(x) is the projection of x on the line passing through y and the origin (see exercise
3.12 of the textbook). Is f a linear function of x? If your answer is yes, give an n × n matrix A such that
f(x) = Ax for all x. If your answer is no, show with an example that f does not satisfy the definition of
linearity f(αu+ βv) = αf(u) + βf(v).

2.2 Reflection of a vector about a line through the origin. As in exercise 2.1, let f(x) be the projection of x on
the line through the origin and a nonzero n-vector y. Define g : Rn → Rn as the reflection of x with respect
to the line. g(x) can be expressed as g(x) = x+ 2(f(x)− x). The definition is illustrated in the figure.

x

y

f(x)

g(x)

Show that g is linear and express it as a matrix-vector product g(x) = Ax.

2.3 Represent each of the following three functions f : R2 → R2 as a matrix-vector product f(x) = Ax.

(a) f(x) is obtained by reflecting x about the x1 axis.

(b) f(x) is x reflected about the x1 axis, followed by a counterclockwise rotation of 30 degrees.

(c) f(x) is x rotated counterclockwise over 30 degrees, followed by a reflection about the x1 axis.

2.4 Let A be an n× n matrix with nonnegative elements (Aij ≥ 0 for all i, j). We define a directed graph GA

with vertices (nodes) 1, . . . , n, and an arc (directed edge) from vertex j to vertex i if only if Aij > 0. The
figure shows the graphs for the matrices

A1 =




0 3 0 0 5
2 1 4 0 0
0 0 0 3 2
1 0 0 0 0
0 0 0 2 0



, A2 =




0 3 1 2 0
2 0 0 0 0
0 0 2 0 1
0 2 0 1 4
0 0 1 0 0



.

1

2 3

4

5

4

2 3

5

1
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The matrix A is called irreducible if all the elements of the matrix (I +A)n−1 (the (n− 1)st power of I +A)
are positive. Show that A is irreducible if and only if the graph GA is strongly connected, i.e., for every
vertex i and every vertex j there is a directed path from vertex i to vertex j.

The matrix A1 is an irreducible matrix. The matrix A2 is not (for example, there is no directed path from
vertex 1 to 3, or from 2 to 5).

2.5 Circular convolution. The circular convolution of two n-vectors a, b is the n-vector c defined as

ck =
n∑

i=1

aib((k−i) mod n)+1, k = 1, . . . , n,

where (k − i) mod n is the remainder of k − i after integer division by n. For example, if n = 4,

c1 = a1b1 + a2b4 + a3b3 + a4b2

c2 = a1b2 + a2b1 + a3b4 + a4b3

c3 = a1b3 + a2b2 + a3b1 + a4b4

c4 = a1b4 + a2b3 + a3b2 + a4b1.

We use the notation c = a ⊛ b for circular convolution, to distinguish it from the standard convolution
c = a ∗ b defined in the textbook (page 136) and lecture (page 3-32).

Suppose a is given. Show that a⊛b is a linear function of b, by giving a matrix Tc(a) such that a⊛b = Tc(a)b
for all b.

2.6 Give the number of flops required to evaluate a product of three matrices X = ABC, where A is n × n, B
is n× 10, and C is 10× n. You can evaluate the product in two possible ways.

(a) From left to right, as X = (AB)C.

(b) From right to left, as X = A(BC).

Which method is faster for large n?

2.7 A matrix C is defined as C = AuvTB where A and B are n × n-matrices, and u and v are n-vectors. The
product on the right-hand side can be evaluated in many different ways, e.g., as A(u(vTB)) or as A((uvT )B),
etc. What is the fastest method (requiring the least number of flops) when n is large?

2.8 The Kronecker product of two n× n matrices A and B is the n2 × n2 matrix

A⊗B =




A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
An1B An2B · · · AnnB


 .

For example,

[
1 3
2 −1

]
⊗
[

3 4
−5 6

]
=




3 4 9 12
−5 6 −15 18
6 8 −3 −4

−10 12 5 −6


 .

Suppose the n × n matrices A and B, and an n2-vector x are given. Describe an efficient method for the
matrix-vector multiplication

y = (A⊗B)x =




A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
An1B An2B · · · AnnB







x1

x2

...
xn


 .
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(On the right we partitioned x in subvectors xi of size n.) What is the complexity of your method? How
much more efficient is it than a general matrix-vector multiplication of an n2 ×n2 matrix and an n2-vector?

2.9 Let A and B be two matrices of size m × n. Describe an efficient method for computing C = (I + ABT )3.
Distinguish two cases, m > n and m < n. Give the complexity of your method, including all cubic terms
(m3, m2n, mn2, n3). If you know several methods, choose the most efficient one.

2.10 Consider a product of m matrices
A1A2 · · ·Am, (1)

where Ai has size ni−1 × ni. The total number of flops required to compute the result depends on the order
in which we evaluate the matrix-matrix products. For example, for m = 4, we have the five possibilities

A1(A2(A3A4)) = A1((A2A3)A4) = (A1A2)(A3A4) = (A1(A2A3))A4 = ((A1A2)A3)A4.

In this problem we develop an efficient method for determining the optimal order for the matrix product
in (1) and the number of flops if we use the optimal order.

We denote by cij the cost (optimal number of flops) of computing AiAi+1 · · ·Aj , where 1 ≤ i ≤ j ≤ m.
Clearly c11 = c22 = · · · = cmm = 0, and

c12 = 2n0n1n2, c23 = 2n1n2n3, . . . .

(We use the simplification (2q− 1)pr ≈ 2pqr for a product of a p× q and a q× r matrix.) We are interested
in computing c1m, the optimal number of flops for the entire product A1A2 · · ·Am.

(a) Explain why
cij = min

k=i,i+1,...,j−1
(cik + ck+1,j + 2ni−1nknj).

The minimum is over all values of k that satisfy i ≤ k < j. For example, if i = 1 and j = 4,

c14 = min {c11 + c24 + 2n0n1n4, c12 + c34 + 2n0n2n4, c13 + c44 + 2n0n3n4}.

(b) The formula in part (a) suggests a recursive method for computing all the values of cij . We write the
coefficients in a triangular table

c11 c12 c13 · · · c1,m−1 c1m
c22 c23 · · · c2,m−1 c2m

c33 · · · c3,m−1 c3m
. . .

...
...

cm−1,m−1 cm−1,m

cmm

and compute the entries diagonal by diagonal, as follows:

Define c11 = · · · = cmm = 0.
for l = 1, . . . ,m− 1 do

for i = 1, . . . ,m− l do
Compute

ci,i+l = min
k=i,i+1,...,i+l−1

(cik + ck+1,i+l + 2ni−1nkni+l) (2)

end for
end for

An optimal order can be found by recording for each entry in the table a value of k that attains the
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minimum in (2).

Apply this algorithm to find the optimal order and number of flops for the product of four matrices
A1A2A3A4 with dimensions

100× 5000× 10000× 1000× 10.

Also compare with the optimal order and the number flops required for the product A1A2A3 of the first
three matrices.
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3 Linear equations

3.1 Polynomial interpolation. In this problem we construct polynomials p(t) = x1+x2t+· · ·+xn−1t
n−2+xnt

n−1

of degree 5, 10, and 15 (i.e., for n = 6, 11, 16), that interpolate points on the graph of the function
f(t) = 1/(1 + 25t2) in the interval [−1, 1]. For each value of n, we compute the interpolating polynomial as
follows. We first generate n pairs (ti, yi), using the MATLAB commands

t = linspace(-1, 1, n)’;

y = 1 ./ (1 + 25*t.^2);

This produces two n-vectors: a vector t with elements ti, equally spaced in [−1, 1], and a vector y with
elements yi = f(ti). (See ‘help rdivide’ and ‘help power’ for the meaning of the operations ./ and .^.)
We then solve a set of linear equations




1 t1 · · · tn−2
1 tn−1

1

1 t2 · · · tn−2
2 tn−1

2
...

...
...

...
1 tn−1 · · · tn−2

n−1 tn−1
n−1

1 tn · · · tn−2
n tn−1

n







x1

x2

...
xn−1

xn



=




y1
y2
...

yn−1

yn




(3)

to find the coefficients xi.

Calculate the three polynomials (for n = 6, n = 11, n = 16). Plot the three polynomials and the function
f on the interval [−1, 1], and attach a printout of the plots to your solutions. What do you conclude about
the effect of increasing the degree of the interpolating polynomial?

MATLAB hints.

• Use x = A \ b to solve a set of n linear equations in n variables Ax = b.

• To construct the coefficient matrix in (3), you can write a double for-loop, or use the built-in MATLAB
function vander, which constructs a matrix of the form




tn−1
1 tn−2

1 · · · t21 t1 1
tn−1
2 tn−2

2 · · · t22 t2 1
...

...
...

...
...

tn−1
n tn−2

n · · · t2n tn 1


 .

Type ‘help vander’ for details. This is almost what we need, but you have to ‘flip’ this matrix from
left to right. This operation is also built in in MATLAB (type help fliplr).

• We are interested in the behavior of the interpolating polynomials between the points ti that you used
in the construction. Therefore, when you plot the three polynomials, you should use a much denser
grid of points (e.g., a few hundred points equally spaced in interval [−1, 1]) than the n points that you
used to generate the polynomials.

3.2 Formulate the following problem as a set of linear equations Ax = b. Find two cubic polynomials

p(t) = x1 + x2t+ x3t
2 + x4t

3, q(t) = x5 + x6t+ x7t
2 + x8t

3

that satisfy the following eight conditions:

• p(t1) = y1, p(t2) = y2, p(t3) = y3.

• q(t5) = y5, q(t6) = y6, q(t7) = y7.
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• p(t4) = q(t4), p
′(t4) = q′(t4). This specifies that at t = t4 the polynomials should have the same value

and the same derivative.

The variables in the problem are the coefficients x1, . . . , x8. The numbers ti, yi are given, with t1 < t2 <
t3 < t4 < t5 < t6 < t7.

Test the method in MATLAB on the following problem. We take the 7 points ti equally spaced in the
interval [−0.75, 0.25] (using t = linspace(-0.75, 0.25, 7)’), and

y1 = 0, y2 = −0.1, y3 = 0.5, y5 = 1, y6 = 0.8, y7 = 0.5.

Calculate the two polynomials p(t) and q(t) (using the command x = A \ b to solve the equation Ax = b),
and plot them on the interval [−0.75, 0.25].

3.3 Express the following problem as a set of linear equations. Find a cubic polynomial

f(t) = c1 + c2(t− t1) + c3(t− t1)
2 + c4(t− t1)

2(t− t2)

that satisfies
f(t1) = y1, f(t2) = y2, f ′(t1) = s1, f ′(t2) = s2.

The numbers t1, t2, y1, y2, s1, s2 are given, with t1 6= t2. The unknowns are the coefficients c1, c2, c3, c4.
Write the equations in matrix-vector form Ax = b, and solve them.

3.4 Express the following problem as a set of linear equations. Find a quadratic function

f(u1, u2) =
[
u1 u2

] [ p11 p12
p12 p22

] [
u1

u2

]
+
[
q1 q2

] [ u1

u2

]
+ r

that satisfies the following six conditions:

f(0, 1) = 6, f(1, 0) = 6, f(1, 1) = 3,

f(−1,−1) = 7, f(1, 2) = 2, f(2, 1) = 6.

The variables in the problem are the parameters p11, p12, p22, q1, q2 and r. Write the equations in matrix-
vector form Ax = b, and solve the equations with MATLAB.

3.5 Solve the problem in exercise 8.11 of the textbook for

a1 =




−10
−10
10


 , a2 =




10
0
0


 , a3 =




−10
10
0


 , a4 =




−20
−10
−10


 ,

and
ρ1 = 18.187, ρ2 = 9.4218, ρ3 = 14.310, ρ4 = 24.955.

3.6 Formulate the following problem as a set of linear equations in the form Ax = b. Give the numerical values
of the elements of the 4× 4 matrix A.

Find a polynomial p(t) = x1 + x2t+ x3t
2 + x4t

3 that satisfies the four conditions

∫ 1

0

p(t)dt = b1,

∫ 1

0

tp(t)dt = b2,

∫ 1

0

t2p(t)dt = b3,

∫ 1

0

t3p(t)dt = b4.

The numbers b1, b2, b3, b4 on the right-hand sides are given.
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3.7 Express the following problem as a set of linear equations Ax = b. Find a rational function

f(t) =
x1 + x2t+ x3t

2

1 + x4t+ x5t2

that satisfies the five conditions

f(0) = b1, f (1)(0) = b2,
f (2)(0)

2
= b3,

f (3)(0)

6
= b4,

f (4)(0)

24
= b5,

where b1, . . . , b5 are given. Here f (k)(0) denotes the kth derivative of f at 0. Clearly state what the 5 × 5
matrix A is. Hint. The five conditions specify the first five terms in the series expansion

f(t) =

∞∑

k=0

f (k)(0)

k!
tk = b1 + b2t+ b3t

2 + b4t
3 + b5t

4 +

∞∑

k=5

f (k)(0)

k!
tk.

3.8 Formulate the following problem as a set of linear equations: find a polynomial of two variables s, t,

f(s, t) =

3∑

i=1

3∑

j=1

cijs
i−1tj−1

that satisfies nine interpolation conditions

f(sk, tk) = yk, k = 1, . . . , 9.

The points (sk, tk) and values yk are given. The unknowns are the coefficients cij .

(a) Write the equations in matrix–vector form Ax = b. Clearly state what A, x, and b are.

(b) Solve the problem for the following interpolation conditions. The points (sk, tk) are

(s1, t1) = (0, 0), (s2, t2) = (0, 1), (s3, t3) = (0, 2),

(s4, t4) = (1, 0), (s5, t5) = (1, 1), (s6, t6) = (1, 2),

(s7, t7) = (2, 0), (s8, t8) = (2, 1), (s9, t9) = (2, 2),

and y1, . . . , y9 are the nine digits of your UID. In your answer, write the coefficients in an array

c11 c12 c13
c21 c22 c23
c31 c32 c33

.
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4 Matrix inverses

4.1 Do the following matrices have linearly independent columns?

(a) A =




−1 2
3 −6
2 −1


.

(b) A =

[
−1 3 2
2 −6 −1

]
.

(c) A =




−9 0 7
4 0 −5

−1 0 6


.

(d) A =

[
D
B

]
, where B is m× n and D is a diagonal n× n matrix with nonzero diagonal elements.

(e) A = abT where a and b are n-vectors and n > 1.

(f) A = I − abT where a and b are n-vectors with ‖a‖‖b‖ < 1.

4.2 Suppose A and B arem×nmatrices with linearly independent columns. Do the following matrices necessarily
have linearly independent columns? If yes, explain why. If no, give a counterexample.

(a)

[
A
B

]
.

(b)
[
A B

]
.

(c)

[
A 0
0 B

]
.

(d) ABT .

(e) ATB.

4.3 Suppose A is a nonsingular n× n matrix, u and v are n-vectors, and vTA−1u 6= −1. Show that A+ uvT is
nonsingular with inverse

(A+ uvT )−1 = A−1 − 1

1 + vTA−1u
A−1uvTA−1.

4.4 Suppose A is a nonsingular n× n matrix. Consider the 2n× 2n matrix

M =

[
A A+A−T

A A

]
.

(a) Show that M is nonsingular, by showing that Mx = 0 implies x = 0.

(b) Find the inverse of M . To find M−1, express it as a block matrix

M−1 =

[
W X
Y Z

]

with blocks of dimension n×n, and determine the matrices W , X, Y , Z from the condition MM−1 = I.

4.5 Define a sequence of matrices Ak for k = 0, 1, 2 . . ., as follows: A0 = 1 and for k ≥ 1,

Ak =

[
Ak−1 Ak−1

−Ak−1 Ak−1

]
.
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Therefore Ak is a matrix of size 2k × 2k. The first four matrices in the sequence are

A0 = 1, A1 =

[
1 1

−1 1

]
, A2 =




1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1


 ,

A3 =




1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1

−1 1 1 −1 1 −1 −1 1




.

Show that all matrices Ak in the sequence are nonsingular. What is the inverse of Ak?

4.6 Lagrange interpolation. In exercise 3.1 we considered the problem of finding a polynomial

p(t) = x1 + x2t+ · · ·+ xnt
n−1 (4)

with specified values
p(t1) = y1, p(t2) = y2, , . . . , p(tn) = yn. (5)

The polynomial p is called the interpolating polynomial through the points (t1, y1), . . . , (tn, yn). Its coeffi-
cients can be computed by solving the set of linear equations




1 t1 · · · tn−2
1 tn−1

1

1 t2 · · · tn−2
2 tn−1

2
...

...
...

...
1 tn−1 · · · tn−2

n−1 tn−1
n−1

1 tn · · · tn−2
n tn−1

n







x1

x2

...
xn−1

xn



=




y1
y2
...

yn−1

yn



. (6)

The coefficient matrix is called a Vandermonde matrix. As we have seen in the lecture, a Vandermonde
matrix is nonsingular if the points ti are distinct (ti 6= tj for i 6= j). As a consequence, the interpolating
polynomial is unique: if the points ti are distinct, then there exists exactly one polynomial of degree less
than or equal to n− 1 that satisfies (5), and its coefficients are the solution of the equations (6).

In this problem we describe another method for finding p, known as Lagrange interpolation.

(a) We define n polynomials li:

li(t) =

∏
j 6=i(t− tj)∏
j 6=i(ti − tj)

, i = 1, . . . , n.

Verify that li is a polynomial of degree n− 1, and that

li(tk) =

{
1 if k = i
0 if k 6= i.

For example, for n = 3, we have the three polynomials

l1(t) =
(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
, l2(t) =

(t− t1)(t− t3)

(t2 − t1)(t2 − t3)
, l3(t) =

(t− t1)(t− t2)

(t3 − t1)(t3 − t2)
.
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(b) Show that the polynomial
p(t) = y1l1(t) + y2l2(t) + · · ·+ ynln(t) (7)

has degree n−1 or less, and satisfies the interpolation conditions (5). It is therefore equal to the unique
interpolating polynomial through those points.

(c) This provides another method for polynomial interpolation. To find the coefficients xi we express the
polynomial (7) in the form (4) by expanding the polynomials li as weighted sums of powers of t.

As an example, for n = 3, the polynomial (7) is given by

p(t) = y1
(t− t2)(t− t3)

(t1 − t2)(t1 − t3)
+ y2

(t− t1)(t− t3)

(t2 − t1)(t2 − t3)
+ y3

(t− t1)(t− t2)

(t3 − t1)(t3 − t2)
.

Express this as p(t) = x1 + x2t+ x3t
2, i.e., give expressions for x1, x2, x3 in terms of t1, t2, t3, y1, y2,

y3. Use the result to prove the following expression for the inverse of a 3× 3 Vandermonde matrix:




1 t1 t21
1 t2 t22
1 t3 t23



−1

=




t2t3
(t1 − t2)(t1 − t3)

t1t3
(t2 − t1)(t2 − t3)

t1t2
(t3 − t1)(t3 − t2)

−t2 − t3
(t1 − t2)(t1 − t3)

−t1 − t3
(t2 − t1)(t2 − t3)

−t1 − t2
(t3 − t1)(t3 − t2)

1

(t1 − t2)(t1 − t3)

1

(t2 − t1)(t2 − t3)

1

(t3 − t1)(t3 − t2)




.

4.7 (a) Formulate the following problem as a set of linear equations. Find a point x ∈ Rn at equal distance to
n+ 1 given points y1, y2, . . . , yn+1 ∈ Rn:

‖x− y1‖ = ‖x− y2‖ = · · · = ‖x− yn+1‖.

Write the equations in matrix form Ax = b.

(b) Show that the solution x in part (a) is unique if the (n+ 1)× (n+ 1) matrix

[
y1 y2 · · · yn+1

1 1 · · · 1

]

is nonsingular.

4.8 We consider the problem of localization from range measurements in 3-dimensional space. The 3-vector y
represents the unknown location. We measure the distances of the location y to five points at known locations
c1, . . . , c5. The five distance measurements ρ1, . . . , ρ5 are exact, except for an unknown systematic error or
offset z (for example, due to a clock offset). We therefore have five equations

‖y − ck‖+ z = ρk, k = 1, . . . , 5,

with four unknowns y1, y2, y3, z. We assume that the five vectors




c1
ρ1
1


 ,




c2
ρ2
1


 ,




c3
ρ3
1


 ,




c4
ρ4
1


 ,




c5
ρ5
1




are linearly independent.

Write a set of linear equations Ax = b, with a nonsingular matrix A, from which the variable x = (y1, y2, y3, z)
can be determined. Explain why A is nonsingular.

4.9 Suppose A is an m × p matrix with linearly independent columns and B is a p × n matrix with linearly
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independent rows. We are not assuming that A or B are square. Define

X = AB, Y = B†A†

where A† and B† are the pseudo-inverses of A and B. Show the following properties.

(a) Y X is symmetric.

(b) XY is symmetric.

(c) Y XY = Y .

(d) XYX = X.

Carefully explain your answers.

4.10 Suppose A is an n × (n − 1) matrix with linearly independent columns, and b is an n-vector with AT b = 0
and ‖b‖ = 1.

(a) Show that the matrix [ A b ] is nonsingular with inverse

[
A†

bT

]
.

(b) Let C be any left inverse of A. Show that

[
C(I − bbT )

bT

] [
A b

]
=

[
I 0
0 1

]
.

(c) Use the results of parts (a) and (b) to show that C(I − bbT ) = A†.

4.11 Let A be an n× n matrix with the property that

|Aii| >
∑

j 6=i

|Aij |, i = 1, . . . , n.

(The absolute value of each diagonal element is greater than the sum of the absolute values of the other
elements in the same row.) Such a matrix is called strictly diagonally dominant. Show that A is nonsingular.

Hint. Consider a vector x with Ax = 0. Suppose k is an index with |xk| = maxi=1,...,n |xi|. Consider the
kth equation in Ax = 0.

4.12 Consider the matrix A = I + aJ , where a is a real scalar and J is the reverser matrix

J =




0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0




of size n× n. We assume n > 1.

(a) For what values of a is A singular?

(b) Assuming A is nonsingular, express its inverse as a linear combination of the matrices I and J .

4.13 Consider the n× n matrix A = aI − 11T where a is a real scalar and 1 is the n-vector of ones. We assume
n > 1.

(a) For what values of a is A singular?

(b) Assuming A is nonsingular, express its inverse as a linear combination of I and 11T .
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4.14 If A and B are nonsingular matrices of the same size, then (AB)−1 = B−1A−1. It is tempting to generalize
this to

(AB)† = B†A† (8)

for matrices A and B with linearly independent columns.

(a) First show that (8) is false for

A =




1 0
0 1
0 1


 , B =

[
1
1

]
.

We conclude that (8) does not necessarily hold for matrices with linearly independent columns.

(b) Next, we make stronger assumptions on A and B. In each of the following two subproblems, either
show that (8) holds, or give a small example for which (AB)† 6= B†A†. We assume the dimensions of
A and B are compatible, so the product AB is defined.

(i) A has linearly independent columns and B is nonsingular.

(ii) A is nonsingular and B has linearly independent columns.

4.15 Let A and B be square matrices with A+B nonsingular. The matrix

C = A(A+B)−1B

is called the parallel sum of A and B. Show the following identities and properties.

(a) C = A−A(A+B)−1A.

(b) C = B(A+B)−1A.

(c) If A and B are nonsingular, then C is nonsingular with inverse C−1 = A−1 +B−1.

4.16 Formulate the following problem as a set of linear equations. Find a polynomial

p(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

that satisfies the following conditions on the values and the derivatives at m points t1, . . . , tm:

p(t1) = y1, p(t2) = y2, . . . , p(tm) = ym, p′(t1) = s1, p′(t2) = s2, . . . , p′(tm) = sm.

The unknowns in the problem are the coefficients x1, . . . , xn. The values of ti, yi, si are given.

(a) Express the problem as a set of linear equations Ax = b. Clearly state how A and b are defined.

(b) Suppose n = 2m and the m points ti are distinct. Is the matrix A in part (a) nonsingular?

(c) Solve the problem for m = 4, n = 8,

t1 = 0, t2 = 0.3, t3 = 0.6, t4 = 1,

y1 = −2, y2 = 2, y3 = −1, y4 = 1,

and s1 = s2 = s3 = s4 = 0. Plot the function p(t).

4.17 Suppose b is an n-vector with nonzero elements (bi 6= 0 for all i) and A is a diagonal n × n-matrix with
distinct diagonal elements (Aii 6= Ajj for i 6= j). Prove that the n× n matrix

C =
[
b Ab A2b · · · An−1b

]

is nonsingular.
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4.18 We use the symbol ◦ for the componentwise product of two matrices: if A,B are m × n matrices, then
C = A ◦B is the m× n matrix with entries Cij = AijBij .

Suppose BT is a right inverse of A. Show that the sum of the entries in each row of A ◦ B is equal to one.
In matrix and vector notation, (A ◦B)1 = 1.

4.19 Let A be an m× n matrix with linearly independent columns. Suppose the matrix X satisfies

XA = I, (AX) = (AX)T .

Show that X is the pseudoinverse of A.

4.20 Formulate the following problem as a set of linear equations. We are given m+1 distinct scalars t0, t1, . . . , tm,
sorted as t0 < t1 < · · · < tm, and m+ 1 scalars y0, y1, . . . , ym. Find a polynomial

p(t) = c1 + c2t+ c3t
2 + · · ·+ cmtm−1

and a scalar z that satisfy the conditions

p(ti) + (−1)iz = yi, i = 0, 1, . . . ,m.

(a) Express the equations as Ax = b. Clearly state how A, x, b are defined.

(b) Show that A is nonsingular.

The figure shows an example with m = 5.

p(t)

t0 t1 t2 t3 t4 t5

(t0, y0)

z

(t1, y1)

−z

(t2, y2)

z

(t3, y3)

−z (t4, y4)

z

(t5, y5)

−z
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5 Triangular matrices

5.1 Let A be a lower triangular n× n matrix. Verify the following properties.

(a) If B is a lower triangular n× n matrix, then the product AB is lower triangular.

(b) The matrix Ak is lower triangular for all positive integers k.

(c) If A is nonsingular, then Ak is lower triangular for all integers k (positive or negative).

5.2 Let A be a nonsingular lower triangular n× n matrix.

(a) What is the complexity of computing A−1?

(b) What is the complexity of solving Ax = b by first computing A−1 and then forming the matrix-vector
product x = A−1b? Compare with the complexity of forward and backward substitution.

5.3 The trace of a square matrix is the sum of its diagonal elements. What is the complexity of computing the
trace of A−1, if A is lower triangular and nonsingular?

5.4 A lower triangular matrix A is bidiagonal if Aij = 0 for i > j + 1:

A =




A11 0 0 · · · 0 0 0
A21 A22 0 · · · 0 0 0
0 A32 A33 · · · 0 0 0
...

...
...

. . .
...

...
0 0 0 · · · An−2,n−2 0 0
0 0 0 · · · An−1,n−2 An−1,n−1 0
0 0 0 · · · 0 An,n−1 Ann




.

Assume A is a nonsingular bidiagonal and lower triangular matrix of size n× n.

(a) What is the complexity of solving Ax = b?

(b) What is the complexity of computing the inverse of A?

State the algorithm you use in each subproblem, and give the dominant term (exponent and coefficient) of
the flop count. If you know several methods, consider the most efficient one.

5.5 A lower triangular matrix A is called a lower triangular band matrix with k subdiagonals if Aij = 0 for
i > j + k. The matrix

A =




−0.9 0 0 0 0 0
0.7 −0.7 0 0 0 0
1.4 −2.7 3.7 0 0 0
0 0.6 0.3 −1.2 0 0
0 0 −2.2 1.1 −0.6 0
0 0 0 2.4 2.4 0.7




is a 6× 6 lower triangular band matrix with 2 subdiagonals.

What is the complexity of solving a set of linear equations Ax = b if A is an n × n lower triangular band
matrix with k subdiagonals and nonzero diagonal elements? Express the complexity as the number of flops
as a function of n and k. You can assume that k ≪ n.

5.6 Describe an efficient method for each of the following two problems and give its complexity.

(a) Solve
DX +XD = B

where D is n× n and diagonal. The diagonal elements of D satisfy Dii +Djj 6= 0 for all i and j. The
matrices D and B are given. The variable is the n× n matrix X.
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(b) Solve
LX +XLT = B

where L is lower triangular. The diagonal elements of L satisfy Lii + Ljj 6= 0 for all i and j. The
matrices L and B are given. The variable is the n × n matrix X. (Hint: Solve for X column by
column.)

If you know several methods, choose the fastest one (least number of flops for large n).

5.7 Formulate the following problem as a set of linear equations: Find the coefficients x1, x2, x3, x4 of the
polynomial

p(t) = x1 + x2(t− t1) + x3(t− t1)(t− t2) + x4(t− t1)(t− t2)(t− t3)

that satisfies the interpolation conditions

p(t1) = y1, p(t2) = y2, p(t3) = y3, p(t4) = y4.

The interpolation points t1, t2, t3, t4, and values y1, y2, y3, y4 are given. The unknowns are the coefficients
x1, x2, x3, x4.

(a) Write the equation in the form Ax = b. For what values of t1, t2, t3, t4 is A nonsingular?

(b) Find the solution for

t1 = 0, t2 = 1, t3 = 2, t4 = 3, y1 = 0, y2 = 1, y3 = 0, y4 = 3.

5.8 Describe an efficient algorithm for solving the matrix equation

RX +XS = B

where R is m × m and upper triangular with positive diagonal elements, S is n × n and upper triangular
with positive diagonal elements, and B is m× n. The variable in the equation is the m× n matrix X.

Clearly state the different steps in the algorithm and give the overall complexity, including all terms that
are cubic (n3, n2m, nm2, m3) or of higher order than cubic.

5.9 Let A be an upper triangular n × n matrix with positive diagonal elements. In this problem we show that
there exists an upper triangular matrix R with positive diagonal elements that satisfies R2 = A.

(a) First consider the 3× 3 problem:



R11 R12 R13

0 R22 R23

0 0 R33






R11 R12 R13

0 R22 R23

0 0 R33


 =




A11 A12 A13

0 A22 A23

0 0 A33


 .

Explain how to compute the elements of R from the elements of A. Hint. Compute the elements of R
in the order R11, R22, R33, R12, R23, R13.

(b) Extend the algorithm in part (a) to general n. Is the complexity of the algorithm linear, quadratic, or
cubic in n?

5.10 Let A be an n×n lower-triangular Toeplitz matrix. (Recall that a Toeplitz matrix is a matrix whose entries
are constant along each diagonal.) We will use the notation

A =




a1 0 0 · · · 0 0 0
a2 a1 0 · · · 0 0 0
a3 a2 a1 · · · 0 0 0
...

...
...

. . .
...

...
...

an−2 an−3 an−4 · · · a1 0 0
an−1 an−2 an−3 · · · a2 a1 0
an an−1 an−2 · · · a3 a2 a1




.
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(a) What are the conditions on a1, . . . , an for A to be nonsingular?

(b) Assuming A is nonsingular, which of the following two properties does the inverse have?

(a) A−1 is lower-triangular, (b) A−1 is a Toeplitz matrix.

Select all that apply and explain your answer.

(c) Assuming A is nonsingular, explain how to compute its inverse. Is the complexity of your algorithm
linear, quadratic, or cubic in n?
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6 Orthogonal matrices and QR factorization

6.1 Show that every 2× 2 rotation matrix can be written as a product of two reflectors: for every θ, there exist
u, v such that [

cos θ − sin θ
sin θ cos θ

]
= (I − 2uuT )(I − 2vvT ), ‖u‖ = ‖v‖ = 1.

Without loss of generality, one can choose v = (1, 0), so it remains to find u. You may find the trigonometric
identities cos θ = cos2(θ/2)− sin2(θ/2) and sin θ = 2 cos(θ/2) sin(θ/2) useful.

6.2 A square matrix A is called normal if AAT = ATA. Show that if A is normal and nonsingular, then the
matrix Q = A−1AT is orthogonal.

6.3 Let S be a square matrix that satisfies ST = −S. This is called a skew-symmetric matrix.

(a) Show that I − S is nonsingular. (Hint: first show that xTSx = 0 for all x.)

(b) Show that (I + S)(I − S)−1 = (I − S)−1(I + S). (This property does not rely on the skew-symmetric
property; it is true for any matrix S for which I − S is nonsingular.)

(c) Show that the matrix A = (I + S)(I − S)−1 is orthogonal.

6.4 When is a matrix lower-triangular and orthogonal? How many n× n matrices with this property exist?

6.5 Let Q be an n× n orthogonal matrix, partitioned as

Q =
[
Q1 Q2

]

where Q1 has size n × m and Q2 has size n × (n − m), with 0 < m < n. Consider the n × n matrix
A = Q1Q

T
1 −Q2Q

T
2 .

(a) Show that A can also be written in the following two forms: A = 2Q1Q
T
1 − I and A = I − 2Q2Q

T
2 .

(b) Show that A is orthogonal.

(c) Describe an efficient method for solving Ax = b and give its complexity. If you know several methods,
give the method with the lowest complexity when m < n/2.

6.6 Let A be a tall m× n matrix with linearly independent columns. Define P = A(ATA)−1AT .

(a) Show that the matrix 2P − I is orthogonal.

(b) Use the Cauchy–Schwarz inequality to show that the inequalities

−‖x‖‖y‖ ≤ xT (2P − I)y ≤ ‖x‖‖y‖

hold for all m-vectors x and y.

(c) Take x = y in part (b). Show that the right-hand inequality implies that ‖Px‖ ≤ ‖x‖ for allm-vectors x.

6.7 Let B be an m× n matrix.

(a) Prove that the matrix I +BTB is nonsingular. Since we do not impose any conditions on B, this also
shows that the matrix I +BBT is nonsingular.

(b) Show that the matrix

A =

[
I BT

−B I

]

is nonsingular and that the following two expressions for its inverse are correct:

A−1 =

[
I 0
0 0

]
+

[
−BT

I

]
(I +BBT )−1

[
B I

]
,

A−1 =

[
0 0
0 I

]
+

[
I
B

]
(I +BTB)−1

[
I −BT

]
.
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(c) Now assume B has orthonormal columns. Use the result in part (b) to formulate a simple method for
solving Ax = b. What is the complexity of your method? If you know several methods, give the most
efficient one.

6.8 (a) For what property of the matrix B is a matrix of the form

A =
1√
2

[
I BT

−B I

]

orthogonal? Give the necessary and sufficient conditions on B.

(b) What are the properties of B needed to make the matrix A nonsingular?

6.9 Circulant matrices and discrete Fourier transform. A circulant matrix is a square matrix of the form

T (a) =




a1 an an−1 · · · a3 a2
a2 a1 an · · · a4 a3
a3 a2 a1 · · · a5 a4
...

...
...

. . .
...

...
an−1 an−2 an−3 · · · a1 an
an an−1 an−2 · · · a2 a1




. (9)

We use the notation T (a) for this matrix, where a = (a1, a2, . . . , an) is the n-vector in the first column. Each
of the other columns is obtained by a circular downward shift of the previous column. In matrix notation,

T (a) =
[
a Sa S2a · · · Sn−1a

]

where S is the n× n circular shift matrix

S =




0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



=

[
0 1

In−1 0

]
.

(a) Let W be the n× n DFT matrix:

W =




1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

1 ω−2 ω−4 · · · ω−2(n−1)

...
...

...
...

1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)(n−1)




(10)

where ω = e2πj/n. Verify that

WSk−1 = diag(Wek)W, k = 1, . . . , n,

where Si is the ith power of S (with S0 = I), ek is the kth unit vector (hence, Wek is column k of W ),
and diag(Wek) is the n× n diagonal matrix with Wek on its diagonal.

(b) The inverse of W is W−1 = (1/n)WH . The expression in part (a) can therefore be written as

Sk−1 =
1

n
WH diag(Wek)W, k = 1, . . . , n.

Use this to show that T (a) can be factored as a product of three matrices:

T (a) =
1

n
WH diag(Wa)W. (11)
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(c) The matrix-vector product y = Wx is the discrete Fourier transform of x. The matrix-vector product
y = W−1x = (1/n)WHx is the inverse discrete Fourier transform. The DFT and its inverse can be
computed in order n log n operations using the Fast Fourier Transform algorithm.

Use the factorization (11) to formulate a fast algorithm, with a complexity of order n log n, for computing
matrix-vector products T (a)x. The product T (a)x is known as the circular convolution of the vectors
a and x.

(d) Use the factorization in part (b) to formulate a fast algorithm, with an order n log n complexity, for
solving a set of linear equations Ax = b with variable x and coefficient matrix A = T (a) (assuming T (a)
is nonsingular). Compare the speed of your algorithm with the standard method (A \ b), for randomly
generated a and b. You can use the following code to generate a and b, and construct the circulant
matrix A = T (a).

a = randn(n, 1);

b = randn(n, 1);

A = toeplitz(a, [a(1), flipud(a(2:n))’]);

Use the MATLAB functions fft and ifft to implement the fast algorithm. y = fft(x) evaluates
y = Wx using the Fast Fourier Transform algorithm; y = ifft(x) evaluates y = W−1x.

Julia users will need to add the FFTW package to compute discrete Fourier transforms. The function
fft(x) returns the DFT Wx of a vector x; ifft(x) returns the inverse DFT W−1x. The Julia
equivalent of the MATLAB code above is

a = randn(n,1);

b = randn(n,1);

A = hcat( [ circshift(a,k) for k=0:n-1 ]... );

6.10 Refer to the factorization (11) of a circulant matrix (9) with the n-vector a as its first column. In (11), W is
the n× n discrete Fourier transform matrix and diag(Wa) is the diagonal matrix with the vector Wa (the
discrete Fourier transform of a) on its diagonal.

(a) Suppose T (a) is nonsingular. Show that its inverse T (a)−1 is a circulant matrix. Give a fast method
for computing the vector b that satisfies T (b) = T (a)−1.

(b) Let a and b be two n-vectors. Show that the product T (a)T (b) is a circulant matrix. Give a fast method
for computing the vector c that satisfies T (c) = T (a)T (b).

6.11 A diagonal matrix with diagonal elements +1 or −1 is called a signature matrix. The matrix

S =




1 0 0
0 −1 0
0 0 −1




is an example of a 3× 3 signature matrix. If S is a signature matrix, and A is a square matrix that satisfies

ATSA = S, (12)

then we say that A is pseudo-orthogonal with respect to S.

(a) Suppose S is an n× n signature matrix, and u is an n-vector with uTSu 6= 0. Show that the matrix

A = S − 2

uTSu
uuT

is pseudo-orthogonal with respect to S.

(b) Show that pseudo-orthogonal matrices are nonsingular. In other words, show that any square matrix
A that satisfies (12) for some signature matrix S is nonsingular.
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(c) Describe an efficient method for solving Ax = b when A is pseudo-orthogonal. ‘Efficient’ here means
that the complexity is at least an order of magnitude less than the (2/3)n3 complexity of the standard
method for a general set of linear equations. Give the complexity of your method.

(d) Show that if A satisfies (12) then ASAT = S. In other words, if A is pseudo-orthogonal with respect
to S, then AT is also pseudo-orthogonal with respect to S.

6.12 The Kronecker product of two n× n matrices A and B is the n2 × n2 matrix

A⊗B =




A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

. . .
...

An1B An2B · · · AnnB


 .

For example,

[
1 0
2 −1

]
⊗
[

3 4
−5 6

]
=




3 4 0 0
−5 6 0 0
6 8 −3 −4

−10 12 5 −6


 .

Suppose A and B are orthogonal. Is A⊗B orthogonal? Explain your answer.

6.13 Let a be an n-vector with ‖a‖ = 1. Define the 2n× 2n matrix

A =

[
aaT I − aaT

I − aaT aaT

]
.

(a) Show that A is orthogonal.

(b) The figure shows an example in two dimensions (n = 2). Indicate on the figure the 2-vectors x, y that
solve the 4× 4 equation [

aaT I − aaT

I − aaT aaT

] [
x
y

]
=

[
b
c

]
.

line through a and the origin

b

c

0

6.14 Let A be an m × n matrix with linearly independent columns. The Householder algorithm for the QR
factorization of A computes an orthogonal m×m matrix Q such that

QTA =

[
R
0

]

where R is upper triangular with nonzero diagonal elements. The matrix Q is computed as a product
Q = Q1Q2 · · ·Qn−1 of orthogonal matrices. In this problem we discuss the first step, the calculation of Q1.
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This matrix has the property that

QT
1 A =




R11 × · · · ×
0 × · · · ×
...

...
...

0 × · · · ×


 .

The ‘×’ symbols denote elements that may or may not be zero.

Let a = (A11, A21, . . . , Am1) be the first column of A. Define an m-vector

v =
1√

1 + |A11|/‖a‖

(
1

‖a‖a+ se1

)

where s = 1 if A11 ≥ 0 and s = −1 if A11 < 0. The vector e1 is the first unit vector (1, 0, . . . , 0).

(a) Show that v has norm
√
2.

(b) Define Q1 = I − vvT . Show that Q1 is orthogonal.

(c) Show that QT
1 a = R11e1, where R11 = −s‖a‖.

(d) Give the complexity of computing the matrix-matrix product QT
1 A = (I − vvT )A.

6.15 We use the notation In for the identity matrix of size n × n and Jn for the reverser matrix of size n × n.
(The reverser matrix is the identity matrix with the column order reversed.)

(a) Verify that the 2n× 2n reverser matrix J2n can be written as

J2n = Q

[
In 0
0 −In

]
QT where Q =

1√
2

[
In In
Jn −Jn

]
.

Also show that Q is orthogonal.

(b) Let A be a 2n× 2n matrix with the property that

J2nA = AJ2n. (13)

An example is the 4× 4 matrix 


1 2 3 4
5 6 7 8
8 7 6 5
4 3 2 1


 .

Use the factorization of J2n in part (a) to show that if A satisfies (13) then the matrix QTAQ is
block-diagonal:

QTAQ =

[
B 0
0 C

]
,

where B and C are n× n matrices.

(c) The complexity of solving a general linear equation Ax = b of size 2n × 2n is (2/3)(2n)3 = (16/3)n3.
Suppose A has the property defined in part (b). By how much can the dominant term in the complexity
of solving Ax = b be reduced if we take advantage of the factorization property in part (b)? Explain
your answer.

6.16 Let A be an m×n matrix with linearly independent columns. Suppose Aij = 0 for i > j+1. In other words,
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the elements of A below the first subdiagonal are zero:

A =




A11 A12 · · · A1,n−1 A1n

A21 A22 · · · A2,n−1 A2n

0 A32 · · · A3,n−1 A3n

0 0 · · · A4,n−1 A4n

...
...

...
...

0 0 · · · An,n−1 Ann

0 0 · · · 0 An+1,n

0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0




.

Show that the Q-factor in the QR factorization of A has the same property: Qij = 0 for i > j + 1.

6.17 What is the QR factorization of the matrix

A =




2 8 13
4 7 −7
4 −2 −13


 ?

You can use MATLAB to check your answer, but you must provide the details of all intermediate steps on
paper.

6.18 Suppose A and B are left-invertible matrices of the same size that satisfy

AAT = BBT .

In this problem we show that B = AQ for some orthogonal Q.

(a) Show that the matrix U = A†B is orthogonal.

(b) Show that the matrix V = B†A is orthogonal.

(c) Show that U is the inverse of V .

(d) Find an orthogonal matrix Q such that B = AQ.

6.19 Let U be an m× n matrix with orthonormal columns. We do not assume that U is square. Define

A = I + αUUT

where α is a scalar.

(a) For what values of α is A orthogonal?

(b) For what values of α is A nonsingular?

6.20 Let A be an m× n matrix with linearly independent columns. Define

B =

[
0 AT

A I

]
.

(a) Show that B is invertible with inverse

B−1 =

[
−(ATA)−1 A†

(A†)T I −AA†

]
.

Here A† is the pseudo-inverse of A.
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(b) Substitute the QR factorization of A in the expression for B−1 in part (a) and simplify as much as
possible.

(c) Use the result of part (b) to formulate a method for computing the solution of an equation Bx = y
using the QR factorization of A. The right-hand side y and the variable x are (m + n)-vectors. Give
the complexity of each step in the method and the overall complexity. Include in the total all terms
that are cubic (m3, m2n, mn2, n3) and quadratic (m2, mn, n2) in the matrix dimensions. If you know
several methods, give the most efficient one.

6.21 Let A =
[
a1 a2 a3

]
be a matrix with three columns and QR factorization A = QR where

R =




1 −1 −1
0 1 −1
0 0 1


 .

(a) What are the norms ‖a1‖, ‖a2‖, ‖a3‖ of the columns of A?

(b) Denote by θij the angle between columns ai and aj of A. What are θ12, θ13, θ23 (in degrees)?

6.22 Suppose A is defined as

A =




B1 0 · · · 0 0 C1

0 B2 · · · 0 0 C2

...
...

. . .
...

...
...

0 0 · · · Bp−1 0 Cp−1

0 0 · · · 0 Bp Cp



,

where B1, . . . , Bp and C1, . . . , Cp are m× n matrices. The first p block columns of A form a block-diagonal
matrix, with B1, . . . , Bp as diagonal blocks. We assume that A has linearly independent columns.

We partition the Q and R factors of A similarly, using the following notation:

A =




Q11 Q12 · · · Q1,p−1 Q1p Q1,p+1

Q21 Q22 · · · Q2,p−1 Q2p Q2,p+1

...
...

...
...

...
Qp−1,1 Qp−1,2 · · · Qp−1,p−1 Qp−1,p Qp−1,p+1

Qp1 Qp2 · · · Qp,p−1 Qpp Qp,p+1







R11 R12 · · · R1,p−1 R1p R1,p+1

0 R22 · · · R2,p−1 R2p R2,p+1

...
...

. . .
...

...
...

0 0 · · · Rp−1,p−1 Rp−1,p Rp−1,p+1

0 0 · · · 0 Rpp Rp,p+1

0 0 · · · 0 0 Rp+1,p+1




.

The submatrices Qij all have size m× n. The submatrices Rij all have size n× n.

(a) Describe the structure of Q and R. Which of the submatrices Qij and Rij have to be zero?

(b) Describe an efficient method for the QR factorization of A that exploits the structure in A, Q, and R.

(c) The complexity of a QR factorizaton of a general matrix with the dimensions of A is cubic in p. How
does the complexity of the method in part 2 scale with p, for fixed m,n?

6.23 Let Q be an m× n matrix with orthonormal columns. Define

A =
1√
2

[
I QT

Q −I

]
.

(a) Show that A is invertible and give its inverse. Explain how you found the inverse.

(b) Can A be an orthogonal matrix? Does the answer depend on m and n? Clearly state your assumptions.

6.24 Suppose A is an orthogonal matrix and A+ I is nonsingular. Show that the matrix

B = (A− I)(A+ I)−1.

is skew-symmetric, i.e., it satisfies B = −BT .
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6.25 Consider the QR factorization [
1 a b

]
= QR,

where a and b are two n-vectors and the first column is the n-vector of ones. Suppose you are given the
matrix

R =




R11 R12 R13

0 R22 R23

0 0 R33


 ,

but not n, a, b, or Q. Explain how the following quantities can be determined from the entries of R.

(a) The dimension n.

(b) The norms ‖a‖, ‖b‖.
(c) The means avg(a), avg(b).

(d) The standard deviations std(a), std(b).

(e) The correlation coefficient ρ of a and b.
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7 LU factorization

7.1 (a) For what values of a1, a2, . . . , an is the n× n matrix

A =




a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

...
...

. . .
...

...
an−2 0 0 · · · 1 0
an−1 0 0 · · · 0 1
an 0 0 · · · 0 0




nonsingular?

(b) Assuming A is nonsingular, what is the complexity of solving an equation Ax = b?

(c) Assuming A is nonsingular, what is the inverse A−1?

7.2 Consider the set of linear equations
(D + uvT )x = b

where u, v, and b are given n-vectors, and D is a given diagonal matrix. The diagonal elements of D are
nonzero and uTD−1v 6= −1. (This implies that the matrix D + uvT is nonsingular.)

(a) What is the complexity of solving these equations using the following method?

• First calculate A = D + uvT .

• Then solve Ax = b using the standard method (via LU factorization, which costs (2/3)n3 flops).

(b) In exercise 4.3, the following expression for the inverse of D + uvT is derived:

(D + uvT )−1 = D−1 − 1

1 + vTD−1u
D−1uvTD−1.

This means we can also solve the equations by evaluating x = (D + uvT )−1b, using the expression for
the inverse. What is the complexity of this method?

7.3 For each subproblem, we give a naive but correct algorithm, in MATLAB notation. Derive the complexity,
assuming that matrix inverses and solutions of linear equations are computed using the LU factorization. Use
the values f = (2/3)n3, s = 2n2 for the flop counts of the factorization and solve steps (for a set of n linear
equations in n variables). Assume the cost of computing the inverse of an n× n matrix is f + ns = (8/3)n3

flops.

If possible, give a more efficient method. You do not have to provide any MATLAB code, as long as the
description of your method is clear. If you know several methods, give the most efficient one.

(a) A ∈ Rn×n, and b ∈ Rn are given. The matrix A is nonsingular.

val = c’ * (inv(A) * b)

(b) Calculate cTA−1B where c ∈ Rn, A ∈ Rn×n, and B ∈ Rn×m are given. The matrix A is nonsingular.

val = c’ * (inv(A) * B)

(c) Solve the set of equations [
A 0
0 B

]
x =

[
b
c

]
,

where A ∈ Rn×n, B ∈ Rn×n, b ∈ Rn, and c ∈ Rn are given, and 0 is the zero matrix of dimension
n× n. The matrices A and B are nonsingular.

x = [A zeros(n,n); zeros(n,n) B ] \ [b; c]
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(d) Solve the set of equations [
A B
C I

]
x =

[
b
c

]
,

where A ∈ Rn×n, B ∈ Rn×10n, C ∈ R10n×n, b ∈ Rn, and c ∈ R10n are given, and I is the identity
matrix of dimension 10n× 10n. The matrix

[
A B
C I

]

is nonsingular.

x = [A, B; C, eye(10*n)] \ [b; c]

(e) Solve the set of equations [
I B
C I

]
x =

[
b
c

]
,

where B is m× n, C is n×m, and n > m. The matrix

[
I B
C I

]
x =

[
b
c

]

is nonsingular.

x = [eye(m), B; C, eye(n)] \ [b; c]

7.4 Calculate the LU factorization without pivoting of the matrix

A =




−3 2 0 3
6 −6 0 −12

−3 6 −1 16
12 −14 −2 −25


 .

You can check your result in MATLAB, but you have to provide the details of your calculation.

7.5 You are given a nonsingular n× n matrix A and an n-vector b. You are asked to evaluate

x = (I +A−1 +A−2 +A−3) b

where A−2 = (A2)−1 and A−3 = (A3)−1. Describe in detail how you would compute x, and give the
complexity of the different steps in your algorithm. If you know several methods, give the most efficient one.

7.6 Consider K sets of linear equations

AD1Bx1 = b1

AD2Bx2 = b2
...

ADKBxK = bK .

The n×n matrices A and B are nonsingular and given. The matrices Dk are diagonal with nonzero diagonal
elements. The right-hand sides bk ∈ Rn are also given. The variables in the problem are the K n-vectors
xk, k = 1, . . . ,K. Describe an efficient method for computing the vectors xk. Compare with the complexity
of solving K sets of linear equations of size n× n, using a standard method.

7.7 What is the most efficient way to compute each of the following n × n matrices X? The vectors u and v
have size n and the matrix A is n× n. A is nonsingular.
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(a) X = vuTAvuT .

(b) X = vuTA−1vuT .

(c) X = vuT (A+A−1)vuT .

7.8 Suppose A is an n× n matrix, and u and v are n-vectors. What is the complexity of computing the matrix
B = A−1uvTA−1 in each of the following cases?

(a) A is diagonal with nonzero diagonal elements.

(b) A is lower-triangular with nonzero diagonal elements.

(c) A is orthogonal.

(d) A is a general nonsingular matrix.

Explain your answers by describing the main steps in an efficient method for computing B. Give the flop
count of each step and the total flop count (keeping only dominant terms).

7.9 Suppose you have to solve two sets of linear equations

Ax1 = b1, ATx2 = b2

where A is n×n, b1 and b2 are n-vectors, and A is nonsingular. The unknowns are the n-vectors x1 and x2.
What is the most efficient way to solve the two problems? Clearly state the different steps in your algorithm
are and give their complexity.

7.10 Suppose you have to solve two sets of linear equations

Ax = b, (A+ uvT )y = b,

where A is n× n, and u, v, and b are n-vectors. The variables are x and y. We assume that A and A+ uvT

are nonsingular. Give an efficient method, based on the expression

(A+ uvT )−1 = A−1 − 1

1 + vTA−1u
A−1uvTA−1.

Clearly state the different steps in your algorithm and give their complexity.

7.11 Consider the equation
AXAT = B

where A and B are n × n-matrices, with A nonsingular. The variables are the n2 elements of the n × n
matrix X.

(a) Prove that there is a unique solution X.

(b) Give an efficient algorithm for computing X, based on factoring A and/or AT ? What is the complexity
of your algorithm?

7.12 Assume A is a nonsingular n× n matrix. Show that thee inverse of the matrix

M =

[
A A+A−T

A A

]
(14)

is given by

M−1 =

[
−AT A−1 +AT

AT −AT

]
. (15)
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(a) Compare the complexity of the following two methods for solving a set of linear equations Mx = b,
given A and b.

(i) Calculate A−1, build the matrix M as defined in equation (14), and solve Mx = b using the
standard method This method would correspond to the MATLAB code

x = [A, A+inv(A)’; A, A] \ b.

(ii) Calculate A−1, build the matrix M−1 as defined in equation (15), and form the matrix-vector
product x = M−1b. This method would correspond to the MATLAB code

x = [-A’ inv(A)+A’; A’ -A’]*b.

(b) Can you improve the fastest of the two methods described in part (a)?

7.13 Consider the set of linear equations with a 3× 3 block coefficient matrix




A11 A12 A13

0 A22 A23

0 0 A33






x1

x2

x3


 =




b1
b2
b3


 . (16)

The m ×m matrices Aij and the m-vectors b1, b2, b3 are given. The variables are the three m-vectors x1,
x2, x3. In other words we have n = 3m equations in 3m variables. We assume that the matrices A11, A22,
A33 are nonsingular.

(a) Describe an efficient method for solving (16).

(b) Same question, assuming that A11 = A22 = A33.

(c) Extend the algorithm of parts (a) and (b) to equations of the form




A11 A12 · · · A1,K−2 A1,K−1 A1K

0 A22 · · · A2,K−2 A2,K−1 A2K

...
...

. . .
...

...
...

0 0 · · · AK−2,K−2 AK−2,K−1 AK−2,K

0 0 · · · 0 AK−1,K−1 AK−1,K

0 0 · · · 0 0 AKK







x1

x2

...
xK−2

xK−1

xK




=




b1
b2
...

bK−2

bK−1

bK




where Aij is m×m and bi is an m-vector. The variables are the m-vectors xi. The diagonal blocks Aii

are nonsingular. Compare the complexity of your algorithm with the complexity of a standard method
for solving Km equations in Km variables.

7.14 Describe an efficient method for solving the equation




0 AT I
A 0 0
I 0 D






x
y
z


 =




b
c
d


 .

The nine blocks in the coefficient matrix have size n× n. The matrix A is nonsingular, and the matrix D is
diagonal with nonzero diagonal elements. The vectors b, c, and d in the right-hand side are n-vectors. The
variables are the n-vectors x, y, z. If you know several methods, give the most efficient one. Clearly state
the different steps in your algorithm, give the complexity of each step, and the total complexity.

7.15 We define a 2m× 2m matrix

B =

[
−2A 4A
3A −5A

]
,

where A is a nonsingular m×m matrix.

(a) Express the inverse of B in terms of A−1.

38



(b) The complexity of solving the linear equations
[

−2A 4A
3A −5A

] [
x1

x2

]
=

[
b1
b2

]

with variables x1 ∈ Rm, x2 ∈ Rm, using the standard method (i.e., using the command

[-2*A 4*A; 3*A -5*A] \ [b1; b2]

in MATLAB), is (2/3)(2m)3 = (16/3)m3 flops for large m.

Formulate a more efficient method. Clearly state the different steps in your algorithm and give the
complexity of each step, as well as the total complexity. If you know several methods, give the most
efficient one.

7.16 For each subproblem, describe an efficient method to evaluate the expression, and give its complexity. A is
a nonsingular n× n matrix, and vi, wi, i = 1, . . . ,m, are n-vectors.

(a)
m∑
i=1

vTi A
−1wi

(b)
m∑
i=1

vTi (A+A−1)wi

(c)
m∑
i=1

m∑
j=1

vTi A
−1wj

(d)
m∑
i=1

m∑
j=1

viw
T
j A

−1wiv
T
j

If you know several methods, choose the most efficient one. Include only the dominant terms in the flop
counts, assuming m and n are large.

7.17 Let A be a nonsingular n × n matrix and b an n-vector. In each subproblem, describe an efficient method
for computing the vector x, and give the complexity of the method, including terms of order two (n2) and
higher. If you know several methods, give the most efficient one.

(a) x = (A−1 +A−2)b.

(b) x = (A−1 +A−T )b.

(c) x = (A−1 + JA−1J)b where J is the n× n matrix

J =




0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0



.

(J is the reverser matrix, i.e., the identity matrix with its columns reversed: Jij = 1 if i + j = n + 1
and Jij = 0 otherwise.)

7.18 Suppose A and B are n× n matrices with A nonsingular, and b, c and d are n-vectors. Describe an efficient
algorithm for solving the set of linear equations




A B 0
0 AT B
0 0 A






x1

x2

x3


 =




b
c
d




with variables x1 ∈ Rn, x2 ∈ Rn, x3 ∈ Rn. Give the complexity of your algorithm, including all terms that
are cubic or quadratic in n. If you know several methods, give the most efficient one.
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7.19 Consider the linear equation
(A+ ǫB)x = b,

where A and B are given n× n matrices, b is a given n-vector, and ǫ is a scalar parameter. We assume that
A is nonsingular, and therefore A+ ǫB is nonsingular for sufficiently small ǫ. The solution of the equation is

x(ǫ) = (A+ ǫB)−1b,

a complicated nonlinear function of ǫ. In order to find a simple approximation of x(ǫ), valid for small ǫ, we
can expand x(ǫ) = (A+ ǫB)−1b in a series

x(ǫ) = x0 + ǫx1 + ǫ2x2 + ǫ3x3 + · · · ,

where x0, x1, x2, x3, . . . are n-vectors, and then truncate the series after a few terms. To determine the
coefficients xi in the series, we examine the equation

(A+ ǫB)(x0 + ǫx1 + ǫ2x2 + ǫ3x3 + · · · ) = b.

Expanding the product on the left-hand side gives

Ax0 + ǫ(Ax1 +Bx0) + ǫ2(Ax2 +Bx1) + ǫ3(Ax3 +Bx2) + · · · = b.

We see that if this holds for all ǫ in a neighborhood of zero, the coefficients xi must satisfy

Ax0 = b, Ax1 +Bx0 = 0, Ax2 +Bx1 = 0, Ax3 +Bx2 = 0, . . . . (17)

Describe an efficient method for computing the first k + 1 coefficients x0, . . . , xk from (17). What is the
complexity of your method (number of flops for large n, assuming k ≪ n)? If you know several methods,
give the most efficient one.

7.20 Suppose A is a nonsingular n× n matrix.

(a) Show that the matrix [
A b
aT 1

]

is nonsingular if a and b are n-vectors that satisfy aTA−1b 6= 1.

(b) Suppose a1, a2, b1, b2 are n-vectors with aT1 A
−1b1 6= 1 and aT2 A

−1b2 6= 1. From part (a), this means
that the coefficient matrices in the two equations

[
A b1
aT1 1

] [
x1

y1

]
=

[
c1
d1

]
,

[
A b2
aT2 1

] [
x2

y2

]
=

[
c2
d2

]

are nonsingular. Describe an efficient method for solving the two equations. The variables are the two
n-vectors x1 and x2, and the two scalars y1 and y2.

If you know several methods, give the most efficient one. Take advantage of the fact that the 1,1 blocks
of the two coefficient matrices are the same. What is the complexity of your method?

7.21 Let A be a nonsingular n× n matrix and let u, v be two n-vectors that satisfy vTA−1u 6= 1.

(a) Show that [
A u
vT 1

]−1

=

[
A−1 0
0 0

]
+

1

1− vTA−1u

[
A−1u
−1

] [
vTA−1 −1

]
.
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(b) Describe an efficient method for solving the two equations

Ax = b,

[
A u
vT 1

] [
y
z

]
=

[
b
c

]
.

The variables are the n-vectors x and y, and the scalar z. Describe in detail the different steps in your
algorithm and give the complexity of each step. If you know several methods, choose the most efficient
one.

7.22 Explain how you can solve the following problems using a single LU factorization and without computing
matrix inverses. The matrix A is a given nonsingular n× n matrix. For each problem, explain the different
steps in your algorithm, give the complexity of each step, and the total complexity (number of flops for large
n, excluding the LU factorization itself). If you know several methods, give the most efficient one.

(a) Compute
(
A−1 +A−T

)2
b, where b is a given n-vector.

(b) Solve the equation AXA = B for the unknown X, where B is a given n× n matrix.

(c) Compute
n∑

i=1

n∑
j=1

(A−1)ij , the sum of all the entries of A−1.

7.23 Explain how you can solve the following problem using an LU factorization of A. Given a nonsingular n×n
matrix A and two n-vectors b and c, find an n-vector x and a scalar y such that

Ax+ yb = c and ‖x‖2 = 1.

We assume that b 6= 0 and ‖A−1c‖ < 1. Clearly state every step in your algorithm. How many solutions
(x, y) are there?

7.24 The pseudo-inverse of a matrix B with linearly independent rows is the matrix B† = BT (BBT )−1. Note
that B†B is a symmetric matrix. It can be shown that B† is the only right inverse X of B with the property
that XB is symmetric.

(a) Assume A is a nonsingular n× n matrix and b is an n-vector. Show that the n× (n+ 1) matrix

B =
[
A b

]

is right invertible and that

X =

[
A−1 −A−1byT

yT

]

is a right inverse of B, for any value of the n-vector y.

(b) Show that XB is symmetric (hence, X = B†) if

y =
1

1 + ‖A−1b‖2A
−TA−1b.

(c) What is the complexity of computing the vector y in part (b) using an LU factorization of A? Give the
complexity, including all cubic and quadratic terms. If you know several methods, consider the most
efficient one.

7.25 Let A be an n×m matrix and B an m× n matrix. We compare the complexity of two methods for solving

(I +AB)x = b.

We assume the matrix I +AB is nonsingular.
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(a) In the first method we compute the matrix C = I + AB and then solve Cx = b using the standard
method (LU factorization). Give the complexity of this method.

(b) Suppose the matrix I +BA is nonsingular. Show that

(I +AB)−1 = I −A(I +BA)−1B.

(c) This suggests a second method for solving the equation: compute the solution via the formula

x =
(
I −A(I +BA)−1B

)
b.

Describe an efficient method for evaluating this formula and give the complexity. Which of the two
methods is faster when m ≪ n? Explain your answer.

7.26 Let A be an n×n matrix that has an LU factorization A = LU (i.e., the general LU factorization A = PLU
with P = I). Suppose you are given L and U . Show that the ith diagonal element of the inverse, (A−1)ii,
can be computed in 2(n− i)2 flops if we ignore terms that are linear in n or constant.

7.27 The solution A−1b of a set of linear equations is a nonlinear function of the elements of A. It is often useful
to know the derivatives of the solution with respect to parameters in A. This is important, for example, in
sensitivity analysis or when optimizing over the parameters.

Consider the function f : Rm → Rn defined as

f(y) = (A+ y1B1 + · · ·+ ymBm)−1b

where A, B1, . . . , Bm are n × n matrices, with A nonsingular, and b is an n-vector. The function value at
y = 0 is f(0) = A−1b. It can be shown that the derivative matrix of f(y) at y = 0 is

Df(0) =
[
−A−1B1A

−1b −A−1B2A
−1b · · · −A−1BmA−1b

]
.

This is an n×m matrix with ith column −A−1BiA
−1b.

Suppose we have already computed f(0) = A−1b using an LU factorization of A. What is the complexity
(number of flops as a function of n and m) of computing the derivative matrix Df(0)?

7.28 Consider a square (n+m)× (n+m) matrix

[
A B
C D

]

with A of size n × n and D of size m × m. We assume A is nonsingular. The matrix S = D − CA−1B
is called the Schur complement of A. Describe efficient algorithms for computing the Schur complement of
each of the following types of matrices A.

(a) A is diagonal.

(b) A is lower triangular.

(c) A is a general square matrix.

In each subproblem, give the different steps in the algorithm and their complexity. Include in the total flop
count all terms that are order three (n3, n2m, nm2, m3) or higher. If you know different algorithms, choose
the most efficient one.

7.29 Suppose you have already computed the LU factorization A = PLU of a nonsingular n × n matrix A.
Describe an algorithm for each of the following problems and give its complexity.

(a) Compute one particular column of A−1, i.e., compute (A−1)1:n,j for one particular index j.

42



(b) Compute the sum of the columns of A−1, i.e., compute
∑n

j=1(A
−1)1:n,j .

(c) Compute the sum of the rows of A−1, i.e., compute
∑n

i=1(A
−1)i,1:n.

Describe each step in your algorithm and give its complexity (number of flops as a function of n). Include
in the flop counts terms that are cubic, quadratic, and linear in n. If you know several methods, give the
most efficient one (of lowest order, if we exclude the cost of the LU factorization of A).

7.30 Let A be a nonsingular n×n matrix, with columns a1, . . . , an. Suppose we replace column i with a vector c
and call this new matrix Ã. We can write this matrix as Ã = A+ (c− ai)e

T
i where ei is the ith unit vector.

(a) Suppose that (A−1c)i = 0. Show that Ã is singular.

(b) Suppose that (A−1c)i 6= 0. Show that Ã is nonsingular, with inverse

Ã−1 = A−1 − 1

(A−1c)i
(A−1c− ei)e

T
i A

−1.

(c) Suppose that (A−1c)i 6= 0. Use the formula in part (b) to describe an efficient algorithm, based on the
LU factorization of A, for solving the two equations

Ax = b, Ãy = b,

where b is a given n-vector. Give the complexity of each step in your algorithm and the total complexity.

7.31 Consider an m×m block matrix A of the form

A =




A11 0 0 · · · 0 0
0 A22 0 · · · 0 0
0 0 A33 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Am−1,m−1 0

Am1 Am2 Am3 · · · Am,m−1 Amm




.

Each block Aij and all the zero matrices in the definition are matrices of size n × n, so the matrix A itself
has size nm× nm. What is the complexity of solving Ax = b in each of the following cases?

(a) The matrices Aii are lower triangular and nonsingular.

(b) The matrices Aii are orthogonal.

(c) The matrices Aii are general nonsingular matrices.

Include in the complexity all terms that are cubic (n3, n2m, nm2, m3) or higher-order. Explain your answers.

7.32 Let A be a nonsingular n×n matrix. Explain how each of the following problems can be solved with a single
LU factorization of A. Describe the steps in your algorithms and give the complexity of each step, including
all quadratic and cubic terms in the flop count. If you know several methods, give the most efficient one.

(a) Find the n× n matrix X that satisfies
AXA = uvT

where u and v are given n-vectors.

(b) Find the n-vectors x, y that satisfy

[
0 A
AT B

] [
x
y

]
=

[
b
c

]
.

The n× n matrix B, and the n-vectors b, c are given.
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(c) Find the n-vectors x, y that satisfy

[
A A
−A A

] [
x
y

]
=

[
b
c

]
.

The n-vectors b, c are given.

(d) Compute the n× n matrix
X = BA−1uvTA−TC.

The n× n matrices B,C and the n-vectors u, v are given.

(e) Compute the 2n-vector [
x
y

]
=

[
A 0
B AT

]−1 [
b
c

]
.

The n× n matrix B and the n-vectors b, c are given.

7.33 Recall (from exercise 2.8) the definition of the Kronecker product A⊗B of two n× n matrices:

A⊗B =




A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
An1B An2B · · · AnnB


 .

This is a matrix of size n2 × n2. A useful property of the Kronecker product is

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

(You are not asked to prove this.) We consider the linear equation

(A⊗A)x = b, (18)

where A is an n × n matrix, b is an n2-vector, and the variable x is an n2-vector. By partitioning x and b
in subvectors b1, . . . , bn and x1, . . . , xn of length n, we can write the equation as




A11A A12A · · · A1nA
A21A A22A · · · A2nA

...
...

...
An1A An2A · · · AnnA







x1

x2

...
xn


 =




b1
b2
...
bn


 .

(a) Suppose A is upper or lower triangular and nonsingular. Then A ⊗ A is upper or lower triangular.
Describe an efficient method for solving (18). What is the complexity (number of flops for large n)?
Compare with the complexity of solving a general triangular set of linear equations of size n2 × n2.

(b) Suppose A is nonsingular. Explain how you can solve (18) using the LU factorization of A. Clearly state
the different steps in the algorithm, the complexity of each step, and the overall complexity. Compare
with the complexity of solving a general set of linear equations of size n2 × n2.

7.34 In exercise 3.8 we considered the problem of finding a polynomial of two variables s, t

f(s, t) =

n∑

i=1

n∑

j=1

cijs
i−1tj−1

that satisfies n2 interpolation conditions. We formulated the problem as a set of n2 linear equations in
the n2 variables cij . In this problem we examine the complexity of solving the linear equation when the
interpolation points are chosen on a grid, as in the example for n = 4 shown in the figure.
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t

s1 s2 s3 s4 s

t1

t2

t3

t4

Let X be the n× n matrix with i, j element cij . We note that f(s, t) can be written as

f(s, t) =




1
s
s2

...
sn−1




T

X




1
t
t2

...
tn−1



.

(a) Consider n2 interpolation conditions of the form

f(sk, tl) = Ykl, k = 1, . . . , n, l = 1, . . . , n,

where s1, . . . , sn, t1, . . . , tn, and the n × n matrix Y are given. Show that these n2 equations can be
written as a matrix equation

AXBT = Y, (19)

where A and B are n× n matrices.

(b) Suppose the points s1, . . . , sn are distinct, and the points t1, . . . , tn are distinct. Show that (19) has a
unique solution X.

(c) Describe an efficient algorithm for computing the solution X of the equation (19), given the n × n
matrices A, B, and Y . State the matrix factorization(s) you use and the different steps of the algorithm.
Give the complexity of each step and the overall complexity (including terms that are cubic in n, or of
order higher than cubic). How does the overall complexity compare with the cost of solving a general
set of n2 linear equations in n2 variables?

(d) Suppose sk = tk for k = 1, . . . , n. Does this information help to reduce the complexity of the algorithm
in part 3?

7.35 Suppose A,B are n× n matrices, with A invertible, and b is an n-vector. Define

f(t) = (A+ tB)−1b.

This is a nonlinear function of the scalar variable t. It can be shown that the first three terms in the Taylor
series around t = 0 are f(t) = x− ty + t2z + · · · , where

x = A−1b, y = A−1BA−1b, z = (A−1B)2A−1b.

Give an efficient method, based on the LU factorization, for computing the three vectors x, y, z. What is
the complexity of the method? In the flop count, include all terms of order two and higher.
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8 Least squares

8.1 Formulate the following problems as least squares problems. For each problem, give a matrix A and a vector
b such that the problem can be expressed as

minimize ‖Ax− b‖2.

(a) Minimize x2
1 + 2x2

2 + 3x2
3 + (x1 − x2 + x3 − 1)2 + (−x1 − 4x2 + 2)2.

(b) Minimize (−6x2 + 4)2 + (−4x1 + 3x2 − 1)2 + (x1 + 8x2 − 3)2.

(c) Minimize 2(−6x2 + 4)2 + 3(−4x1 + 3x2 − 1)2 + 4(x1 + 8x2 − 3)2.

(d) Minimize xTx+ ‖Bx− d‖2 where the p× n matrix B and the p-vector d are given.

(e) Minimize ‖Bx − d‖2 + 2‖Fx − g‖2. The p × n matrix B, the l × n matrix F , the p-vector d and the
l-vector g are given.

(f) Minimize xTDx+ ‖Bx− d‖2. D is a n×n diagonal matrix with positive diagonal elements, B is p×n,
and d is a p-vector. D, B and D are given.

8.2 The figure shows a planar spiral inductor, implemented in CMOS, for use in RF circuits. The inductor is
characterized by four key parameters:

• n, the number of turns (which is a multiple of 1/4, but that needn’t concern us)

• w, the width of the wire

• d, the inner diameter

• D, the outer diameter

d

D

w

The inductance L of such an inductor is a complicated function of the parameters n, w, d, and D. It can
be found by solving Maxwell’s equations, which takes considerable computer time, or by fabricating the
inductor and measuring the inductance. In this problem you will develop a simple approximate inductance
model of the form

L̂ = αnβ1wβ2dβ3Dβ4 ,

where α, β1, β2, β3, β4 ∈ R are constants that characterize the approximate model. (Since L is positive, we
have α > 0, but the constants β2, . . . , β4 can be negative.) This simple approximate model, if accurate
enough, can be used for design of planar spiral inductors.

The file inductordata.m contains data for 50 inductors, obtained from measurements. Download the file,
and execute it in MATLAB using [n, w, d, D, L] = inductordata. This generates 5 vectors n, w, d, D,
L of length 50. The ith elements of these vectors are the parameters ni, wi (in µm), di (in µm), Di (in µm)
and the inductance Li (in nH) for inductor i.. Thus, for example, w13 gives the wire width of inductor 13.
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Your task is to find α, β1, . . . , β4 so that

L̂i = αnβ1

i wβ2

i dβ3

i Dβ4

i ≈ Li for i = 1, . . . , 50.

Your solution must include a clear description of how you found your parameters, as well as their actual
numerical values. Note that we have not specified the criterion that you use to judge the approximate model
(i.e., the fit between L̂i and Li); we leave that to your judgment.

We can define the percentage error between L̂i and Li as

ei = 100
|L̂i − Li|

Li
.

Find the average percentage error for the 50 inductors, i.e., (e1+ · · ·+e50)/50, for your model. (We are only
asking you to find the average percentage error for your model; we do not require that your model minimize
the average percentage error.)

Remark. The MATLAB command to solve a least squares problem

minimize ‖Ax− b‖2

is x = A \ b, i.e., the same command as for solving a set of linear equations. The meaning of the backslash
operator therefore depends on the context. If A is a square matrix, then A \ b solves the linear set of
equations Ax = b; if A is tall, it solves the least squares problem.

8.3 The figure shows m = 50 points (ti, yi) as circles. These points are well approximated by a function of the
form

f(t) =
eαt+β

1 + eαt+β
.

(An example, for two specific values of α and β, is shown in dashed line).

−1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

t

f
(t
)

Formulate the following problem as a least squares problem. Find values of the parameters α, β such that

eαti+β

1 + eαti+β
≈ yi, i = 1, . . . ,m, (20)

You can assume that 0 < yi < 1 for i = 1, . . . ,m.

Clearly state the error function you choose to measure the quality of the fit in (20), and the matrix A and the
vector b of the least squares problem. Test your method on the example data in the file logistic_fit.m.
(The command [t, y] = logistic_fit; creates arrays with the points ti, yi. Julia users should use
include("logistic_fit.jl"); t, y = logistic_fit();.
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8.4 We have N points in R2, and a list of pairs of points that must be connected by links. The positions of
some of the N points are fixed; our task is to determine the positions of the remaining points. The objective
is to place the points so that some measure of the total interconnection length of the links is minimized. As
an example application, we can think of the points as locations of plants or warehouses, and the links as the
routes over which goods must be shipped. The goal is to find locations that minimize the total transportation
cost. In another application, the points represent the position of modules or cells on an integrated circuit,
and the links represent wires that connect pairs of cells. Here the goal might be to place the cells in such a
way that the the total length of wire used to interconnect the cells is minimized.

The problem can be described in terms of a graph with N nodes, representing the N points. With each free
node we associate a variable (ui, vi) ∈ R2, which represents its location or position.

In this problem we will consider the example shown in the figure below.

(−1, 0)

(0.5, 1)

(1, 0.5)

(0,−1)

(u1, v1)

(u2, v2)

(u3, v3)

l1

l2l3

l4

l5

l6

l7

Here we have 3 free points with coordinates (u1, v1), (u2, v2), (u3, v3). We have 4 fixed points, with coordi-
nates (−1, 0), (0.5, 1), (0,−1), and (1, 0.5). There are 7 links, with lengths l1, l2, . . . , l7. We are interested
in finding the coordinates (u1, v1), (u2, v2) and (u3, v3) that minimize the total squared length

l21 + l22 + l23 + l24 + l25 + l26 + l27.

(a) Formulate this problem as a least squares problem

minimize ‖Ax− b‖2

where the 6-vector x contains the six variables u1, u2, u3, v1, v2, v3. Give the coefficient matrix A and
the vector b.

(b) Show that you can also obtain the optimal coordinates by solving two smaller least squares problems

minimize ‖Āu− b̄‖2, minimize ‖Âv − b̂‖2,

where u = (u1, u2, u3) and v = (v1, v2, v3). Give the coefficient matrices Ā, Â and the vectors b̄ and b̂.
What is the relation between Ā and Â?

(c) Solve the least squares problems derived in part (a) or (b) using MATLAB.

8.5 Least squares model fitting. In this problem we use least squares to fit several different types of models to a
given set of input-output data. The data set consists of a scalar input sequence u(1), u(2), . . . , u(N), and
a scalar output sequence y(1), y(2), . . . , y(N), with N = 100. The signals are shown in the following plots.
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We will develop and compare seven different models that relate the signals u and y. The models range in
complexity from a simple constant to a nonlinear dynamic model:

(a) constant model: y(t) = α

(b) static linear: y(t) = βu(t)

(c) static affine: y(t) = α+ βu(t)

(d) static quadratic: y(t) = α+ βu(t) + γu(t)2

(e) linear, 2-tap: y(t) = β1u(t) + β2u(t− 1)

(f) affine, 2-tap: y(t) = α+ β1u(t) + β2u(t− 1)

(g) quadratic, 2-tap: y(t) = α+ β1u(t) + γ1u(t)
2 + β2u(t− 1) + γ2u(t− 1)2 + δu(t)u(t− 1).

The first four models are memoryless. In a memoryless model the output at time t, i.e., y(t), depends only
the input at time t, i.e., u(t). Another common term for such a model is static.

In a dynamic model, y(t) depends on u(s) for some s 6= t. Models (e), (f), and (g) are dynamic models, in
which the current output depends on the current input and the previous input. Such models are said to
have a finite memory of length one. Another term is 2-tap system (the taps refer to taps on a delay line).

Each of the models is specified by a number of parameters, i.e., the scalars α, β, etc. You are asked to find
least squares estimates (α̂, β̂, . . . ) for the parameters, i.e., the values that minimize the sum-of-squares of
the errors between predicted outputs and actual outputs. Your solutions should include:

• a clear description of the least squares problems that you solve

• the computed values of the least squares estimates of the parameters

• a plot of the predicted output ŷ(t)

• a plot of the residual ŷ(t)− y(t)

• the root-mean-square (RMS) residual, i.e., the squareroot of the mean of the squared residuals.

For example, the affine 2-tap model (part (f)) depends on three parameters α, β1, and β2. The least squares

estimates α̂, β̂1, β̂2 are found by minimizing

N∑

t=2

(y(t)− α− β1u(t)− β2u(t− 1))
2
.

(Note that we start at t = 2 so u(t − 1) is defined). You are asked to formulate this as a least squares

problem, solve it to find α̂, β̂1, and β̂2, plot the predicted output

ŷ(t) = α̂+ β̂1u(t) + β̂2u(t− 1),
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and the residual r(t) = ŷ(t)− y(t), for t = 2, . . . , N , and give the value of the RMS residual

Rrms =

(
1

N − 1

N∑

t=2

(y(t)− ŷ(t))2

)1/2

.

The data for the problem are available from the class webpage in the m-file systemid.m. The command is
[u, y] = systemid.

8.6 In this problem we use least squares to fit a circle to given points (ui, vi) in a plane, as shown in the figure.

We use (uc, vc) to denote the center of the circle and R for its radius. A point (u, v) is on the circle if
(u− uc)

2 + (v − vc)
2 = R2. We can therefore formulate the fitting problem as

minimize
m∑
i=1

(
(ui − uc)

2 + (vi − vc)
2 −R2

)2

with variables uc, vc, R. Show that this can be written as a least squares problem if we make a change of
variables and use as variables uc, vc, and w = u2

c + v2c −R2.

(a) Define A, b, and x in the equivalent linear least squares formulation.

(b) Show that the optimal solution uc, vc, w of the least squares problem satisfies u2
c + v2c − w ≥ 0. (This

is necessary to compute R =
√

u2
c + v2c − w from the result uc, vc, w.)

Test your formulation on the problem data in the file circlefit.m on the course website. The commands

[u,v] = circlefit;

plot(u, v, ’o’);

axis equal

will create a plot of the m = 50 points (ui, vi) in the figure. The following code plots the 50 points and the
computed circle.

t = linspace(0, 2*pi, 1000);

plot(u, v, ’o’, R * cos(t) + uc, R * sin(t) + vc, ’-’);

axis equal

(assuming your MATLAB variables are called uc, vc, and R). Julia users can download the file circlefit.jl
and use the command include("circlefit.jl").
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8.7 Suppose you are given m (m ≥ 2) straight lines

Li = {pi + tiqi | ti ∈ R}, i = 1, . . . ,m

in Rn. Each line is defined by two n-vectors pi, qi. The vector pi is a point on the line; the vector qi specifies
the direction. We assume that the vectors qi are normalized (‖qi‖ = 1) and that at least two of them are
linearly independent. (In other words, the vectors qi are not all scalar multiples of the same vector, so the
lines are not all parallel.) We denote by

di(y) = min
ui∈Li

‖y − ui‖ = min
ti

‖y − pi − tiqi‖

the distance of a point y to the line Li.

Express the following problem as a linear least squares problem. Find the point y ∈ Rn that minimizes the
sum of its squared distances to the m lines, i.e., find the solution of the optimization problem

minimize
m∑
i=1

di(y)
2

with variable y. Express the least squares problem in the standard form

minimize ‖Ax− b‖2

where A has linearly independent columns.

(a) Clearly state what the variables x in the least squares problem are and how A and b are defined.

(b) Explain why A has linearly independent columns.

8.8 Let A be an m× n matrix with linearly independent columns.

(a) Show that the (m+ n)× (m+ n) matrix

[
I A
AT 0

]

is nonsingular.

(b) Show that the solution x̄, ȳ of the set of linear equations

[
I A
AT 0

] [
x̄
ȳ

]
=

[
b
0

]

is given by x̄ = b−Axls and ȳ = xls, where xls is the solution of the least squares problem

minimize ‖Ax− b‖2.

8.9 Consider the set of p+ q linear equations in p+ q variables
[

I A
AT −I

] [
ȳ
x̄

]
=

[
b
c

]
.

The p × q matrix A, the p-vector b, and the q-vector c are given. The variables are the q-vector x̄ and the
p-vector ȳ.

(a) Show that the coefficient matrix [
I A
AT −I

]

is nonsingular, regardless of the dimensions of A.
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(b) From part (a) we know that the solution x̄, ȳ is unique. Show that x̄ minimizes ‖Ax− b‖2 + ‖x+ c‖2.

8.10 Explain how you can solve the following problems using the QR factorization.

(a) Find the vector x that minimizes ‖Ax − b1‖2 + ‖Ax − b2‖2. The problem data are the m × n matrix
A and two m-vectors b1 and b2. The matrix A has linearly independent columns. If you know several
methods, give the most efficient one.

(b) Find x1 and x2 that minimize ‖Ax1 − b1‖2 + ‖Ax2 − b2‖2. The problem data are the m× n matrix A,
and the m-vectors b1 and b2. The matrix A has linearly independent columns.

8.11 Solving normal equations versus QR factorization. In this problem we compare the accuracy of the two
methods for solving a least squares problem

minimize ‖Ax− b‖2.

We take

A =




1 1
10−k 0
0 10−k


 , b =




−10−k

1 + 10−k

1− 10−k


 ,

for k = 6, k = 7 and k = 8.

(a) Write the normal equations, and solve them analytically (i.e., on paper, without using numerical soft-
ware).

(b) Solve the least squares problem in MATLAB or Julia, for k = 6, k = 7 and k = 8, using the recommended
method x = A \ b. This method is based on the QR factorization.

(c) Repeat part (b), using x = (A’*A) \ (A’*b). Compare the results of this method with the results of
parts (a) and (b).

Remark. Type format long to make MATLAB display more than five digits.

8.12 Least squares updating. Suppose x̂ is the solution of the least squares problem

minimize ‖Ax− b‖2

where A is an m× n matrix with linearly independent columns and b is an m-vector.

(a) Show that the solution of the problem

minimize ‖Ay − b‖2 + (cT y − d)2

with variable y (where c is an n-vector, and d is a scalar) is given by

ŷ = x̂+
d− cT x̂

1 + cT (ATA)−1c
(ATA)−1c.

(b) Describe an efficient method for computing x̂ and ŷ, given A, b, c and d, using the QR factorization
of A. Clearly describe the different steps in your algorithm. Give the complexity of each step and the
overall complexity. In your total flop count, include all terms that are cubic (n3, mn2, m2n, m3) and
quadratic (m2, mn, n2). If you know several methods, give the most efficient one.

8.13 Least squares downdating. Let A be an m × n matrix and b and m-vector. We assume that A has linearly
independent columns and define x̂ as the solution of the least squares problem

minimize ‖Ax− b‖2 =

m∑

i=1

(aTi x− bi)
2 (21)
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(aTi is the ith row of A). We also define ŷk as the solution of the least squares problem (21) with the kth
term in the sum, corresponding to row k of A, removed:

minimize
∑

i6=k

(aTi y − bi)
2 =

k−1∑

i=1

(aTi y − bi)
2 +

m∑

i=k+1

(aTi y − bi)
2. (22)

We assume that for each k = 1, . . . ,m, the matrix formed by removing row k from A has linearly independent
columns, so the solution ŷk of (22) is unique.

(a) Consider the least squares problem

minimize
k−1∑

i=1

(aTi y − bi)
2 + (aTk y + z − bk)

2 +
m∑

i=k+1

(aTi y − bi)
2, (23)

with variables y ∈ Rn and z ∈ R. Give a simple argument why the solution is equal to y = ŷk and
z = bk − aTk ŷk. In other words, explain why the y-component of the solution of (23) is also the solution
of (22).

(b) Use the normal equations for (23) to show that

ŷk = x̂− bk − aTk x̂

1− aTk (A
TA)−1ak

(ATA)−1ak.

(c) Give an efficient algorithm, based on the QR factorization of A and the expression in part (b), for
computing x̂ and the m vectors ŷ1, . . . , ŷm. Clearly explain the steps in your algorithm and give the
overall complexity (dominant term in the flop count as a function of m and n). If you know several
algorithms, give the most efficient one.

8.14 Let x̂ be the solution of the least squares problem

minimize ‖Ax− b‖2

where A is an m× n matrix with linearly independent columns. Suppose a is an m-vector, not in the range
of A. Let (ŷ, ẑ) be the solution of the least squares problem

minimize

∥∥∥∥
[
A a

] [ y
z

]
− b

∥∥∥∥
2

.

The variables in this problem are the n-vector y and the scalar z.

(a) Show that [
ŷ
ẑ

]
=

[
x̂
0

]
− aT (b−Ax̂)

aT (I −A(ATA)−1AT )a

[
(ATA)−1AT a

−1

]
.

(b) Formulate an efficient algorithm for computing x̂, ŷ, ẑ, using the QR factorization of A. Give the
complexity of the algorithm (including all cubic and quadratic terms in the flop count).

8.15 Let A be an m× n matrix with linearly independent columns, and b an m-vector not in the range of A.

(a) Explain why the QR factorization [
A b

]
= QR

exists.
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(b) Suppose we partition the matrices in the QR factorization of part (a) as

Q =
[
Q1 Q2

]
, R =

[
R11 R12

0 R22

]
,

where Q1 is m×n, Q2 is m× 1, R11 is n×n, R12 is n× 1 and R22 is a scalar. Show that xls = R−1
11 R12

is the solution of the least squares problem

minimize ‖Ax− b‖2

and that R22 = ‖Axls − b‖.

8.16 Let x̂ and ŷ be the solutions of the least squares problems

minimize ‖Ax− b‖2, minimize ‖Ay − c‖2

where A is an m×n matrix with linearly independent columns, and b and c are m-vectors. We assume that
Ax̂ 6= b.

(a) Show that the m× (n+ 1) matrix
[
A b

]
has linearly independent columns.

(b) Show that the solution of the least squares problem

minimize

∥∥∥∥
[
A b

] [ u
v

]
− c

∥∥∥∥
2

,

with variables u ∈ Rn, v ∈ R, is given by

û = ŷ − bT c− bTAŷ

bT b− bTAx̂
x̂, v̂ =

bT c− bTAŷ

bT b− bTAx̂
.

(c) Describe an efficient method for computing x̂, ŷ, û, v̂, given A, b, c, using the QR factorization of A.
Clearly describe the different steps in your algorithm. Give the complexity of each step and the overall
complexity. In the total flop count, include all terms that are cubic (n3, mn2, m2n, m3) and quadratic
(m2, mn, n2). If you know several methods, give the most efficient one.

8.17 We are given K matrices A1, . . . , AK of size m × n and K vectors b1, . . . , bK of size m. We define K
matrices Ck, each of size ((K − 1)m)× n, and K vectors dk of size (K − 1)m as follows:

Ck =




A1

...
Ak−1

Ak+1

...
AK




, dk =




b1
...

bk−1

bk+1

...
bK




.

The matrix Ck is constructed by stacking the matrices A1, . . . , AK , but skipping Ak. The vector dk is
constructed in a similar way from the vectors b1, . . . , bK . We assume that each of the matrices Ck has
linearly independent columns.

Define x̂(k) as the solution of the least squares problem

minimize ‖Ckx− dk‖2. (24)

We compare the complexity of two methods for computing the K least squares solutions x̂(1), . . . , x̂(K).
(This question arises in K-fold cross-validation, for example.) The first method solves the problems as K
independent least squares problems. The second method takes advantage of the common blocks in the
matrices Ck.
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(a) What is the complexity of solving the K least squares problems (24), using the standard method (QR
factorization) for each problem?

(b) A more efficient method is based on the following idea.

• First compute the matrices

G1 = AT
1 A1, . . . , GK = AT

KAK , G = G1 + · · ·+GK ,

and the vectors h1 = AT
1 b1, . . . , hK = AT

KbK , h = h1 + · · ·+ hK .

• Then solve each of the K least squares problems (24), using the pre-computed matrices and vectors
Gi, G, hi, h to form the coefficient matrix and the right-hand side in the normal equations.

Give the details of this method, i.e., how x̂(k) is computed from the pre-computed matrices and vectors.

Also give the complexity of each step in the method (including the computation of the matrices G1,
. . . , GK , G), and the dominant term in the total complexity. How does the dominant term in the
complexity compare with the method of part (a), if K = 10 and m ≫ n?

8.18 An m× n matrix A is given in factored form A = UDV T , where U is m× n with orthonormal columns, D
is n× n and diagonal with nonzero diagonal elements, and V is n× n and orthogonal. Describe an efficient
method for solving the least squares problem

minimize ‖Ax− b‖2.

“Efficient” here means that the complexity is substantially less than the complexity of the standard method
based on the QR factorization. What is the complexity of your algorithm (number of flops for large m and
n)? (Note: we assume that U , D, V are given; you are not asked to include the complexity of computing
these matrices.)

8.19 Let A be an m × n matrix with linearly independent columns. Explain how you can solve each of the
following problems using the QR factorization of A. Give the complexity of your algorithm, including in the
flop count all cubic and quadratic terms (as a function of m and n). If you know several methods, give the
most efficient one.

(a) Compute bTAA†b, where b is an m-vector.

(b) Solve the linear equation [
I A
AT 0

] [
x
y

]
=

[
b
c

]

with variables x, y. The m-vector b and the n-vector c are given.

(c) Solve the matrix least squares problem

minimize ‖AX −B‖2F
where B is an m× k matrix, with k ≪ n. The variable X is an n× k matrix. (Recall the definition of
Frobenius norm: ‖Y ‖F = (

∑
i

∑
j Y

2
ij)

1/2.)

8.20 Let x̂ be the solution of the least squares problem

minimize ‖Ax− b‖2,

where A is m × n with linearly independent columns and b is not in the range of A. Consider the QR
factorization

[
A b

]
= QR =

[
q1 q2 · · · qn qn+1

]




R11 R12 · · · R1n R1,n+1

0 R22 · · · R2n R2,n+1

...
...

. . .
...

...
0 0 · · · Rnn Rn,n+1

0 0 · · · 0 Rn+1,n+1



.
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(a) Explain how the following norms can be computed from the elements in the last column of R:

‖b‖, ‖Ax̂‖, ‖b−Ax̂‖.

(b) Assume the first column of A is 1. Show that

avg(Ax̂) = avg(b).

(c) Still assuming that the first column of A is 1, explain how the following standard deviations can be
computed from the elements in the last column of R:

std(b), std(Ax̂), std(b−Ax̂).
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9 Multi-objective least squares

9.1 Formulate the following problem as a least squares problem. Find a polynomial

p(t) = x1 + x2t+ x3t
2 + x4t

3

that satisfies the following conditions.

• The values p(ti) at 4 given points ti in the interval [0, 1] is approximately equal to given values yi:

p(ti) ≈ yi, i = 1, . . . , 4.

The points ti are given and distinct (ti 6= tj for i 6= j). The values yi are also given.

• The derivatives of p at t = 0 and t = 1 are small:

p′(0) ≈ 0, p′(1) ≈ 0.

• The average value of p over the interval [0, 1] is approximately equal to the value at t = 1/2:

∫ 1

0

p(t) dt ≈ p(1/2).

To determine coefficients xi that satisfy these conditions, we minimize

E(x) =
1

4

4∑

i=1

(p(ti)− yi)
2 + p′(0)2 + p′(1)2 +

(∫ 1

0

p(t) dt− p(1/2)

)2

.

Give A and b such that E(x) = ‖Ax− b‖2. Clearly state the dimensions of A and b, and what their elements
are.

9.2 The figure shows an illumination system of n lamps illuminating m flat patches. The variables in the problem
are the lamp powers x1, . . . , xn, which can vary between 0 and 1.

lamp j

patch i

rij
θij

The illumination intensity at (the midpoint of) patch i is denoted Ii. We use a simple linear model for the
illumination intensities Ii as a function of the lamp powers xj : for i = 1, . . . ,m,

Ii =

n∑

j=1

Aijxj .

The matrix A (with coefficients Aij) is available from the class webpage (see below), and was constructed
as follows. We take

Aij = r−2
ij max{cos θij , 0},
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where rij denotes the distance between lamp j and the midpoint of patch i, and θij denotes the angle between
the upward normal of patch i and the vector from the midpoint of patch i to lamp j, as shown in the figure.
This model takes into account “self-shading” (i.e., the fact that a patch is illuminated only by lamps in the
halfspace it faces) but not shading of one patch caused by another. Of course we could use a more complex
illumination model, including shading and even reflections. This just changes the matrix relating the lamp
powers to the patch illumination levels.

The problem is to determine lamp powers that make the illumination levels Ii close to a given desired level
Ides. In other words, we want to choose the n-vector x such that

n∑

j=1

Aijxj ≈ Ides, i = 1, . . . ,m,

but we also have to observe the power limits 0 ≤ xj ≤ 1. This is an example of a constrained optimization

problem. The objective is to achieve an illumination level that is as uniform as possible; the constraint is that
the elements of x must satisfy 0 ≤ xj ≤ 1. Finding the exact solution of this minimization problem requires
specialized numerical techniques for constrained optimization. However, we can solve it approximately using
least squares.

In this problem we consider two approximate methods that are based on least squares, and compare them
for the data generated using [A, Ides] = illumdata, with the MATLAB file illumdata.m from the course
website. The elements of A are the coefficients Aij . In this example we have m = 11, n = 7 so A is 11× 7,
and Ides = 2.

(a) Saturate the least squares solution. The first method is simply to ignore the bounds on the lamp powers.
We solve the least squares problem

minimize

m∑

i=1

(

n∑

j=1

Aijxj − Ides)
2

ignoring the constraints 0 ≤ xj ≤ 1. If we are lucky, the solution will satisfy the bounds 0 ≤ xj ≤ 1,
for j = 1, . . . , n. If not, we replace xj with zero if xj < 0 and with one if xj > 1.

Apply this method to the problem data generated by illumdata.m, and calculate the resulting value
of the cost function

∑m
i=1(Ii − Ides)

2.

(b) Weighted least squares. The second method is to solve the problem

minimize

m∑

i=1

(

n∑

j=1

Aijxj − Ides)
2 + λ

n∑

j=1

(xj − 0.5)2,

where the constant λ ≥ 0 is used to attach a cost to the deviation of the powers from the value 0.5,
which lies in the middle of the power limits. For λ = 0, this is the same least squares problem as in
part (a). If we take λ large enough, the solution of this problem will satisfy 0 ≤ xj ≤ 1.

Formulate this problem as a least squares problem in the variables x, and solve it for λ = 1, λ = 2,
λ = 3, etc., until you find a value of λ such that all components of the solution x satisfy 0 ≤ xj ≤ 1. For
that solution x, calculate the cost function

∑m
i=1(Ii − Ides)

2 and compare with the value you obtained
in part (a).

9.3 De-noising using least squares. The figure shows a signal of length 1000, corrupted with noise. We are asked
to estimate the original signal. This is called signal reconstruction, or de-noising, or smoothing. In this
problem we apply a smoothing method based on least squares.
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We will represent the corrupted signal as a vector xcor of size 1000. (The values can be obtained as
xcor = lsdenoising using the file lsdenoising.m.) The estimated signal (i.e., the variable in the problem)
will be represented as a vector x̂ of size 1000.

The idea of the method is as follows. We assume that the noise in the signal is the small and rapidly varying
component. To reconstruct the signal, we decompose xcor in two parts xcor = x̂ + v where v is small and
rapidly varying, and x̂ is close to xcor (x̂ ≈ xcor) and slowly varying (x̂i+1 ≈ x̂i). We can achieve such a
decomposition by choosing x̂ as the solution of the least squares problem

minimize ‖x− xcor‖2 + λ
999∑
i=1

(xi+1 − xi)
2, (25)

where λ is a positive constant. The first term ‖x − xcor‖2 measures how much x deviates from xcor. The

second term,
∑999

i=1(xi+1 − xi)
2, penalizes rapid changes of the signal between two samples. By minimizing

a weighted sum of both terms, we obtain an estimate x̂ that is close to xcor (i.e., has a small value of

‖x̂ − xcor‖2) and varies slowly (i.e., has a small value of
∑999

i=1(x̂i+1 − x̂i)
2). The parameter λ is used to

adjust the relative weight of both terms.

Problem (25) is a least squares problem, because it can be expressed as

minimize ‖Ax− b‖2

where

A =

[
I√
λD

]
, b =

[
xcor

0

]
,

and D is a 999× 1000 matrix defined as

D =




−1 1 0 0 · · · 0 0 0 0
0 −1 1 0 · · · 0 0 0 0
0 0 −1 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · −1 1 0 0
0 0 0 0 · · · 0 −1 1 0
0 0 0 0 · · · 0 0 −1 1




.

The matrix A is quite large (1999 × 1000), but also very sparse, so we will solve the least squares problem
by solving the normal equations

(I + λDTD)x = xcor. (26)

MATLAB provides special routines for solving sparse linear equations, and they are used as follows. There
are two types of matrices: full (or dense) and sparse. If you define a matrix, it is considered full by default,
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unless you specify that it is sparse. You can convert a full matrix to sparse format using the command
A = sparse(A), and a sparse matrix to full format using the command A = full(A).

When you type x = A \ b where A is n× n, MATLAB chooses different algorithms depending on the type
of A. If A is full it uses the standard methods for general matrices. If A is sparse, it uses an algorithm that
takes advantage of sparsity. In our application, the matrix I +λDTD is sparse (in fact tridiagonal), so if we
make sure to define it as a sparse matrix, the normal equations will be solved much more quickly than if we
ignore the sparsity.

The command to create a sparse zero matrix of dimension m × n is A = sparse(m,n). The command
A = speye(n) creates a sparse n × n-identity matrix. If you add or multiply sparse matrices, the result
is automatically considered sparse. This means you can solve the normal equations (26) by the following
MATLAB code (assuming λ and xcor are defined):

D = sparse(999,1000);

D(:,1:999) = -speye(999);

D(:,2:1000) = D(:,2:1000) + speye(999);

xhat = (speye(1000) + lambda*D’*D) \ xcor;

Solve the least squares problem (25) with the vector xcor defined in lsdenoising.m, for three values of λ:
λ = 1, λ = 100, and λ = 10000. Plot the three reconstructed signals x̂. Discuss the effect of λ on the quality
of the estimate x̂.

9.4 Regularized least squares image deblurring. This exercise is on the image deblurring problem in §15.3.3 of
the textbook. The purpose is to develop a fast method for solving the regularized least-squares problem on
page 321:

minimize ‖Ax− y‖2 + λ(‖Dvx‖2 + ‖Dhx‖2). (27)

Notation. A black-and-white image of size n×n is represented as an n×n matrix X with Xij the intensity
of pixel i, j, or as an n2-vector x. We use column-major order when converting a matrix X to a vector x:

x =




X1:n,1

X1:n,2

...
X1:n,n


 .

In MATLAB the conversion can be done by the command x = X(:) or, equivalently, x = reshape(X, n^2, 1).
To convert an n2-vector x to an n× n matrix X we use X = reshape(x, n, n).

In (27), the vectors x and y have length n2. The vector y is given and represents an observed, noisy and
blurred image Y of size n× n. The variable x is the reconstructed n× n image X in vector form.

The following notation will be used to express the matrices A, Dv, Dh in (27). As in exercise 6.9, we use
T (v), with v an n-vector, to denote the n× n circulant matrix with v as its first column:

T (v) =




v1 vn vn−1 · · · v3 v2
v2 v1 vn · · · v4 v3
v3 v2 v1 · · · v5 v4
...

...
...

. . .
...

...
vn−1 vn−2 vn−3 · · · v1 vn
vn vn−1 vn−2 · · · v2 v1




.

We also define T (U) for an n×n matrix U . If the columns of U are u1, u2, . . . , un, then T (U) is the n2×n2
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matrix

T (U) =




T (u1) T (un) T (un−1) · · · T (u3) T (u2)
T (u2) T (u1) T (un) · · · T (u4) T (u3)
T (u3) T (u2) T (u1) · · · T (u5) T (u4)

...
...

...
. . .

...
...

T (un−1) T (un−2) T (un−3) · · · T (u1) T (un)
T (un) T (un−1) T (un−2) · · · T (u2) T (u1)




.

This structure is called block-circulant with circulant blocks (BCCB). Each block T (ui) is a circulant n× n
matrix. The matrix T (U) is block-circulant because each block column is a circular downward shift of the
previous block column.

Image blurring. A linear, spatially invariant blurring operation is defined by a set of coefficients Pkl,
with k and l integers ranging from −r to r. We call P (or, more accurately, the function that maps a pair
(k, l) to the coefficient Pkl) the point spread function (PSF). The integer r is the width of the PSF. We will
assume that 2r+1 ≤ n (usually, r ≪ n). The blurring operation defined by the PSF P is a two-dimensional
convolution. It transforms an n× n image X into a blurred n× n image Y defined by

Yij =

r∑

k=−r

r∑

l=−r

PklXi−k,j−l, i = 1, . . . , n, j = 1, . . . , n. (28)

Note that the sum in this definition references some values of Xi−k,j−l with indices outside the interval [1, n].
To fully specify the blurring operation we therefore need to make assumptions about the image X outside
the frame. These assumptions are called boundary conditions. In this exercise we will use periodic boundary
conditions. Periodic boundary conditions assume that the image X is repeated periodically outside the
frame. One way to write this is to replace the convolution (28) with

Yij =

r∑

k=−r

r∑

l=−r

PklX̄i−k,j−l, i = 1, . . . , n, j = 1 . . . , n, (29)

where X̄ denotes the larger, bordered image

X̄ =

X X X
X X X
X X X

and the indices i, j in X̄ij run from −n+1 to 2n. For example, if n = 3, r = 1, the convolution with periodic
boundary conditions gives



























Y11
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Y31

Y12

Y22

Y32

Y13

Y23

Y33



























=



























P00 P
−1,0 P1,0 P0,−1 P

−1,−1 P1,−1 P01 P
−1,1 P11

P10 P00 P
−1,0 P1,−1 P0,−1 P

−1,−1 P11 P01 P
−1,1

P
−1,0 P10 P00 P

−1,−1 P1,−1 P0,−1 P
−1,1 P11 P01

P01 P
−1,1 P11 P00 P

−10 P10 P0,−1 P
−1,−1 P1,−1

P11 P01 P
−1,1 P10 P00 P

−1,0 P1,−1 P0,−1 P
−1,−1

P
−1,1 P11 P01 P

−1,0 P10 P00 P
−1,−1 P1,−1 P0,−1

P0,−1 P
−1,−1 P1,−1 P01 P

−1,1 P11 P00 P
−1,0 P10

P1,−1 P0,−1 P
−1,−1 P11 P01 P

−1,1 P10 P00 P
−1,0

P
−1,−1 P1,−1 P0,−1 P

−1,1 P11 P01 P
−1,0 P10 P00
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X23
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.

(In this example, 2r + 1 happens to be equal to n, while in general 2r + 1 ≤ n.)

We note that the matrix on the right-hand side is a BCCB matrix. More generally, if we write the convolution
with periodic boundary conditions (29) in matrix form as y = Ax, then A is the n2 × n2 matrix A = T (B),
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where B is the following n× n matrix constructed from the PSF coefficients.

B =




P00 P01 · · · P0r 0 · · · 0 P0,−r · · · P0,−1

P10 P11 · · · P1r 0 · · · 0 P1,−r · · · P1,−1

...
...

...
...

...
...

...
Pr0 Pr1 · · · Prr 0 · · · 0 Pr,−r · · · Pr,−1

0 0 · · · 0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 0 · · · 0
P−r,0 P−r,1 · · · P−r,r 0 · · · 0 P−r,−r · · · P−r,−1

...
...

...
...

...
...

...
P−1,0 P−1,1 · · · P−1,r 0 · · · 0 P−1,−r · · · P−1,−1




.

As we will see, periodic boundary conditions are very convenient mathematically. Although the assumption
of periodicity is not realistic, it is an acceptable approximation if r ≪ n.

Vertical and horizontal differencing. Next we discuss the matrices Dv and Dh in (27). The vector
Dvx is the image obtained by subtracting from X the image X shifted up over one pixel, so that

‖Dvx‖2 =

n∑

i=1

n∑

j=1

(Xij −Xi+1,j)
2.

Here too, the sum references values of Xij outside the frame (namely, the values Xn+1,j are needed when
i = n). To be consistent with the boundary conditions used for the blurring operation, we use periodic
boundary conditions and assume Xn+1,j = X1j . With this assumption, Dv is an n2 × n2 matrix

Dv =




D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D


 ,

with all blocks of size n× n and D defined as the n× n matrix

D =




1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1

−1 0 0 · · · 0 0 1




.

Note that Dv is a BCCB matrix: Dv = T (E) where E is the n× n matrix

E =




1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0
−1 0 · · · 0



. (30)

(The matrix E is zero, except for the elements 1, −1 in the first column.)
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The last term ‖Dhx‖2 in (27) is a penalty on the horizontal differences in the image: Dh is defined by

‖Dhx‖2 =
n∑

i=1

n∑

j=1

(Xij −Xi,j+1)
2.

We again use periodic boundary conditions and define Xi,n+1 = Xi1. This gives

Dh =




I −I 0 · · · 0 0 0
0 I −I · · · 0 0 0
0 0 I · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · I −I 0
0 0 0 · · · 0 I −I

−I 0 0 · · · 0 0 I




.

This is a BCCB matrix: Dh = T (ET ) with E the matrix defined in (30).

Two-dimensional discrete Fourier transform. The two-dimensional DFT of a complex n× n matrix
U is the complex n× n matrix

V = WUW, (31)

where W is the DFT matrix (10). The inverse two-dimensional DFT maps an n×n matrix V to the matrix

U =
1

n2
WHVWH . (32)

In MATLAB the two-dimensional DFT and its inverse are implemented in the functions fft2 and ifft2. We
use V = fft2(U) to evaluate (31) and U = ifft2(V) to evaluate (32). The complexity is roughly n2 log n.

The two-dimensional DFT can also be interpreted as a matrix-vector product. Suppose u and v are the
matrices U and V converted to n2-vectors (in column-major order). Then the relation V = WUW can be
written as

v = W̃u, W̃ =




W11W W12W · · · W1nW
W21W W22W · · · W2nW

...
...

...
Wn1W Wn2W · · · WnnW


 . (33)

The matrix W̃ is n2 × n2 and has n block rows and columns. The i, j block of W̃ is WijW where Wij is the

i, j element of W . (The operation that constructs W̃ from W is known as a Kronecker product and written

W̃ = W ⊗W .) Using (33) and the property WHW = (1/n)I one can show that

W̃HW̃ = n2I.

Therefore W̃−1 = (1/n2)W̃H and W̃W̃H = n2I.

It is important to keep in mind that we never need the matrix W̃ explicitly, since we use the fft2 and
ifft2 functions for the matrix-vector multiplications with W̃ . The product v = W̃u can be evaluated by
combining fft2 and the reshape function:

v = reshape( fft2( reshape( u, n, n ) ), n^2, 1);

Similarly, the matrix-vector product u = W̃−1v = (1/n2)W̃Hv, can be computed as

u = reshape( ifft2( reshape( v, n, n ) ), n^2, 1);
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Finally, we need the two-dimensional counterpart of the factorization result for circulant matrices proved in
exercise 6.9. The result is as follows. Suppose U is an n × n matrix and u is the corresponding n2-vector
(with the elements of U in column-major order). Then the n2 × n2 BCCB matrix T (U) can be factored as

T (U) =
1

n2
W̃H diag(W̃u)W̃ . (34)

Assignment.

(a) The normal equations for (27) are

(ATA+ λDT
v Dv + λDT

h Dh)x = AT y.

Assume A = T (B), Dv = T (E), Dh = T (ET ) are BCCB matrices, where B is a given n×n matrix and
E is the n× n matrix defined in (30). Use the factorization (34) to derive a fast algorithm (with order
n2 log n complexity) for solving the normal equations. Implement the fast algorithm in MATLAB or
Octave.

(b) Download the file deblur.mat on the course website and load it in MATLAB or Octave (load deblur).
The file contains two matrices Y and B. The matrix Y is the blurred image and can be displayed using
the command imshow(Y). The matrix B defines the blurring matrix A = T (B). (The image is from
the USC-SIPI Image Database at http://sipi.usc.edu/database.)

Test your deblurring code with several values of λ, plot the reconstructed image for each value (using
imshow(X)), and determine the value of λ that gives the best result (visually, in your judgment). It is
best to search for a good value of λ over a large range, by using a series of values evenly spaced on a
logarithmic scale, for example, λ = 10−6, 10−5, 10−4, . . . .

Julia users will need the packages FFTW, ImageView, and MAT. The code

using MAT, ImageView

f = matopen("deblur.mat");

Y = read(f, "Y");

B = read(f, "B");

imshow(Y)

imports the matrices Y , B and displays the blurred image Y . The 2-dimensional DFT and inverse DFT
are computed using the functions fft and ifft in the FFTW package, i.e., the same functions as for
the 1-dimensional DFT and inverse DFT (see exercise 6.9). When applied to a matrix, fft and ifft

compute the 2-dimensional DFT and inverse DFT.

9.5 Suppose A is an m × n matrix with columns a1, . . . , an, and Ã is the m × n matrix with the de-meaned
vectors ãi = ai − avg(ai)1 as its columns.

(a) Show that Ã = HA where H is the m×m matrix H = I − (1/m)11T . Verify that H2 = H.

(b) Let t̂, x̂ be the solution of the regularized least squares problem

minimize

∥∥∥∥
[
1 A

] [ t
x

]
− b

∥∥∥∥
2

+ λ‖x‖2

where λ > 0. The variables are the scalar t and n-vector x. Show that x̂ is also the solution of the
regularized least squares problem

minimize ‖Ãx− b‖2 + λ‖x‖2.

An application is the regularized data fitting problem of lecture 10, page 7. Excluding the constant feature
from the regularization term (the first least squares problem in the assignment) is equivalent to a least
squares problem with the centered data matrix and a regularization term on all parameters (the second
problem in the assignment).
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9.6 Denote by x̂(λ) the solution of the weighted least squares problem

minimize λ(aT1 x− b1)
2 +

m∑

i=2

(aTi x− bi)
2

where λ > 0.

(a) Show that

x̂(λ) = x̂+
(λ− 1)(b1 − aT1 x̂)

1 + (λ− 1)aT1 (A
TA)−1a1

(ATA)−1a1,

where x̂ = x̂(1). It is assumed that the m× n matrix

A =




aT1
aT2
...

aTm




has linearly independent columns.

(b) Suppose you have computed x̂ using the standard method based on the QR factorization of A. Given
the already computed QR factors of A, what is the complexity of computing the vector (ATA)−1a1 and
the scalar aT1 (A

TA)−1a1 needed to evaluate x̂(λ) for other values of λ?

(c) Suppose a1 6= 0. The limit of x̂(λ) as λ → ∞ is

x̂+
b1 − aT1 x̂

aT1 (A
TA)−1a1

(ATA)−1a1.

Show that this is the solution of the constrained least squares problem

minimize
m∑
i=2

(aTi x− bi)
2

subject to aT1 x = b1.

9.7 Let x̂ be the solution of the optimization problem

minimize ‖Ax− b‖2 + xTWx

where A is an m × n matrix, b is an m-vector, and W is an n × n diagonal matrix with positive diagonal
elements.

(a) Show that
x̂ = (ATA+W )−1AT b. (35)

Explain why the inverse of ATA+W exists.

(b) Define ŷ = Ax̂− b. Show that [
W AT

A −I

] [
x̂
ŷ

]
=

[
0
b

]
.

(c) Show that
x̂ = W−1AT (AW−1AT + I)−1b. (36)

Explain why the inverse of AW−1AT + I exists.

(d) Describe how you would evaluate the expressions (35) and (36) using QR factorizations of appropriate
matrices. For each of the two expressions, clearly state the matrix for which you compute the QR
factorization and explain why its QR factorization exists. Which of the two methods for computing x̂
is the most efficient? Distinguish two cases: m > n and n > m.
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10 Constrained least squares

10.1 Minimum-energy optimal control. A simple model of a vehicle moving in one dimension is given by

[
s1(t+ 1)
s2(t+ 1)

]
=

[
1 1
0 0.95

] [
s1(t)
s2(t)

]
+

[
0
0.1

]
u(t), t = 0, 1, 2, . . . .

s1(t) is the position at time t, s2(t) is the velocity at time t, and u(t) is the actuator input. Roughly
speaking, the equations state that the actuator input affects the velocity, which in turn affects the position.
The coefficient 0.95 means that the velocity decays by 5% in one sample period (for example, because of
friction), if no actuator signal is applied. We assume that the vehicle is initially at rest at position 0:
s1(0) = s2(0) = 0.

We will solve the minimum energy optimal control problem: for a given time horizon N , choose inputs
u(0), . . . , u(N − 1) so as to minimize the total energy consumed, which we assume is given by

E =

N−1∑

t=0

u(t)2.

In addition, the input sequence must satisfy the constraint s1(N) = 10, s2(N) = 0. Our task therefore is to
bring the vehicle to the final position s1(N) = 10 with final velocity s2(N) = 0, as efficiently as possible.

(a) Formulate the minimum energy optimal control problem as a least norm problem

minimize ‖x‖2
subject to Cx = d.

Clearly state what the variables x, and the problem data C and d are.

(b) Solve the problem for N = 30. Plot the optimal u(t), the resulting position s1(t), and velocity s2(t).

(c) Solve the problem for N = 2, 3, . . . , 29. For each N calculate the energy E consumed by the optimal
input sequence. Plot E versus N . (The plot looks best if you use a logarithmic scale for E, i.e.,
semilogy instead of plot.)

(d) Suppose we allow the final position to deviate from 10. However, if s1(N) 6= 10, we have to pay a
penalty, equal to (s1(N)− 10)2. The problem is to find the input sequence that minimizes the sum of
the energy E consumed by the input and the terminal position penalty,

N−1∑

t=0

u(t)2 + (s1(N)− 10)2,

subject to the constraint s2(N) = 0.

Formulate this problem as a least norm problem, and solve it for N = 30. Plot the optimal input signals
u(t), the resulting position s1(t) and the resulting velocity s2(t).

Remark. If C has linearly independent rows, then the MATLAB command x = C \ d computes a solution
to Cx = d, but it is not the least norm solution. We can use the command x = C’ * ((C*C’) \ d) to
compute the least norm solution. We can also use the QR factorization method, using the code

[Q, R] = qr(C’, 0);

x = Q * (R’ \ d);

In Julia and Octave, x = C \d can be used to compute the least norm solution of underdetermined equations
Cx = d.
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10.2 Two vehicles are moving along a straight line. For the first vehicle we use the same model as in exercise 10.1:

[
s1(t+ 1)
s2(t+ 1)

]
=

[
1 1
0 0.95

] [
s1(t)
s2(t)

]
+

[
0
0.1

]
u(t), t = 0, 1, 2, . . . ,

s1(t) is the position at time t, s2(t) is the velocity at time t, and u(t) is the actuator input. We assume that
the vehicle is initially at rest at position 0: s1(0) = s2(0) = 0. The model for the second vehicle is

[
p1(t+ 1)
p2(t+ 1)

]
=

[
1 1
0 0.8

] [
p1(t)
p2(t)

]
+

[
0
0.2

]
v(t), t = 0, 1, 2, . . . ,

p1(t) is the position at time t, p2(t) is the velocity at time t, and v(t) is the actuator input. We assume that
the second vehicle is initially at rest at position 1: p1(0) = 1, p2(0) = 0.

Formulate the following problem as a least norm problem, and solve it in MATLAB (see the remark at the
end of exercise 10.1). Find the control inputs u(0), u(1), . . . , u(19) and v(0), v(1), . . . , v(19) that minimize
the total energy

19∑

t=0

u(t)2 +

19∑

t=0

v(t)2

and satisfy the following three conditions:

s1(20) = p1(20), s2(20) = 0, p2(20) = 0. (37)

In other words, at time t = 20 the two vehicles must have velocity zero, and be at the same position. (The
final position itself is not specified, i.e., you are free to choose any value as long as s1(20) = p1(20).)

Plot the positions s1(t) and p1(t) of the two vehicles, for t = 1, 2, . . . , 20.

10.3 Explain how you would solve the following problems using the QR factorization.

(a) Find the solution of Cx = d with the smallest value of
∑n

i=1 wix
2
i :

minimize
n∑

i=1

wix
2
i

subject to Cx = d.

The problem data are the p× n matrix C, the p-vector d, and the n vector w. We assume that A has
linearly independent rows, and wi > 0 for all i.

(b) Find the solution of Cx = d with the smallest value of ‖x‖2 − cTx:

minimize ‖x‖2 − cTx
subject to Cx = d.

The problem data are the n-vector c, the p × n matrix C, and the p-vector d. We assume that C has
linearly independent rows.

10.4 Show how to solve the following problems using the QR factorization of A. In each problem A is an m× n
matrix with linearly independent columns. Clearly state the different steps in your method. Also give the
complexity, including all terms that are quadratic (order m2, mn, or n2), or cubic (order m3, m2n, mn2,
n3). If you know several methods, give the most efficient one.

(a) Solve the set of linear equations [
0 AT

A I

] [
x
y

]
=

[
b
c

]
.

The variables are the n-vector x and the m-vector y.
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(b) Solve the least squares problem

minimize 2‖Ax− b‖2 + 3‖Ax− c‖2.

The variable is the n-vector x.

(c) Solve the least norm problem
minimize ‖x‖2 + ‖y‖2
subject to ATx− 2AT y = b.

The variables are the m-vectors x and y.

(d) Solve the quadratic minimization problem

minimize xTATAx+ bTx+ c.

The variable is the n-vector x.

10.5 If A is an m×n matrix with linearly independent columns, and D is an m×m diagonal matrix with positive
diagonal elements, then the coefficient matrix of the equation

[
D2 A
AT 0

] [
x̂
ŷ

]
=

[
b
c

]

is nonsingular. Therefore the equation has a unique solution x̂, ŷ.

(a) Show that x̂ is the solution of the optimization problem

minimize ‖Dx−D−1b‖2
subject to ATx = c.

(b) Show that ŷ is the solution of the optimization problem

minimize ‖D−1(Ay − b)‖2 + 2cT y.

(Hint: set the gradient of the cost function to zero.)

(c) Describe an efficient method, based on the QR factorization of D−1A, for computing x̂ and ŷ. Clearly
state the different steps in your algorithm, the complexity of each step (number of flops for large m,
n), and the total complexity.

10.6 Let A be an m× n matrix, b an n-vector, and suppose the QR factorization

[
AT b

]
=
[
Q1 Q2

] [ R11 R12

0 R22

]

exists. The matrix Q1 has size n ×m, Q2 has size n × 1, R11 has size m ×m, R12 is m × 1, and R22 is a
scalar. Show that x̂ = Q2R22 solves the optimization problem

minimize ‖x− b‖2
subject to Ax = 0.

10.7 Suppose A is an m×n matrix with linearly independent columns. Let x̂ be the solution of the optimization
problem

minimize ‖Ax− b‖2 + 2cTx

with b ∈ Rm and c ∈ Rn, and let ŷ be the solution of

minimize ‖y − b‖2
subject to AT y = c.
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(a) Show that ŷ = b− Ax̂. (Hint. To find an expression for x̂, set the gradient of ‖Ax− b‖2 + 2cTx equal
to zero.)

(b) Describe an efficient method for calculating x̂ and ŷ using the QR factorization of A. Clearly state the
different steps in your algorithm and give the complexity, including all terms that are quadratic (m2,
mn, n2) or cubic (m3, m2n, mn2, n3) in m and n.

10.8 Consider the underdetermined set of linear equations

Ax+By = b

where the p-vector b, the p× p matrix A, and the p× q matrix B are given. The variables are the p-vector x
and the q-vector y. We assume that A is nonsingular, and that B has linearly independent columns (which
implies q ≤ p). The equations are underdetermined, so there are infinitely many solutions. For example, we
can pick any y, and solve the set of linear equations Ax = b−By to find x.

Below we define four solutions that minimize some measure of the magnitude of x, or y, or both. For each
of these solutions, describe a method for computing x and y using a QR or LU factorization. Clearly specify
the matrices that you factor, and the type of factorization. If you know several methods, give the most
efficient one.

(a) The solution x, y with the smallest value of ‖x‖2 + ‖y‖2

(b) The solution x, y with the smallest value of ‖x‖2 + 2‖y‖2.
(c) The solution x, y with the smallest value of ‖y‖2.
(d) The solution x, y with the smallest value of ‖x‖2.

10.9 Let A be a real m× n matrix with linearly independent columns, and let b be a real m-vector. We consider
two least squares problems. The first problem is the standard

minimize ‖Ax− b‖2. (38)

In the second problem we remove column i of A or, equivalently, set xi = 0:

minimize ‖Ax− b‖2
subject to eTi x = 0.

(39)

Here ei denotes the ith unit vector of length n (an n-vector with all its elements zero, except the ith element,
which is one).

(a) Let x̂ be the solution of (38). Show that the solution of (39) is

x = x̂− x̂i

((ATA)−1)ii
(ATA)−1ei. (40)

The denominator in the second term is the ith diagonal element of the inverse (ATA)−1.

(b) Describe an efficient algorithm, based on the QR factorization of A, to calculate x̂ and the vector x
in (40). Carefully state the different steps in your algorithm, and give the complexity of each step
(number of flops for large m, n).

10.10 Let A be an m × n matrix with linearly independent rows, and let d be a nonzero n-vector that satisfies
Ad = 0. Denote by x̂ the solution of the least norm problem

minimize ‖x‖
subject to Ax = b
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and by ŷ the solution of the least norm problem

minimize ‖y‖
subject to Ay = b

dT y = c.

Show that
ŷ − x̂ =

c

dT d
d.

10.11 Least squares fit of piecewise-polynomial function. This exercise is on the piecewise-polynomial fitting prob-
lem of page 340 of the textbook. Download the file splinefit.m and run it in MATLAB/Octave to create
two arrays t and y of length 100. The vector t contains 100 points in the interval [−1, 1]. The first 50 points
are in [−1, 0], the last 50 in [0, 1]. You are asked to find two cubic polynomials

p(x) = θ1 + θ2x+ θ3x
2 + θ4x

3, q(x) = θ5 + θ6x+ θ7x
2 + θ8x

3,

that give the best least squares fit on the intervals [−1, 0] and [0, 1], respectively, and satisfy the continuity
constraints p(0) = q(0), p′(0) = q′(0):

minimize
50∑
i=1

(p(ti)− yi)
2 +

100∑
i=51

(q(ti)− yi)
2

subject to p(0) = q(0), p′(0) = q′(0).

The variables are the coefficients θ1, . . . , θ8. Formulate this as a constrained least squares problem

minimize ‖Ax− b‖2
subject to Cx = d

and compute the solution by solving the optimality conditions

[
ATA CT

C 0

] [
x̂
z

]
=

[
AT b
d

]
.

In MATLAB/Octave:

sol = [ A’*A, C’; C, zeros(p,p) ] \ [ A’*b; d ];

x = sol(1:n);

10.12 Suppose A is an m× n matrix with linearly independent rows aT1 , . . . , a
T
m, and b is an m-vector.

(a) We denote by f(x̂) the solution of the least distance problem

minimize ‖x− x̂‖2
subject to Ax = b

with variable x. Derive the following expression for f(x̂):

f(x̂) = A†b+ (I −A†A)x̂.

Here A† = AT (AAT )−1 is the pseudo-inverse of the matrix A.

(b) To simplify notation we assume the rows of A are normalized (‖ai‖ = 1 for i = 1, . . . ,m). The Kaczmarz
algorithm (exercise 1.12) consists of the following iteration.

Choose an initial x(0).
For k = 1, 2, . . .:
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For i = 1, . . . ,m:
Define j = (k − 1)m+ i− 1.
Project x(j) on the ith hyperplane:

x(j+1) = x(j) + (bi − aTi x
(j))ai.

end
end

The index j counts the number of updates (projections) we have made.

(i) Show that f(x(j+1)) = f(x(j)). This implies that f(x(j)) = f(x(0)) for all j.

(ii) Show that
‖x(j+1) − f(x(0))‖2 = ‖x(j) − f(x(0))‖2 − (bi − aTi x

(j))2.

10.13 For each of the following constrained least squares problems, give the optimality conditions and explain how
to solve the problem using the QR factorization of A. Clearly state the different steps in your method and
give the complexity, including all terms that are quadratic (order m2, mn, or n2) and cubic (order m3, m2n,
mn2, n3). Also include the cost of the QR factorization. If you know several methods, give the most efficient
one.

(a)
minimize ‖Ax− b‖2
subject to cTx = d.

A is an m× n matrix with linearly independent columns. b is an m-vector. c is a nonzero n-vector. d
is a scalar. The variable x is an n-vector.

(b)
minimize ‖x− b‖2 + ‖y − c‖2
subject to ATx = AT y.

A is an m × n matrix with linearly independent columns. b and c are m-vectors. The variables x and
y are m-vectors.

10.14 Let A be an m×n matrix with linearly independent columns. For i = 1, . . . , n, define x̂(i) as the solution of
the constrained least squares problem

minimize ‖Ax‖2
subject to eTi x = −1.

(41)

(ei denotes the ith unit vector, i.e., column i of the n× n identity matrix.)

(a) Show that

x̂(i) = − 1

eTi (A
TA)−1ei

(ATA)−1ei.

(b) Describe an algorithm for computing the n vectors x̂(1), . . . , x̂(n) from the QR factorization of A. Give
a flop count for each step and the total flop count (keeping only dominant terms).

10.15 The figure shows a resistor circuit and the corresponding directed graph, which has five vertices and eight
edges. (However, note that the details of the circuit do not matter. The important features are that each
branch contains a resistor Rk > 0 and a voltage source Ek with the orientation shown.)
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We denote the node-arc incidence matrix of the directed graph by C:

C =




−1 −1 −1 0 0 0 0 0
1 0 0 −1 0 0 1 0
0 1 0 0 −1 0 0 −1
0 0 0 1 1 1 0 0
0 0 1 0 0 −1 −1 1



.

(a) Show that the currents x1, . . . , x8 in the circuit are the solution of the constrained least squares problem

minimize
8∑

k=1

Rk(xk + Ek/Rk)
2

subject to Cx = 0.

(Since the sum of the rows of C is zero, we can also remove one of the five equations in Cx = 0 and
obtain an equivalent constrained least squares problem.)

(b) Is the solution x of the constrained least squares problem in part (a) unique?

10.16 Explain how the following problem can be solved using a QR factorization of the matrix A:

minimize ‖Ax− b‖2 + ‖Ay − c‖2
subject to dTx = eT y.

The m× n matrix A has linearly independent columns and the n-vectors d, e are not zero. The variables in
the problem are the n-vectors x and y.

Clearly state the different steps in the algorithm and their complexity, including terms that are cubic (m3,
m2n, mn2, n3) or quadratic (m2, mn, n2) in the dimensions.

10.17 Suppose A and B are m × n matrices, and A has linearly independent columns. Consider the constrained
least squares problem

minimize ‖AX −B‖2F
subject to X1 = 0.

(42)

The variable X is an n × n matrix. Recall that the Frobenius norm of an m × n matrix Y is defined as
‖Y ‖F = (

∑n
j=1

∑m
i=1 Y

2
ij)

1/2.
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(a) Denote the columns of X by X1, . . . , Xn and the columns of B by B1, . . . , Bn. Define x as the n2-
vector with the columns of X stacked vertically, and b as the mn-vector with the columns of B stacked
vertically:

x =




X1

X2

...
Xn


 , b =




B1

B2

...
Bn


 .

Express problem (42) in the form

minimize ‖Ãx− b‖2
subject to Cx = 0.

(43)

Clearly state what Ã and C are.

(b) Use the optimality conditions for problem (43) to show that the solution of (42) is

X = (ATA)−1ATB(I − 1

n
11T ). (44)

(c) Describe an algorithm for computing the matrix X given in (44), using the QR factorization of A. Give
the complexity of each step in the algorithm and the total complexity, including all terms that are cubic
(m3, m2n, mn2, n3) or of higher order than cubic.

10.18 Suppose A is a p×nmatrix with linearly independent rows and B is an n×pmatrix. Consider the constrained
least squares problem

minimize ‖X −B‖2F
subject to AX = I.

The variable X is an n × p matrix. The solution is the right inverse of A closest to B in Frobenius norm.
(Recall that the Frobenius norm of an n× p matrix Y is ‖Y ‖F = (

∑n
i=1

∑p
j=1 Y

2
ij)

1/2.)

(a) Show that the solution is given by
X = B +A†(I −AB).

(b) Give an algorithm for computing X using the QR factorization of AT . Clearly state the different steps
in the algorithm and their complexity, including all terms that are cubic (p3, p2n, pn2, n3) or of higher
order than cubic.
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11 Cholesky factorization

11.1 Are the following matrices positive definite?

(a) A =




−1 2 3
2 5 −3
3 −3 2


.

(b) A = I − uuT where u is an n-vector with ‖u‖ < 1.

(c) A =

[
I B
BT I +BTB

]
where B is an m× n matrix.

(d) A =

[
1 uT

u I

]
where u is an n-vector with ‖u‖ < 1.

11.2 Show that the inverse of a positive definite matrix is positive definite.

11.3 Suppose the matrix [
0 A
AT B

]

is positive semidefinite. Show that A = 0 and B is positive semidefinite.

11.4 A square matrix P is called a symmetric projection matrix if P = PT and P 2 = P . Show that a symmetric
projection matrix P satisfies the following properties.

(a) I − P is also a symmetric projection matrix.

(b) ‖x‖2 = ‖Px‖2 + ‖(I − P )x‖2 for all x.

(c) P is positive semidefinite.

11.5 Let a be a nonzero n-vector with n ≥ 2. We define two n× n matrices

A =
1

‖a‖2 aa
T , B = I − 1

‖a‖2 aa
T .

The mapping f(x) = Ax is the orthogonal projection of x on the line through a. The mapping g(x) = Bx =
x−Ax is the difference between x and its projection on the line through a.

(a) Are A and B positive semidefinite?

(b) Are A and B positive definite?

11.6 The elementwise product C = A ◦ B of two n × n matrices A, B is defined as the n × n matrix C with
elements Cij = AijBij . (In MATLAB notation: C = A .* B .)

(a) Suppose A is n× n and d is an n-vector. Verify that

A ◦ (ddT ) = diag(d)Adiag(d)

where diag(d) is the diagonal matrix with the vector d on its diagonal. Use this observation to show
that the matrix A ◦ (ddT ) is positive semidefinite if A is positive semidefinite.

(b) Suppose A is n × n and positive semidefinite, and D is an n × m matrix. Show that A ◦ (DDT ) is
positive semidefinite.

(Hint. Write DDT as DDT =
∑m

k=1 dkd
T
k where dk is the kth column of D.)

(c) Suppose A is n× n and positive definite, and D is an n×m matrix with at least one nonzero element
in every row. Show that A ◦ (DDT ) is positive definite.
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11.7 Compute the Cholesky factorization of

A =




4 6 2 −6
6 34 3 −9
2 3 2 −1

−6 −9 −1 38




You can use MATLAB to verify the result, but you have to provide the details of your calculations.

11.8 For what values of the scalar a are the following matrices positive definite? To derive the conditions, factor
A using a Cholesky factorization and collect the conditions on a needed for the factorization to exist.

(a) A =

[
1 a
a 1

]
.

(b) A =




1 a 0
a 1 a
0 a 1


.

(c) A =




1 0 1
0 1 1
1 1 a


.

(d) A =




1 0 a
0 1 0
a 0 1


.

(e) A =




a 1 0
1 −a 1
0 1 a


.

(f) A =

[
I aI
aI I

]
. I is the n× n identity matrix.

(g) A =

[
I au

auT 1

]
. I is the n×n identity matrix and u = (1, 1, . . . , 1), the n-vector with all its elements

equal to one.

(h) A =




1 1 1
1 a a
1 a 2


.

11.9 Suppose A is an n× n positive definite matrix. For what values of the scalar β is the matrix

[
A −A
−A βA

]

positive definite?

11.10 Let A be a positive definite matrix of size n× n. For what values of the scalar a are the following matrices
positive definite?

(a)

[
A ae1
aeT1 1

]
(b)

[
A e1
eT1 a

]
(c)

[
A ae1
aeT1 a

]
.

(e1 = (1, 0, . . . , 0) denotes the first unit vector of length n.) Give your answer for each of the three problems
in the form of upper and/or lower bounds (amin < a < amax, a > amin, or a < amax). Explain how you can
compute the limits amin and amax using the Cholesky factorization A = RTR.
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11.11 In each subproblem D is a diagonal n×n matrix. For what values of D11, . . . , Dnn is the matrix A positive
definite? Also give the Cholesky factorization of A (if the factorization exists).

(a) A =

[
D I
I −D

]
.

(b) A =

[
I D
D D

]
.

(c) A =

[
D 1
1T 1

]
.

11.12 Suppose u is a nonzero n-vector. For what values of the scalar a are the following matrices positive definite?
Express your answer as upper and/or lower bounds on a that depend on the elements of u.

(a) The matrix aI − uuT .

(b) The matrix aI + uuT .

(c) The matrix

[
diag(u)2 1

1T a

]
=




u2
1 0 · · · 0 1
0 u2

2 · · · 0 1
...

...
. . .

...
...

0 0 · · · u2
n 1

1 1 · · · 1 a



.

(Here we assume that u has nonzero elements.)

11.13 Let A be defined as
A = I +BBT

where B is a given n×m matrix with orthonormal columns (not necessarily square).

(a) Show that A is positive definite.

(b) What is the complexity (number of flops for large m and n) of solving Ax = b by first computing
A = I +BBT and then solving Ax = b using the Cholesky factorization of A?

(c) Show that A−1 = I − (1/2)BBT .

(d) Use the expression in part (c) to derive a method for solving Ax = b that is much more efficient than
the method in part (b). Give the complexity of your method.

11.14 You are given the Cholesky factorization A = RTR of a positive definite matrix A of size n × n, and an
n-vector u.

(a) What is the Cholesky factorization of the (n+ 1)× (n+ 1) matrix

B =

[
A u
uT 1

]
?

You can assume that B is positive definite.

(b) What is the complexity of computing the Cholesky factorization of B, if the factorization of A (i.e.,
the matrix R) is given?
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11.15 A matrix A is tridiagonal if Aij = 0 for |i− j| > 1, i.e., A has the form

A =




A11 A12 0 · · · 0 0 0
A21 A22 A23 · · · 0 0 0
0 A32 A33 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · An−2,n−2 An−2,n−1 0
0 0 0 · · · An−1,n−2 An−1,n−1 An−1,n

0 0 0 · · · 0 An,n−1 Ann




.

What is the complexity of computing the Cholesky factorization of a tridiagonal positive definite matrix of
size n× n? Count square roots as one flop and keep only the leading term in the total number of flops.

11.16 Let A be a positive definite 5× 5 matrix with the nonzero pattern

A =




• • •
• •

• • •
• • •

• •



.

The dots indicate the positions of the nonzero elements; all the other elements are zero.

The Cholesky factor R of A has one of the following upper-triangular nonzero patterns. Which one is correct?
For each R, explain why R is or is not the Cholesky factor of A.

(a) R =




• • •
• •

• •
•

•




(b) R =




• • •
• • •

• •
•

•




(c) R =




• • •
• • •

• •
• •

•




(d) R =




• • •
• •

• • •
• •

•




11.17 Define a block matrix

K =

[
A B
BT −C

]
,

where the three matrices A, B, C have size n×n. The matrices A and C are symmetric and positive definite.
Show that K can be factored as

K =

[
RT

11 0
RT

12 RT
22

] [
I 0
0 −I

] [
R11 R12

0 R22

]
,

where R11 and R22 are upper triangular matrices with positive diagonal elements. The blocks R11, R12,
R22, and the two identity matrices on the right-hand side, all have size n × n. What is the complexity of
computing this factorization?

11.18 Let u be a nonzero n-vector.

(a) Show that I + auuT is positive definite if a > −1/‖u‖2.
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(b) Suppose a > −1/‖u‖2. It can be shown that the triangular factor in the Cholesky factorization I +
auuT = RTR can be written as

R =




β1 γ1u2 γ1u3 · · · γ1un−1 γ1un

0 β2 γ2u3 · · · γ2un−1 γ2un

0 0 β3 · · · γ3un−1 γ3un

...
...

...
. . .

...
...

0 0 0 · · · βn−1 γn−1un

0 0 0 · · · 0 βn




.

The entries to the right of the diagonal in row k are the entries uk+1, . . . , un of the vector u, multiplied
with γk. Give an algorithm, with a complexity linear in n, for calculating the parameters β1, . . . , βn

and γ1, . . . , γn−1, given the vector u and the scalar a.

11.19 Consider the symmetric n× n matrix

A =




1 a a2 · · · an−2 an−1

a 1 a · · · an−3 an−2

a2 a 1 · · · an−4 an−3

...
...

...
. . .

...
...

an−2 an−3 an−4 · · · 1 a
an−1 an−2 an−3 · · · a 1




where a is a real scalar. The i, j element is Aij = a|i−j|. The matrix A is a Toeplitz matrix, i.e., constant
along the diagonals. (Note, however, that A is not circulant; the problem does not require any of the
properties of circulant matrices used in exercise 6.9).

We will use the following property (which you are not asked to show): if A is positive definite, then its
Cholesky factor has the form

R =




D11 0 0 · · · 0
0 D22 0 · · · 0
0 0 D33 · · · 0
...

...
...

. . .
...

0 0 0 · · · Dnn







1 a a2 · · · an−1

0 1 a · · · an−2

0 0 1 · · · an−3

...
...

...
. . .

...
0 0 0 · · · 1



, (45)

i.e., the product of a diagonal matrix with the upper-triangular part of A.

(a) Suppose A is positive definite, so its Cholesky factor can be written as (45). Give an expression for the
diagonal elements Dii. (Hint. Consider the diagonal elements in the equality A = RTR.)

(b) For what values of a is A positive definite?

(c) Give a simple explicit formula for the inverse of R in (45).

(d) Use part (c) to formulate a fast algorithm, with order n complexity, for solving Ax = b, when A is
positive definite.

11.20 Multi-class classification. In this exercise we implement the handwritten digit classification method of the
lecture on Cholesky factorization on a smaller data set (of 5000 examples) than used in the lecture. The
data are available in the file mnist.mat. The file contains four variables: Xtrain, Xtest, labels_train,
labels_test.

The variable Xtrain is a 5000×784 matrix Xtrain containing 5000 images. Each row is a 28×28 image stored
as a vector of length 784. (To display the image in row i, use imshow(reshape(Xtrain(i,:), 28, 28)’).)
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The array labels_train is a vector of length 5000, with elements from {0, 1, . . . , 9}. The ith element is the
digit shown in row i of Xtrain. The 5000 images in Xtrain will be used to compute the classifier.

The matrix Xtest and vector labels_test are defined similarly, and give 5000 examples that will be used
to test the classifier.

• Binary classifiers. The multi-class classification method is based on 10 binary classifiers. Each of the
binary classifiers is designed to distinguish one of the digits versus the rest. We will use the polynomial
kernel of degree 3, as in the lecture.

To compute the classifier for digit k versus the rest, we solve a linear equation

(Q+ λI)w = y,

where Q is an N ×N matrix (N = 5000) with elements

Qij = (1 + xT
i xj)

3, i, j = 1, . . . , N,

and xT
i is the ith row of the matrix Xtrain. The coefficient λ is a positive regularization parameter. The

right-hand side y is a vector of length N , with yi = 1 if the image in row i of Xtrain is an example of
digit k, and yi = −1 otherwise.

In MATLAB the coefficients w for all ten binary classifiers can be computed as follows.

load mnist;

[N, n] = size(Xtrain);

Y = -ones(N, 10);

for j = 1:10

I = find(labels_train == j-1);

Y(I, j) = 1;

end;

W = ( (1 + Xtrain * Xtrain’).^3 + lambda * eye(N) ) \ Y;

Here we first create an N×10 matrix Y with Yij = 1 if image i is an example of digit j−1 and Yij = −1
otherwise. The computed matrix W has size N × 10 and contains in its jth column the coefficients w
of the classifier for digit j − 1 versus the rest. The binary classifier for digit j − 1 can be evaluated at
a new image z by computing

f̃ (j)(z) =

N∑

i=1

Wij(1 + zTxi)
3

and assigning z to class j if f̃ (j)(x) is greater than or equal to zero.

• Multi-class classifier. We combine the ten binary classifiers into a multi-class classifier by taking the
maximum of the ten functions f̃ (j)(z):

f̂(z) = argmax
j=1,...,10

f̃ (j)(z) = argmax
j=1,...,10

(
N∑

i=1

Wij(1 + zTxi)
3

)
.

In MATLAB, if z is an image stored as a column vector of length 784, the prediction f̂(z) can be
computed as

[val, prediction] = max((( 1 + z’ * Xtrain’ ).^3) * W);

On the right-hand side we compute the maximum of a row vector of length 10. The first output
argument on the left-hand side is the maximum value; the second output argument is the column index
of the maximum (an integer between 1 and 10).

The predictions for all examples in the training set can be computed using

[val, prediction] = max((( 1 + Xtrain * Xtrain’).^3) * W, [], 2);
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On the right-hand side we have a matrix of size 5000 × 10 as the first argument of max. The second
and third arguments are needed to indicate that we are taking the maximum over the elements in each
row. The first output argument on the left-hand side is a column vector of length N with the maximum
value in each row; the second output argument is a column vector of length N with the column indices
of the maximum elements in each row. This vector therefore contains the class predictions for the N
rows of Xtrain. The command

I = find( prediction - 1 ~= labels_train )

returns the indices of the rows of Xtrain that are misclassified by the multi-class classifier.

Similarly, we can compute the predictions for all examples in the test set using

[val, prediction] = max((( 1 + Xtest * Xtrain’).^3) * W, [], 2);

Implement this method for a range of regularization parameters λ = 1, 10, . . . , 107. Plot the error rate for
training set and test set as a function of λ. Choose the λ that (approximately) gives the smallest error on
the test set, and give the confusion matrix of the classifier for this value of λ.

11.21 Let A be a positive definite n× n matrix, and c a nonzero n-vector.

(a) Show that the solution of the optimization problem

minimize xTAx
subject to cTx = 1

is given by

x =
1

cTA−1c
A−1c.

Hint. By writing xTAx = xTRTRx = ‖Rx‖2, where R is the Cholesky factor of A, we can interpret
the problem as a constrained least squares problem.

(b) Suppose λ > 0. Show that the solution of the optimization problem

minimize xTAx+ λ(cTx− 1)2

is given by

x =
λ

1 + λcTA−1c
A−1c.

11.22 Let a and b be two nonzero n-vectors.

(a) Show that the matrix

A =




1 avg(a) avg(b)
avg(a) rms(a)2 (aT b)/n
avg(b) (bT a)/n rms(b)2


 =

1

n




n 1Ta 1T b
aT1 aT a aT b
bT1 bT a bT b




is always positive semidefinite. (The vector 1 is the n-vector with all its elements equal to one.)

(b) Assume n ≥ 3. Use the Cholesky factorization of A to derive the necessary and sufficient conditions
for A to be positive definite. Express the conditions in terms of the averages avg(a), avg(b), standard
deviations std(a), std(b), and correlation coefficient ρ of the vectors a and b. What do the conditions
mean on a scatterplot of a and b?

11.23 Let A be an m× n matrix, B a positive definite n× n matrix, and C a positive definite m×m matrix.
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(a) Show that the matrix [
B AT

A −C

]

is nonsingular, and that the following two expressions for its inverse are correct:

[
B AT

A −C

]−1

=

[
B−1 0
0 0

]
−
[

B−1AT

−I

]
(C +AB−1AT )−1

[
AB−1 −I

]

and [
B AT

A −C

]−1

=

[
0 0
0 −C−1

]
+

[
I

C−1A

]
(B +ATC−1A)−1

[
I ATC−1

]
.

(b) Suppose B = RTR and C = UTU are the Cholesky factorizations of B and C. Define (x, y) as the
solution of the equation [

B AT

A −C

] [
x
y

]
=

[
b
c

]
.

Show that x is the minimizer of the function

‖R(x−B−1b)‖2 + ‖U−T (Ax− c)‖2

and that y is the minimizer of

‖U(y + C−1c)‖2 + ‖R−T (AT y − b)‖2.

11.24 Let A be a positive definite matrix with negative off-diagonal entries (Aij < 0 for i 6= j), and let R be the
Cholesky factor of A.

(a) Show that the entries of R above the diagonal are negative (Rij < 0 for j > i).

(b) Use the result of part (a) to show that the entries of R−1 above the diagonal are positive ((R−1)ij > 0
for j > i).

(c) Use the result of part (b) to show that all the entries of A−1 are positive.

11.25 Suppose x and y are n-vectors that satisfy xT y > 0. Define A = B + C where

B = (I − 1

xT y
yxT )(I − 1

xT y
xyT ), C =

1

xT y
yyT .

(a) Show that y = Ax.

(b) Show that B and C are positive semidefinite, but not positive definite (if n ≥ 2).

(c) Show that A is positive definite.

11.26 Consider the matrix

A =

[
B −CT

C D

]

where B and D are symmetric and positive definite, B has size n× n, and D has size m×m. Note that A
is not symmetric if C 6= 0.

(a) Show that A can be factorized as

A =

[
RT

11 0
−RT

12 RT
22

] [
R11 R12

0 R22

]

where R11 and R22 are upper triangular, and of size n× n and m×m, respectively.
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(b) What is the complexity of computing the factorization in part (a)? Include in the flop count all terms
that are cubic (m3, m2n, mn2, n3) or of higher order than cubic.

11.27 Let A be a 2n× 2n symmetric positive definite matrix, partitioned as

A =

[
A11 A12

A21 A22

]
,

with four blocks of size n× n. Define the 2n× 2n matrix

B =

[
B11 B12

B21 B22

]
=

[
A−1

11 −A−1
11 A12

A21A
−1
11 A22 −A21A

−1
11 A12

]
.

Note that B is not symmetric because B21 = −BT
12. It is straightforward to show that x1, x2, y1, y2 satisfy

[
A11 A12

A21 A22

] [
x1

x2

]
=

[
y1
y2

]

if and only if they satisfy [
B11 B12

B21 B22

] [
y1
x2

]
=

[
x1

y2

]
.

(You are not asked to prove this.)

(a) Explain why A11 and A22 are positive definite.

(b) Explain why B11 and B22 are positive definite.

(c) Suppose A11 = RT
1 R1 and A22 = RT

2 R2 are the Cholesky factorizations of A11 and A22. Show that B
can be factored as

B =

[
B11 B12

B21 B22

]
=

[
R−1

1 0
A21R

−1
1 RT

2

] [
R−T

1 −R−T
1 A12

0 R2

]
.

What is the complexity of computing the three blocks in this factorization if you are given the matrix A?

11.28 For what values of a are the following matrices positive definite?

(a) The 3× 3 matrix

A =




1 a a2

a a a2

a2 a2 a2


 .

(b) The (m+ n)× (m+ n) matrix

A =

[
aI Q
QT aI

]

where Q is an m× n matrix with orthonormal columns.

11.29 In this problem, A is a symmetric, positive definite, and tridiagonal n× n matrix:

A =




A11 A12 0 · · · 0 0 0
A21 A22 A23 · · · 0 0 0
0 A32 A33 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · An−2,n−2 An−2,n−1 0
0 0 0 · · · An−1,n−2 An−1,n−1 An−1,n

0 0 0 · · · 0 An,n−1 Ann




.

The matrix is symmetric, so Aij = Aji. The matrix is called tridiagonal because Aij = 0 for |i− j| > 1.
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(a) What is the complexity of computing the Cholesky factorization A = RTR? Is it linear, quadratic, or
cubic in n? Explain your answer.

(b) The inverse A−1 is generally dense (i.e., all entries can be nonzero). What is the complexity of computing
the inverse A−1 from the Cholesky factor R? Explain your answer.

(c) In certain applications in statistics, one is interested in the entries of A−1 on the three main diagonals
(i.e., the entries (A−1)ij for |i − j| ≤ 1), and not the entire inverse. Show how to compute the entries
of X = A−1 on the three main diagonals from the equation

RX = R−T . (46)

To simplify notation, you can assume n = 4 when explaining the algorithm. Hint. Determine the
desired entries of X in the following order:

X44, X34 = X43, X33, X23 = X32, X22, X12 = X21, X11.

Is the complexity of the algorithm (extended to general n) linear, quadratic, or cubic in n?
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12 Nonlinear equations

12.1 The nonlinear resistive circuit shown below is described by the nonlinear equation

f(x) = g(x)− (E − x)/R = 0.

The function g(x) gives the current through the nonlinear resistor as a function of the voltage x across its
terminals.

R

E x

y = g(x)

Use Newton’s method to find all the solutions of this nonlinear equation, assuming that g(x) = x3−6x2+10x.
Consider three cases:

(a) E = 5, R = 1.

(b) E = 15, R = 3.

(c) E = 4, R = 0.5.

Select suitable starting points by plotting f over the interval [0, 4], and visually selecting a good starting
point. You can terminate the Newton iteration when |f(x(k))| < 10−8. Compare the speed of convergence
for the three problems, by plotting |f(x(k))| versus k, or by printing out |f(x(k))| at each iteration.

12.2 The figure shows the function n(t) = 10te−2t + e−t.
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Use Newton’s method to answer the following questions.

(a) Find the two values of t at which n(t) = 2.

(b) Find the value of t at which n(t) reaches its maximum.

12.3 Find all values of x for which ‖(A+ xI)−1b‖ = 1 where

A =




−3 0 0
0 1 0
0 0 2


 , b =




1
1
1


 .

Use Newton’s method, applied to the equation g(x) = 1, where

g(x) = ‖(A+ xI)−1b‖2 =
1

(−3 + x)2
+

1

(1 + x)2
+

1

(2 + x)2
.

First plot g(x) versus x to determine the number of solutions and to select good starting points.
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12.4 Use Newton’s method to find all solutions of the two equations

(x1 − 1)2 + 2(x2 − 1)2 = 1, 3(x1 + x2 − 2)2 + (x1 − x2 − 1)2 = 2

in the two variables x1, x2. Each equation defines an ellipse in the (x1, x2)-plane. You are asked to find the
points where the ellipses intersect.

12.5 Explain how you would solve the following problem using Newton’s method. We are given three distinct
points a = (a1, a2), b = (b1, b2), c = (c1, c2) in a plane, and two positive numbers α and β. Find a point
x = (x1, x2) that satisfies

‖x− a‖ = α‖x− b‖, ‖x− a‖ = β‖x− c‖. (47)

Clearly state the equations f(x) = 0 to which you apply Newton’s method (these equations can be the two
equations (47) or an equivalent set of equations), and the linear equations you solve at each iteration of
the algorithm. You do not have to discuss the selection of the starting point, the stopping criterion, or the
convergence of the method.
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13 Unconstrained optimization

13.1 Derive the gradient and Hessian of the following functions g. Show that ∇2g(x) is positive definite.

(a) g(x) =
√
x2
1 + x2

2 + · · ·+ x2
n + 1 =

√
‖x‖2 + 1.

Hint. Express ∇2g(x) as

∇2g(x) =
1

g(x)
(I − uuT )

where u is an n-vector with norm less than one. Then prove that I − uuT is positive definite.

(b) g(x) =
√

‖Cx‖2 + 1 where A is an m× n matrix with linearly independent columns.

Hint. Use the result of part (a) and the expression

∇2g(x) = CT∇2h(Cx+ d)C

for the Hessian of the function g(x) = h(Cx+ d).

13.2 The figure shows 42 data points (ui, vi). The points are approximately on a straight line, except for the first
and the last point.
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The data are available in the file robappr.m as [u,v] = robappr;.

(a) Fit a straight line v = α+ βu to the points by solving a least squares problem

minimize g(α, β) =
42∑
i=1

(α+ βui − vi)
2,

with variables α, β.

(b) Fit a straight line v = α+ βu to the points by solving the unconstrained minimization problem

minimize g(α, β) =
42∑
i=1

√
(α+ βui − vi)2 + 25

using Newton’s method. Use as initial points the values of α and β computed in part (a). (With
this starting point, no line search should be necessary; for other starting points, a line search may be
needed.) Terminate the iteration when ‖∇g(α, β)‖ ≤ 10−6.
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(c) Fit a straight line v = α+ βu to the points by solving the unconstrained minimization problem

minimize g(α, β) =
42∑
i=1

(α+ βui − vi)
4

using Newton’s method. Use as initial points the values of α and β computed in part (a). (With this
starting point, no line search should be necessary.) Terminate the iteration when ‖∇g(α, β)‖ ≤ 10−6.

(d) Plot the three functions α+ βu computed in parts (a), (b) and (c) versus u, and compare the results.

13.3 Consider the problem of fitting a quadratic function f(t) = α+βt+γt2 tom given points (ti, yi), i = 1, . . . ,m.
Suppose we choose to estimate the parameters α, β, γ by minimizing the function

g(α, β, γ) = −
m∑

i=1

log
(
1− (α+ βti + γt2i − yi)

2
)

(where log denotes the natural logarithm).

(a) Give expressions for the gradient ∇g(α, β, γ) and Hessian ∇2g(α, β, γ) of g, at a point (α, β, γ) that
satisfies

|α+ βti + γt2i − yi| < 1, i = 1, . . . ,m.

(This condition guarantees that g and its derivatives are defined at (α, β, γ).)

(b) Show that the Hessian is positive definite.

Assume that the values ti are distinct and that m ≥ 3.

13.4 For the data and with the same notation as in exercise 8.4, compute the coordinates (u1, v1), (u2, v2), (u3, v3)
that minimize l41 + l42 + l43 + l45 + l46 + l47. Use Newton’s method, with u = v = 0 as starting point. With this
starting point no line search should be necessary.

13.5 Consider the problem of minimizing the function

g(x) =

n∑

i=1

exp(xi + ai) +

n−1∑

i=1

(xi+1 − xi)
2

=

n∑

i=1

exp(xi + ai) + (x2 − x1)
2 + (x3 − x2)

2 + · · ·+ (xn − xn−1)
2.

The n-vector a is given.

(a) Give the gradient and Hessian of g. Show that the Hessian is positive definite everywhere.

(b) Describe an efficient method for computing the Newton step

v = −∇2g(x)−1∇g(x).

What is the complexity of your method? It is sufficient to give the exponent of the dominant term in
the flop count.

13.6 Define

g(x) = ‖x− a‖2 +
n−1∑

k=1

√
(xk+1 − xk)2 + ρ,

where a is a given n-vector and ρ is a given positive scalar. The variable is the n-vector x.

(a) Give expressions for the gradient and Hessian of g. Show that the Hessian is positive definite at all x.
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(b) Describe an efficient method for computing the Newton step

v = −∇2g(x)−1∇g(x).

Is the complexity of your method linear, quadratic, or cubic in n?

13.7 Let A be an m× n matrix with linearly independent columns and QR factorization A = QR. Consider the
problem of minimizing

g(x) =
1

2

(
‖Ax− b‖2 − (cTx)2

)

where b is an m-vector and c is an n-vector. (Note the minus sign in front of the second term, so this is not
a least squares problem.)

(a) Give the gradient and Hessian of g(x).

(b) Show that if ‖R−T c‖ < 1, then g(x) is minimized by

x̂ = y +
cT y

1− cT z
z

where y = A†b and z = (ATA)−1c.

(c) Describe an efficient method for computing x̂ using the QR factorization of A. Clearly state the different
steps in your method and give the complexity of each step. If you know several methods, choose the
most efficient one.

13.8 We consider the problem of fitting a model f̂(x) = θTF (x) to N data points (x1, y1), . . . , (xN , yN ), with
xi ∈ Rn and yi ∈ R. The model is parameterized by a p-vector of parameters θ. The function F (x) : Rn →
Rp is a vector of basis functions. We formulate the model fitting problem as a minimization problem, and
determine θ by minimizing the function

g(θ) =

N∑

i=1

h(F (xi)
T θ − yi) +

1

2
‖θ‖2

where h(z) is the function h(z) = log(ez + e−z)− log 2. This function is shown in the figure.
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2

z

h(z) = log(
ez + e−z

2
)

(a) Suppose we use Newton’s method to minimize g(θ). Describe in detail the linear equation that needs
to be solved at each iteration.

(b) Show that the Hessian of g(θ) is positive definite.

(c) Assume p ≫ N . Describe an efficient method, based on the Cholesky factorization, for solving the
Newton equation in part (a). You can use the following fact: if A is an N × p matrix and D a diagonal
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N ×N matrix with positive diagonal elements, then

(ATDA+ I)−1 = I −AT (D−1 +AAT )−1A.

What is the complexity of your algorithm (number of flops per Newton iteration) as a function of N
and p? In the flop count, include all terms of order three (N3, N2p, Np2, p3) and higher. Do not
include the complexity of evaluating the vectors F (xi).
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14 Nonlinear least squares

14.1 A cell phone at location (x1, x2) in a plane (we assume that the elevation is zero for simplicity) transmits an
emergency signal at time x3. This signal is received at m base stations, located at positions (p1, q1), (p2, q2),
. . . , (pm, qm). Each base station can measure the time of arrival of the emergency signal, within a few tens
of nanoseconds. The measured times of arrival are

τi =
1

c

√
(x1 − pi)2 + (x2 − qi)2 + x3 + vi, i = 1, . . . ,m,

where c is the speed of light (0.3 meters/nanosecond), and vi is the noise or error in the measured time of
arrival. The problem is to estimate the cell phone position x = (x1, x2), as well as the time of transmission
x3, based on the time of arrival measurements τ1, . . . , τm.

The m-file e911.m, available on the course web site, defines the data for this problem. It is executed as
[p,q,tau] = e911. The 9× 1-arrays p and q give the positions of the 9 base stations. The 9× 1-array tau

contains the measured times of arrival. Distances are given in meters and times in nanoseconds.

Determine an estimate x̂1, x̂2, x̂3 of the unknown coordinates and the time of transmission, by solving the
nonlinear least squares problem

minimize
9∑

i=1

fi(x)
2

where

fi(x1, x2, x3) =
1

c

√
(x1 − pi)2 + (x2 − qi)2 + x3 − τi.

Use the Levenberg–Marquardt method, with x1 = x2 = x3 = 0 as starting point. Your solution should
include:

• a description of the least squares problems that you solve at each iteration

• the computed estimates x̂1, x̂2, x̂3

• a plot of g(x(k))− g(x̂) versus k, where g(x) =
∑9

i=1 fi(x)
2.

14.2 In exercise 8.2 we developed a simple approximate model for the inductance of a planar CMOS inductor.
The model had the form L̂ = αnβ1wβ2dβ3Dβ4 , and depended on five model parameters: α, β1, β2, β3, β4.
We calculated the five parameters by minimizing the error function

50∑

i=1

(logLi − log L̂i)
2,

which is a linear least squares problem in the variables

x1 = logα, x2 = β1, x3 = β2, x4 = β3, x5 = β4.

In this problem you are asked to estimate the model parameters by minimizing the function g(x) =
∑50

i=1(Li−
L̂i)

2. This is a nonlinear least squares problem

minimize
50∑
i=1

fi(x)
2

with x defined as before, and
fi(x) = ex1nx2

i wx3

i dx4

i Dx5

i − Li.

Solve this nonlinear least squares problem using the Levenberg–Marquardt method and the data from
inductordata.m.

Consider two starting points: (1) the answer of exercise 8.2, i.e., the values of the model parameters calculated
by solving the linear least squares problem; (2) x = 0. For both starting points, plot the error ‖f(x(k))‖2 −
‖f(x⋆)‖2 versus the iteration number k.
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14.3 The figure shows m = 20 points (ti, yi) as circles. These points are well approximated by a function of the
form

f(t) = αtβeγt.

(An example is shown in dashed line.)
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Explain how you would compute values of the parameters α, β, γ such that

αtβi e
γti ≈ yi, i = 1, . . . ,m, (48)

using the following two methods.

(a) The Levenberg–Marquardt method applied to the nonlinear least squares problem

minimize
m∑

i=1

(
αtβi e

γti − yi

)2

with variables α, β, γ. Your description should include a clear statement of the linear least squares
problems you solve at each iteration. You do not have to include a line search.

(b) Solving a single linear least squares problem, obtained by selecting a suitable error function for (48)
and/or making a change of variables. Clearly state the least squares problem, the relation between its
variables and the parameters α, β, γ, and the error function you choose to measure the quality of fit
in (48).

14.4 We have discussed the problem of fitting a polynomial

p(t) = c1 + c2t+ c3t
2 + · · ·+ cnt

n−1

to observations (t1, y1), . . . , (tN , yN ). The simplest method is to solve the least squares problem

minimize

N∑

i=1

(c1 + c2ti + c3t
2
i + · · ·+ cnt

n−1
i − yi)

2 (49)

with variables c1, . . . , cn. An example is shown in the figure on the left.
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As a variation, one can seek to minimize the sum of the squares of the distances of the points (ti, yi) to the
graph of the polynomial, as in the figure on the right. To formulate this as an optimization problem, we first
note that the squared distance between the point (ti, yi) and the graph of the polynomial is given by

min
ui

(
(p(ui)− yi)

2 + (ui − ti)
2
)
.

The problem of finding a polynomial that minimizes the sum of the squared distances can therefore be
written as an optimization problem

minimize

N∑

i=1

(
c1 + c2ui + c3u

2
i + · · ·+ cnu

n−1
i − yi

)2
+

N∑

i=1

(ui − ti)
2, (50)

with variables c1, . . . , cn, and u1, . . . , uN . Problem (50) is a nonlinear least-squares problem

minimize

m∑

i=1

fi(x)
2

with m = 2N , a variable x = (c1, . . . , cn, u1, . . . , uN ) of length n+N , and functions fi defined as

fi(x) = c1 + c2ui + c3u
2
i + · · ·+ cnu

n−1
i − yi, fN+i(x) = ui − ti

for i = 1, . . . , N .

Use the Levenberg–Marquardt method to fit a polynomial of degree 3 (n = 4) to the data in the file
polyfit.m. (The command [t, y] = polyfit returns vectors t, y of length 25 containing the data points
ti, yi.) A natural choice for the starting point is to use the solution of the standard least-squares problem (49)
to initialize the coefficients ci, and to use ti as initial value for ui.

14.5 In this exercise we use the Levenberg–Marquardt method to solve the following problem: determine the
coordinates of N points in a plane, given the coordinates of M other points with known positions, and
(noisy) measurements of the distances between certain pairs of the M +N points. We call the N points with
unknown coordinates the free points, and the M points with known coordinates the anchor points.

In a practical application, the points correspond to nodes in a wireless sensor network. Some nodes (the
anchor nodes) have been carefully placed or are equipped with GPS receivers, so their coordinates are
known. The coordinates of the other nodes (the free nodes) have to be determined from measurements of
the distances to neighboring nodes.

The problem can be represented as a graph. The M +N nodes of the graph represent the N free points and
the M anchor points. The coordinates of the free nodes are denoted (u1, v1), . . . , (uN , vN ). They are the
variables in the problem. The coordinates of the anchor points are denoted (ū1, v̄1), . . . , (ūM , v̄M ) and are
given. The K edges in the graph represent the measurements: if there is an edge between two nodes in the
graph, a measurement is made of the distance between the corresponding points.

An example with 4 anchor points, 3 free points, and 7 distance measurements is shown below.

(ū1, v̄1) = (−1, 0)

(ū2, v̄2) = (0.5, 1)

(ū3, v̄3) = (1, 0.5)

(ū4, v̄4) = (0,−1)

(u1, v1)

(u2, v2)

(u3, v3)

ρ1

ρ2ρ3

ρ4

ρ5

ρ6

ρ7
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We will formulate the problem in terms of a K×N matrix B and three K-vectors c, d, ρ, defined as follows.
The rows in B and the elements of b, c, and ρ correspond to the different edges in the graph.

• If row k corresponds to an edge between free points i and j, we take

bki = 1, bkj = −1, ck = dk = 0.

The other elements of the kth row of B are zero. ρk is a (noisy) measurement of the distance ((ui −
uj)

2 + (vi − vj)
2)1/2.

• If row k corresponds to an edge between free point i and anchor point j, we take

bki = 1, ck = −ûj , dk = −v̂j .

The other elements in row k of B are zero. ρk is a measurement of the distance ((ui−ûj)
2+(vi−v̂j)

2)1/2.

With this notation, the length of edge k is

lk(u, v) =
√

(bTk u+ ck)2 + (bTk v + dk)2

where bTk is the kth row of B and u = (u1, . . . , uN ), v = (v1, . . . , vN ).

For the example of the figure, we can define B, c and d as

B =




1 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1
0 0 1
0 1 0




, c =




0
0
1

−0.5
0

−1
−1




, d =




0
0
0

−1
1

−0.5
−0.5




.

The problem is to find values of u, v that satisfy lk(u, v) ≈ ρk for k = 1, . . . ,K. This can be posed as a
nonlinear least squares problem

g(u, v) =

K∑

k=1

fk(u, v)
2 (51)

with variables u and v, where

fk(u, v) = lk(u, v)
2 − ρ2k = (bTk u+ ck)

2 + (bTk v + dk)
2 − ρ2k.

(Here we define fk as lk(u, v)
2 − ρ2k rather than lk(u, v)− ρk to simplify the calculation of the derivates.)

The file networkloc.m on the class webpage contains the data that we will use in the problem. It can be
executed in MATLAB using the command

[B, c, d, rho] = networkloc;

This creates the problem data B, c, d, ρ for the network shown in the figure below.
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There are 50 free nodes (N = 50), 9 anchor nodes shown as squares (M = 9), and 389 edges (K = 389).

Find estimates of u and v by solving (51) using the Levenberg–Marquardt method. When testing your code,
try several randomly generated starting points in the square [0, 1]× [0, 1] (using the MATLAB commands u
= rand(N,1), v = rand(N,1)). Terminate the iteration when ‖∇g(u, v)‖2 ≤ 10−6.

14.6 As in exercise 8.6 we consider the problem of fitting a circle to m points in a plane, but with a different error
function. In this exercise we formulate the problem as a nonlinear least squares problem

minimize g(uc, vc, R) =
m∑
i=1

(√
(ui − uc)2 + (vi − vc)2 −R

)2

with variables uc, vc, R. Note that |
√
(ui − uc)2 + (vi − vc)2 −R| is the distance of the point (ui, vi) to the

circle, so in this formulation we minimize the sum of the squared distances of the points to the circle.

Apply the Levenberg–Marquardt method to this nonlinear least squares problem with the data in circlefit.m.
Terminate the iteration when ‖∇g(uc, vc, R)‖ ≤ 10−5. You can select a good starting point from the plot of
the 50 points (ui, vi) or from the solution of exercise 8.6. Include in your solution:

• a description of the least squares problem you solve at each iteration (the matrix A and the vector b)

• the MATLAB code

• the computed solution uc, vc, R

• a plot of the computed circle, created with the commands

t = linspace(0, 2*pi, 1000);

plot(u, v, ’o’, R * cos(t) + uc, R * sin(t) + vc, ’-’);

axis square

(assuming your MATLAB variables are called uc, vc, and R).

14.7 Suppose you are asked to fit the following three functions f(v, w) to experimental data:

(a) f(v, w) = αvβwγ(v + w)δ

(b) f(v, w) = αvβ + γwδ

(c) f(v, w) = αvβwγ/(1 + αvβwγ).

Each function has two variables (v, w), and depends on several parameters (α, β, γ, δ). Your task is to
calculate values of these parameters such that

f(vi, wi) ≈ ti, i = 1, . . . , N.
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The problem data ti, vi, wi are given. We assume that N > 4, and vi > 0, wi > 0, ti > 0. In the third
subproblem, we also assume that ti < 1. The exponents of v, w, and v+w in the definitions of f are allowed
to be positive, negative, or zero, and do not have to be integers.

For each of the three functions, explain how you would formulate the model fitting problem as a linear least
squares problem

minimize ‖Ax− b‖2

or as a nonlinear least squares problem

minimize
m∑
i=1

ri(x)
2.

You are free to use any reasonable error criterion to judge the quality of the fit between the experimental
data and the model. Your solution must include a clear statement of the following:

• the variables x in the linear or nonlinear least squares problem

• the error criterion that you minimize

• if you use linear least squares: the matrix A and the vector b

• if you use nonlinear least squares: the functions ri(x), and the matrix A(k) and the vector b(k) in the
linear least squares problem

minimize ‖A(k)x− b(k)‖2

that you solve at iteration k of the basic Gauss–Newton method.

14.8 We revisit the data fitting problem of exercise 8.3. In that problem we used (linear) least squares to fit a
function

f(t) =
eαt+β

1 + eαt+β

to 50 points (ti, yi). To formulate the problem as a least squares problem we applied a nonlinear transfor-
mation log(y/(1− y)) (the inverse of the function ex/(1 + ex)) to the points yi, and minimized the function

m∑

i=1

(
αti + β − log(

yi
1− yi

)

)2

.

An example is shown in the following figure (for a different set of points than in exercise 8.3.

−2 −1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

t

y

−2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

t

lo
g
(y
/
(1

−
y
))

As can be seen in the left-hand figure, the quality of the fit is not uniform (better for yi near 1 or 0 than
at the other points). A second problem with this approach is that it requires that 0 < yi < 1 for all data
points.
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In this exercise we compute the true least squares fit on the original scale, by solving the optimization
problem

minimize

m∑

i=1

(
eαti+β

1 + eαti+β
− yi

)2

. (52)

This is a nonlinear least squares problem with two variables α, β.

Download the file logistic_gn.m, and execute in MATLAB as [t, y] = logistic_gn;. This is the set
of 50 points used in the figures above. Solve the nonlinear least squares problem (52) using the Levenberg–
Marquardt method. You can use as starting point the solution of the linear least squares method of exer-
cise 8.3 (which applies because 0 < yi < 1 at all points), or simply take α = β = 0. Terminate the iteration
when ‖∇g(α, β)‖ ≤ 10−6, where g(α, β) is the cost function in (52). Compare the solution with the result
of the linear least squares method.

14.9 The image taken by a camera can be described by a projective transformation F from R3 to R2, i.e., a
transformation

F (x) =
1

fTx+ g
(Cx+ d)

where C is a 2 × 3 matrix, d is a 2-vector, f is a 3-vector, and g is a scalar. The 2-vector F (x) is the
projection of the point x ∈ R3 on the image plane of the camera.

Suppose a small (point) object at unknown location x ∈ R3 is viewed by l cameras, each described by a
projective transformation Fi(x) = (Cix+ di)/(f

T
i x+ gi). This gives l measurements

yi =
1

fT
i x+ gi

(Cix+ di) + vi, i = 1, . . . , l,

where vi is unknown measurement error. To estimate the position x from the l camera views, we solve the
nonlinear least squares problem

minimize
l∑

i=1

∥∥∥∥
1

fT
i x+ gi

(Cix+ di)− yi

∥∥∥∥
2

. (53)

The variable is the vector x ∈ R3. The vectors yi ∈ R2, and the camera parameters Ci ∈ R2×3, di ∈ R2,
fi ∈ R3, gi ∈ R are given.

Suppose we solve problem (53) using the basic Gauss–Newton method. Describe in detail the linear least
squares problem that is solved at the iteration that updates x(k) to x(k+1). You can assume that fT

i x(k)+gi >
0 for i = 1, . . . , l.

14.10 We define a model
f̂(x; θ) = θ1 exp(θ2x) cos(θ3x+ θ4),

with parameters θ = (θ1, θ2, θ3, θ4) and a scalar variable x. We fit the model to data x(1), . . . , x(N), y(1),
. . . , y(N), by solving the nonlinear least squares problem

minimize

N∑

i=1

(f̂(x(i); θ)− y(i))2

with variables θ1, θ2, θ3, θ4. Describe one iteration of the Levenberg–Marquardt method for this problem.
Your description should consist of a detailed statement of the (linear) least squares problem solved at each
iteration.
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14.11 Consider the optimization problem

minimize ‖Ax− b‖2 + ρ
n∑

i=1

(x2
i − 1)2,

where A is an m×n matrix, b is an m-vector, and ρ is a positive constant. The first term in the cost function
is the standard least squares objective. The second term forces the variables xi to be close to ±1.

(a) Write the problem as a nonlinear least squares problem (minimize ‖f(x)‖2). Clearly state how f is
defined.

(b) Describe in detail the (linear) least squares problem solved in each iteration of the Levenberg–Marquardt
algorithm for solving the nonlinear least squares problem in part (a).

14.12 We consider the problem of fitting a rational function

g(t) =
c1 + c2t+ c3t

2

1 + d1t+ d2t2

to data points (t1, y1), . . . , (tN , yN ). We formulate the problem as a nonlinear least squares problem

minimize
N∑

i=1

(g(ti)− yi)
2.

The variables are the coefficients c1, c2, c3, d1, d2. Describe one iteration of the Levenberg–Marquardt
method for this problem. Your description should consist of a detailed statement of the (linear) least squares
problem solved at each iteration.

14.13 Consider the nonlinear least squares problem

minimize

m∑

i=1

(
log(

√
(x− ai)2 + (y − bi)2)− ci

)2

The variables are x, y. The scalars ai, bi, ci, for i = 1, . . . ,m, are given. The logarithm is the natural
logarithm.

Describe one iteration of the Levenberg–Marquardt method for this problem. Your description should consist
of a detailed statement of the (linear) least squares problem solved at each iteration.

14.14 In exercise 8.6 we considered the problem of fitting a circle to m points (u1, v1), . . . , (um, vm) in a plane.
We formulated the problem as

minimize

m∑

i=1

((ui − uc)
2 + (vi − vc)

2 −R2)2. (54)

The variables are uc, vc (the coordinates of the center of the circle) and R (the radius). A change of variables
allowed us to solve this as a least squares problem.

(a) Alternatively, we can formulate the problem as

minimize

m∑

i=1

(
√

(ui − uc)2 + (vi − vc)2 −R)2. (55)

This is a nonlinear least squares problem with variables uc, vc, R.

Describe one iteration of the Gauss–Newton method for solving (55). Your description should include
a detailed statement of the (linear) least squares problem solved at each iteration.
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(b) The figure shows an example where there is a noticeable difference between the two solutions. The
m data points are shown as small circles. Notice the “outlier” data point on the right. Give a short
explanation in words why the optimization problem (55) gives a better fit (less shifted towards the
outlier) than the optimization problem (54).

Solution of (54) Solution of (55)

98



15 Matrix norm and condition number

15.1 For each of the following matrices A, give the 2-norm ‖A‖2 and the Frobenius norm ‖A‖F .

(a) A matrix with one row:
A =

[
A11 A12 · · · A1n

]
.

(b) A matrix of the form A = uuT where u is a given n-vector.

(c) A matrix of the form A = uvT where u and v are given n-vectors.

15.2 Compute the 2-norm of each of the following matrices, without using MATLAB.

[
1 1
1 1

]
,

[
1 −1
1 1

]
,




1 1 0
1 1 0
0 0 −3/2


 ,




1 −1 0
1 1 0
0 0 −3/2


 .

15.3 In this exercise we show that ‖A‖2 = ‖AT ‖2.

(a) Let u be a vector. Show that

‖u‖ = max
v 6=0

uT v

‖v‖ .

(b) Let A be a matrix. Show that

‖A‖2 = max
y 6=0,x 6=0

yTAx

‖x‖‖y‖ .

(c) Use the result of part (b) to show that ‖A‖2 = ‖AT ‖2.

15.4 Let U and V be tall m × n matrices (i.e., m > n) with orthonormal columns. Define A = UV T . For each
of the following three statements, either show that it is true, or give a small example (i.e., a specific U , V )
for which it is false.

(a) A is nonsingular.

(b) A is orthogonal.

(c) ‖A‖2 = 1.

15.5 Let P be a nonzero symmetric projection matrix (exercise 11.4). Show that ‖P‖2 = 1.

15.6 Let A be an m× n matrix with ‖A‖2 < 1.

(a) Show that the matrix I −ATA is positive definite.

(b) Show that the matrix [
I A
AT I

]

is positive definite.

15.7

A =




0 0 −104 0
0 0 0 −10
0 10−3 0 0

10−2 0 0 0


 .

(a) What is the 2-norm of A?

(b) What is the inverse of A?
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(c) What is the 2-norm of the inverse of A?

(d) What is the condition number of A?

Explain your answers, without referring to any MATLAB results. (Of course, you are free to check the
answers in MATLAB.)

15.8 Give the 2-norm ‖A‖2 of each of the following matrices A, without using MATLAB. If A is nonsingular, also
give ‖A−1‖2 and κ(A).

(a) A =

[
1 1
1 1

]

(b) A =

[
1 −1
1 1

]

(c) A =




1 1 0
1 1 0
0 0 −3/2




(d) A =




1 −1 0
1 1 0
0 0 −3/2




(e) A =




0 −1 0
2 0 0
0 0 −3




(f) A =




2 −1 0
2 1 0
0 0 −3




(g) A =




2 −1 −3
−2 1 3
2 −1 −3




15.9 Suppose Q is orthogonal. For each of the following matrices A, give ‖A‖2 and, if A is invertible, also ‖A−1‖2.
Explain your answers.

(a) A =

[
Q −Q
Q Q

]
.

(b) A =

[
Q Q
Q Q

]
.

15.10 The table shows ‖Ax(i)‖ and ‖x(i)‖ for four vectors x(1), x(2), x(3), x(4), where A is a nonsingular n × n
matrix.

x ‖x‖ ‖Ax‖
x(1) 1 100
x(2) 100 1
x(3) 103 104

x(4) 10−3 102

What are the best (i.e., greatest) lower bounds on ‖A‖2, ‖A−1‖2 and κ(A) that you can derive based on
this information?
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15.11 Consider a set of linear equations Ax = b with

A =

[
1 + 10−8 1

1 1

]
, b =

[
1
1

]
.

It is easily verified that A is nonsingular with inverse

A−1 = 108
[

1 −1
−1 1 + 10−8

]
.

(a) Prove, without using MATLAB, that κ(A) ≥ 108.

(b) Find the solution of Ax = b. Construct a perturbation ∆b of the right-hand side for which we have

‖∆x‖
‖x‖ ≥ 108

‖∆b‖
‖b‖ ,

where x+∆x is the solution of the equations A(x+∆x) = b+∆b.

15.12 Sort the following matrices in order of decreasing condition number (without using MATLAB):

A1 =

[
105 1
1 −105

]
, A2 =

[
105 1
1 −10−5

]
,

A3 =

[
10−5 1
1 −10−5

]
, A4 =

[
105 1
1 10−5

]
.

If any of the matrices is singular, take ∞ as its condition number. Explain your answer.

15.13 Condition numbers and diagonal scaling. The matrix A that represents a linear function y = Ax depends
on the units we choose for x and y. Suppose for example that the components of x are currents and the
components of y are voltages, and that we have y = Ax with x in amperes and y in volts. Now suppose x̃1

is x1 expressed in milliamperes, i.e., x̃1 = 1000x1. Then we can write



y1
y2
...
yn


 =




A11/1000 A12 · · · A1n

A21/1000 A22 · · · A2n

...
...

. . .
...

An1/1000 An2 · · · Ann







x̃1

x2

...
xn


 = AD




x̃1

x2

...
xn




where D is a diagonal matrix with diagonal elements D11 = 1/1000, D22 = · · · = Dnn = 1.

Likewise, if ỹ1 is y1 expressed in millivolts, we have



ỹ1
y2
...
yn


 =




1000A11 1000A12 · · · 1000A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann







x1

x2

...
xn


 = DAx

where D is a diagonal matrix with diagonal elements D11 = 1000, D22 = · · · = Dnn = 1.

In general, changing the units for x corresponds to replacing A with AD where D is positive diagonal matrix;
changing the units for y corresponds to replacing A with DA where D is positive and diagonal.

In this problem we examine the effect of scaling columns or rows of a matrix on its condition number.

(a) Prove the following properties of the matrix norm. We assume A is n× n with columns ai:

A =
[
a1 a2 · · · an

]
.
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(i) ‖A‖2 ≥ maxi=1,...,n ‖ai‖ (i.e., the norm of A is greater than or equal to the norm of each column
ai)

(ii) ‖A−1‖2 ≥ 1/mini=1,...,n ‖ai‖ (i.e., 1/‖A−1‖ is less than or equal to the norm of each column ai)

(iii) The condition number satisfies the lower bound

κ(A) ≥ maxi=1,...,n ‖ai‖
mini=1,...,n ‖ai‖

.

In other words, if the columns of A are very different in norm, (i.e., maxi ‖ai‖ ≫ mini ‖ai‖), then A will
certainly have a large condition number. In practice, it is therefore recommended to scale the columns
of a matrix so that they are approximately equal in norm. Similar comments apply to row scaling.

(b) As an example, consider the matrix

A =




1 3 · 10−3 11
−2 · 10−2 105 −4 · 102

1 104 108


 .

(i) Determine the condition number of A (using MATLAB’s cond function).

(ii) Find a diagonal matrix D such that all columns of Ã = AD have the same norm. Determine the

condition number of Ã.

15.14 The figure below shows three possible experiments designed to estimate the magnitudes of signals emitted
by four sources. The location of the sources is indicated by the empty circles. The solid circles show the
location of the sensors. The output yi of sensor i is given by

yi = x1/r
2
i1 + x2/r

2
i2 + x3/r

2
i3 + x4/r

2
i4

where xj is the (unknown) magnitude of the signal emitted by source j and rij is the (given) distance from
source j to sensor i.

Experiment 1 Experiment 2 Experiment 3

1 112 223 334 44

1 112 223

3

3

4

4

4

For each of the three configurations, we can determine the distances rij and write these equations as

Ax = y

where

A =




1/r211 1/r212 1/r213 1/r214

1/r221 1/r222 1/r223 1/r224

1/r231 1/r232 1/r233 1/r234

1/r241 1/r242 1/r243 1/r244



, x =




x1

x2

x3

x4


 , y =




y1
y2
y3
y4


 . (56)

From the measured sensor outputs y we can then determine x by solving the equations Ax = y.
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There is a measurement error ∆y in the sensor readings, which can be as large as 0.01%, i.e., ‖∆y‖/‖y‖ ≤
10−4. From the analysis in section 6.3 of the EE133A Lecture Notes, we have the following bound on the
relative error in x:

‖∆x‖
‖x‖ ≤ κ(A)

‖∆y‖
‖y‖ ≤ κ(A) · 10−4

where κ(A) is the condition number of A.

(a) Download the MATLAB file expdesign.m from the class webpage and execute it in MATLAB as
[A1, A2, A3] = expdesign. The three matrices A1, A2, A3 are the values of the matrix A in (56) for
each of the three experiments.

Compute the condition numbers of A1, A2, A3 using the MATLAB command cond(A).

(b) Based on the results of part (a), which configuration would you prefer?

(c) Can you give an intuitive argument for your conclusion in part (b)?

15.15 Vandermonde matrices

A =




1 t1 t21 · · · tn−2
1 tn−1

1

1 t2 t22 · · · tn−2
2 tn−1

2
...

...
...

. . .
...

...
1 tn−1 t2n−1 · · · tn−2

n−1 tn−1
n−1

1 tn t2n · · · tn−2
n tn−1

n




are often badly conditioned. As an example, suppose

t1 = 1, t2 = 2, t3 = 3, . . . , tn−1 = n− 1, tn = n.

Show that κ(A) ≥ nn−3/2.

15.16 Consider the matrix

A =




1 + ǫ 1 2
1 −1 0
1 0 1


 .

(a) Show that A is singular for ǫ = 0. Verify that for ǫ 6= 0, the inverse is given by

A−1 =
1

ǫ




1 1 −2
1 1− ǫ −2

−1 −1 2 + ǫ


 .

(b) Prove that κ(A) ≥ 1/|ǫ| if ǫ 6= 0.

(c) Show with an example that the set of linear equations

Ax = b, b =




1
1
1




is badly conditioned when ǫ is small (and nonzero). More specifically, give a ∆b 6= 0 such that

‖∆x‖
‖x‖ ≥ 1

|ǫ|
‖∆b‖
‖b‖

where x is the solution of Ax = b and x+∆x is the solution of A(x+∆x) = b+∆b.
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15.17 Suppose A is a nonsingular n × n matrix. We denote by αk the (Euclidean) norm of the kth column of A
and by βi the (Euclidean) norm of the ith row of A:

αk =

√√√√
n∑

i=1

a2ik, βi =

√√√√
n∑

k=1

a2ik.

Show that

κ(A) ≥ max{αmax, βmax}
min{αmin, βmin}

,

where

αmax = max
k=1,...,n

αk, αmin = min
k=1,...,n

αk, βmax = max
i=1,...,n

βi, βmin = min
i=1,...,n

βi.

15.18 Let L be a nonsingular n× n lower triangular matrix with elements Lij . Show that

κ(L) ≥ maxi=1,...,n |Lii|
minj=1,...,n |Ljj |

.

15.19 The graph shows the condition number of one of the following matrices as a function of t for t ≥ 0.

A1 =

[
t 1
1 −t

]
, A2 =

[
t t

−t 1

]
, A3 =

[
t 0
0 1 + t

]
, A4 =

[
t −t

−t 1

]
.
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Which of the four matrices was used in the figure? Carefully explain your answer.

15.20 We define A as the n × n lower triangular matrix with diagonal elements 1, and elements −1 below the
diagonal:

A =




1 0 0 · · · 0 0
−1 1 0 · · · 0 0
−1 −1 1 · · · 0 0
...

...
...

. . .
...

...
−1 −1 −1 · · · 1 0
−1 −1 −1 · · · −1 1




.

(a) What is A−1?

(b) Show that κ(A) ≥ 2n−2. This means that the matrix is ill-conditioned for large n.
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(c) Show with an example that small errors in the right-hand side of Ax = b can produce very large errors
in x. Take b = (0, 0, . . . , 0, 1) (the n-vector with all its elements zero, except the last element, which is
one), and find a nonzero ∆b for which

‖∆x‖
‖x‖ ≥ 2n−2 ‖∆b‖

‖b‖ ,

where x is the solution of Ax = b and x+∆x is the solution of A(x+∆x) = b+∆b.

15.21 For an n× n matrix A, define

γ(A) =
maxi=1,...,n |Aii|
minj=1,...,n |Ajj |

.

This is the ratio of the absolute values of the largest and the smallest diagonal elements. If A has some zero
diagonal elements, we define γ(A) = ∞.

In each of the two subproblems, select the correct statement (a, b, or c) and prove it.

(a) If A is diagonal and nonsingular, then

(i) κ(A) = γ(A).

(ii) κ(A) ≤ γ(A), but equality does not always hold (i.e., κ(A) < γ(A) is possible).

(iii) κ(A) ≥ γ(A), but equality does not always hold.

(b) Same question for a triangular matrix: if A is triangular and nonsingular, then

(i) κ(A) = γ(A).

(ii) κ(A) ≤ γ(A), but equality does not always hold.

(iii) κ(A) ≥ γ(A), but equality does not always hold.

15.22 Let A and E be two n× n matrices, with A nonsingular and ‖A−1E‖2 < 1.

(a) Show that A+ E is nonsingular.

(b) Let b be a nonzero n-vector. Define x and y as the solutions of the linear equations

Ax = b, (A+ E)y = b.

Prove the inequalities

‖x− y‖ ≤
∥∥A−1E

∥∥
2
‖y‖ ≤

∥∥A−1E
∥∥
2

1− ‖A−1E‖2
‖x‖ .

15.23 Let A be a matrix with linearly independent columns and QR factorization A = QR.

(a) Show that the 2-norm of A satisfies

‖A‖2 ≥ max {R11, R22, . . . , Rnn}.

(We follow the usual convention that Rii > 0.)

(b) Show that the 2-norm of the pseudoinverse A† satisfies

‖A†‖2 ≥ 1

min {R11, R22, . . . , Rnn}
.

(c) Show that ‖AA†‖2 = 1 (even when A is tall, so AA† 6= I).

Carefully explain your answers.

15.24 (a) Let A be a square matrix that satisfies ‖I −A‖2 < 1. Show that A is nonsingular.
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(b) Let A be a nonsingular matrix. Use properties of the 2-norm to show the two inequalities

‖A−1‖2 ≤ ‖A−1 − I‖2 + 1, ‖A−1 − I‖2 ≤ ‖A−1‖2‖I −A‖2.

(c) Let A be a square matrix that satisfies ‖I −A‖2 < 1. Combine the inequalities in part (b) to show

‖A−1‖2 ≤ 1

1− ‖I −A‖2
.

Also show that the condition number of A satisfies

κ(A) ≤ 1 + ‖I −A‖2
1− ‖I −A‖2

.

15.25 In this problem we show that a large condition number κ(A) indicates that the matrix A is close to a singular
matrix.

(a) Suppose A is nonsingular. By definition of the matrix norm ‖A−1‖2, there exists a vector x that satisfies
‖A−1x‖ = ‖A−1‖2 and ‖x‖ = 1. Define y = A−1x, so ‖y‖ = ‖A−1‖2. Show that the matrix

B = A− 1

‖A−1‖22
xyT

is singular. Hint: consider the product By.

(b) Show that the matrix B in part (a) satisfies

‖B −A‖2
‖A‖2

=
1

κ(A)

where κ(A) is the condition number of A.

15.26 Suppose A is a square matrix, not necessarily symmetric, and that A+AT is positive semidefinite.

(a) Show that xTAx ≥ 0 for all x.

(b) Show that I +A is nonsingular.

(c) Define S = (I −A)(I +A)−1. Show that I − STS is positive semidefinite.

(d) Show that ‖S‖2 ≤ 1.

15.27 Suppose U is an orthogonal matrix, α is a scalar, and

A =

[
I U
UT αI

]
.

(a) For what values of α is A positive definite? Assuming A is positive definite, give its Cholesky factor-
ization.

(b) For what values of α is A nonsingular? Assuming A is nonsingular, give its inverse.

(c) Take α = −1. Give ‖A‖2, ‖A−1‖2, and the condition number κ(A).

Explain your reasoning.
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16 Algorithm stability

16.1 If we evaluate
1− cosx

sinx
(57)

at x = 10−2, rounding the cosine and sine to 4 significant digits using the chop command1 we obtain

>> (1 - chop(cos(1e-2), 4)) / chop(sin(1e-2), 4)

ans =

0

The first four digits of the correct answer are 5.000 10−3. The large error is due to cancellation in the
numerator 1− cos(x): cos 10−2 = 0.99995000 . . ., so rounding to four digits yields one, and subtracting from
one yields zero.

Rewrite the expression (57) in a form that is mathematically equivalent, but avoids cancellation. Evaluate
the stable formula (still rounding cosines and sines to 4 significant digits) and compare with the result above.

16.2 Recall the definition of average and standard deviation of a vector: if x is an n-vector, then

avg(x) =
1

n

n∑

i=1

xi, std(x) =
1√
n
‖x− avg(x)1‖. (58)

The square of the standard deviation can also be written as

std(x)2 = rms(x)2 − avg(x)2 =
1

n




n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2

 . (59)

(See page 53 of the textbook.) The following MATLAB code evaluates the expressions (58) and (59), using
the chop function to simulate a machine with a precision of 6 decimal digits.

>> n = length(x);

>> sum1 = 0;

>> sum2 = 0;

>> for i=1:n

sum1 = chop(sum1 + x(i)^2, 6);

sum2 = chop(sum2 + x(i), 6);

end;

>> a = chop(sum2/n, 6)

>> s = chop((sum1 - sum2^2/n) / n, 6)

If we run this code with x = [1002; 1000; 1003; 1001; 1002; 1002; 1001; 1004; 1002; 1001] it re-
turns

a =

1.0018e+03

s =

-3.2400

1The MATLAB command chop(x,n) rounds the number x to n decimal digits. We use it to artificially introduce rounding

errors. For example, chop(pi,4) returns the number 3.14200000000000. Julia users can use the following definition:

chop(x,n) = (x == 0.0) ? 0.0 :

sign(x) * round( abs(x) / 10^(floor(log10(abs(x)) - n + 1)) ) * 10^(floor(log10(abs(x))) - n + 1).
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This is clearly wrong, because the variance must be a nonnegative number. (The correct answer is avg(x) =
1001.8, std(x)2 = 1.1600.)

(a) Explain why the result is wrong.

(b) How would you compute the sample variance more accurately, without increasing the number of correct
digits in the calculation (i.e., if you still round all the intermediate results to 6 decimal digits)?

16.3 It can be shown that
∞∑

k=1

k−2 = π2/6 = 1.644934 . . . .

Suppose we evaluate the first 3000 terms of the sum in MATLAB, rounding the result of each addition to
four digits:

>> sum = 0;

>> for i = 1:3000

sum = chop(sum + 1/i^2, 4);

end

>> sum

sum =

1.6240

The result has only 2 correct significant digits.

We can also evaluate the sum in the reverse order.

>> sum = 0;

>> for i = 3000:-1:1

sum = chop(sum + 1/i^2, 4);

end

>> sum

sum =

1.6450

The result has four correct significant digits. Explain the difference. (Note that the calculation does not
involve any subtractions, so this is an example of a large error that is not caused by cancellation.)

16.4 The length of one side of a triangle (c in the figure) can be calculated from the lengths of the two other sides
(a and b) and the opposing angle (θ) by the formula

c =
√

a2 + b2 − 2ab cos θ. (60)

c
a

b
θ

Two equivalent expressions are
c =

√
(a− b)2 + 4ab (sin(θ/2))2 (61)

and
c =

√
(a+ b)2 − 4ab (cos(θ/2))2. (62)
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(The equivalence of the three formulas follows from the identities cos θ = 1 − 2 (sin(θ/2))2 and cos θ =
−1 + 2 (cos(θ/2))2.)

Which of the three formulas gives the most stable method for computing c if a ≈ b and θ is small? For
simplicity you can assume that the calculations are exact, except for a small error in the evaluation of the
cosine and sine functions. Explain your answer.

16.5 Consider the two nonlinear equations in the two (scalar) variables x, y

x2 − y2 = a, 2xy = b.

The right-hand sides a and b can be positive, negative, or zero. It is easily verified that

x̂ =

√
a+

√
a2 + b2

2
, ŷ = sign(b)

√
−a+

√
a2 + b2

2

is a solution, where sign(b) = 1 if b ≥ 0 and sign(b) = −1 if b < 0.

Give a numerically stable algorithm for computing x̂ and ŷ when |a| ≫ |b|.

16.6 A basic step in the Householder QR algorithm is the calculation of a reflector matrix H = I− (2/‖w‖2)wwT

that maps a given nonzero n-vector y to a multiple of the first unit vector e1. The following two choices for
w accomplish this:

ŵ = y + ‖y‖e1 =




y1 + ‖y‖
y2
...
yn


 , w̃ = y − ‖y‖e1 =




y1 − ‖y‖
y2
...
yn


 .

If we choose w = ŵ, the reflection H maps y to Hy = −‖y‖e1. With w = w̃, it maps y to Hy = ‖y‖e1.

(a) In the course we defined w = y + sign(y1)‖y‖e1. This means we choose w = ŵ if y1 ≥ 0, and w = w̃ if
y1 < 0. This choice of w is recommended in practice. Why?

(b) Give a stable method for computing both ŵ1 = y1 + ‖y‖ and w̃1 = y1 − ‖y‖.
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17 Floating-point numbers

17.1 Evaluate the following expressions in MATLAB and explain the results.

(a) (1 + 1e-16) - 1

(b) 1 + (1e-16 - 1)

(c) (1 - 1e-16) - 1

(d) (2 + 2e-16) - 2

(e) (2 - 2e-16) - 2

(f) (2 + 3e-16) - 2

(g) (2 - 3e-16) - 2

17.2 Answer the following questions, assuming IEEE double precision arithmetic.

(a) What is the largest floating-point number less than 1/2 ?

(b) What is the smallest floating-point number greater than 4 ?

(c) How many floating-point numbers are there in the interval [1/2, 4) ?

17.3 How many IEEE double precision floating-point numbers are contained in the following intervals?

(a) The interval [1/2, 3/2).

(b) The interval [3/2, 5/2).

Explain your answer.

17.4 Run the following MATLAB code and explain the result. (Hint. If x > 1, then 1 <
√
x < 1 + 1

2 (x− 1).)

>> x = 2;

>> for i=1:54

x = sqrt(x);

end;

>> for i=1:54

x = x^2;

end;

>> x

17.5 Explain the following results in MATLAB. (Note log(1 + x)/x ≈ 1 for small x so the correct result is very
close to 1.)

>> log(1 + 3e-16) / 3e-16

ans =

0.7401

>> log(1 + 3e-16) / ((1 + 3e-16) - 1)

ans =

1.0000

17.6 The figure shows
√
1 + x around x = 0 (solid line) and its first-order Taylor approximation 1 + x/2 (dashed

line).
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It is clear that
√
1 + x ≈ 1 + (1/2)x for small x. Therefore the function

f(x) =

√
1 + x− 1

x

is approximately equal to 1/2 for x around zero. We evaluated f in MATLAB, using the command

y = (sqrt(1 + x) - 1) / x

and obtained the following results:

x y

2 · 10−16 0
3 · 10−16 0
4 · 10−16 0.5551
5 · 10−16 0.4441

(a) Explain the four values of y.

(b) Give a more accurate method for evaluating f(x) for values of x near 0.

17.7 One possible definition of the number e = 2.7182818 . . . is as the limit

e = lim
n→∞

(1 + 1/n)n.

This suggests a method for evaluating e: we pick a large n, and evaluate (1+ 1/n)n. One would expect that
this yields better approximations as n increases.

Evaluate (1 + 1/n)n in MATLAB for n = 104, n = 108, n = 1012, and n = 1016. How many correct digits
do you obtain? Explain briefly.

17.8 The plot shows the function

f(x) =
1− cos(x)

x2
,

evaluated in MATLAB using the command (1 - cos(x)) / x^2. We plot the function between x = 10−9

and x = 10−6, with a logarithmic scale for the x-axis.
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We notice large errors: the correct value of f(x) in this interval is very close to 1/2, because cosx ≈ 1−x2/2
for small x. We also note that the computed function is not continuous.

(a) At what value of x does the first discontinuity (from point (a) to (b)) occur? Why is the computed
value zero to the left of point (a)?

(b) At what point does the second discontinuity occur (from point (c) to (d))?

(c) What are the computed values at points (c) and (d)?

(d) Give a more stable method for computing f(x) for small x.

Be as precise as possible in your answers for parts (a), (b), and (c). However, you can use the approximation
cosx ≈ 1− x2/2.

17.9 The inequality
‖a− b‖ ≥ ‖a‖ − ‖b‖

holds for all vectors a and b of the same length. The MATLAB code below evaluates the difference of the
two sides of the inequality for

a =

[
1

2 · 10−8

]
, b =

[
10−16

0

]
.

>> a = [1; 2e-8];

>> b = [1e-16; 0];

>> norm(a - b) - (norm(a) - norm(b))

ans =

-2.2204e-16

The result is negative, which contradicts the inequality. Explain the number returned by MATLAB, assuming
IEEE double precision arithmetic was used.

(You can use the linear approximation
√
1 + x ≈ 1 + x/2 for small x. The linear function 1 + x/2 is also an

upper bound on
√
1 + x for all x ≥ −1.)

17.10 The figure shows the function

f(x) =
(1 + x)− 1

1 + (x− 1)

evaluated in IEEE double precision arithmetic in the interval [10−16, 10−15], using the MATLAB command
((1 + x) - 1) / (1 + (x - 1)) to evaluate f(x).
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10−16 10−15

We notice that the computed function is piecewise-constant, instead of a constant 1.

(a) What are the endpoints of the intervals on which the computed values are constant?

(b) What are the computed values on each interval?

Carefully explain your answers.

17.11 The graphs in the figure are the two functions

f(x) =
exp(log x)

x
, g(x) =

log(expx)

x
,

evaluated on the interval (0, 10−15] with IEEE double precision arithmetic, using the MATLAB commands
exp(log(x))/x and log(exp(x))/x. One of the graphs is shown in dashed line and the other in solid line.

Here, log denotes the natural logarithm, so the correct values are f(x) = g(x) = 1 for positive x. We see
that the dashed line is quite accurate while the solid line is very inaccurate.
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(a) Which of the two expressions (exp(log(x))/x or log(exp(x))/x) was used for the graph in solid line,
and which one for the graph in dashed line? You can assume that the MATLAB functions log(u) and
exp(v) return the exact values of log u and exp v, rounded to the nearest floating-point number.
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(b) Explain the graph in solid line up to point (e). What are (approximately) the horizontal and vertical
values at the labeled points (a)–(e)? Why are the segments between (b) and (c), and between (d) and
(e) nonlinear?

To analyze the effect of rounding error, you can use the first-order Taylor approximations log(a + b) ≈
log(a) + b/a for a > 0 and |b| ≪ a, and exp(a+ b) ≈ exp(a)(1 + b) for |b| ≪ |a|.

17.12 The derivative of a function f at a point x̂ can be approximated as

f ′(x̂) ≈ f(x̂+ h)− f(x̂− h)

2h

for small positive h. The right-hand side is known as a finite-difference approximation of the derivative.

The figure shows the finite-difference approximation of the derivative of f(x) = exp(x) at x̂ = 0, for values
of h in the interval (0, 5 · 10−16]. The finite-difference approximation

g(h) =
exp(h)− exp(−h)

2h

was computed using the MATLAB command

g = ( exp(h) - exp(-h) ) / ( 2*h )

0 5

x 10
−16
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1

(1)
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(3)
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(5)
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(7)

h

g
(h
)

Explain the first four segments of the graph, assuming IEEE double precision arithmetic was used in the
calculation. You can make the approximation exp(t) ≈ 1 + t for small t.

Your explanation should include the numerical values of the seven points marked on the graph, and an
expression for the curve between points (2) and (3), (4) and (5), and (6) and (7).

17.13 For small positive x, the function

f(x) =
1− 1

1 + x

−1 +
1

1− x

is very close to 1. The figure shows f(x) in the interval [10−16, 10−15], evaluated with IEEE double precision
arithmetic, using the MATLAB command

f = (1 - 1 / (1 + x)) / (-1 + 1 / (1 - x)).
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Explain the graph up to the point labeled (5). What are the x-values of the five points? Why are the
computed values on the first five segments 0, 1, 1/2, 1, and 2/3?

Assume that the result of each operation (addition, subtraction, division) is the exact value, rounded to the
nearest floating-point number.

Hint. The linear approximation of 1/y around 1 is 1− (y − 1) (the dashed line in the next figure).
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17.14 The figure shows the result of evaluating the function

f(x) =

√
1 + x−

√
1− x

x

in MATLAB (that is, using IEEE double precision arithmetic), in the interval [10−17, 5 · 10−16], using the
command f = ( sqrt(1 + x) - sqrt(1 - x) ) / x.

0.1 1 2 3 4 5

x 10
−16

0

0.5

1

1.5

2

x

f

115



(a) Carefully explain the following five values on the graph.

x f

5e-17 0

1e-16 1.1102

2e-16 0.55511

3e-16 0.74015

4e-16 1.1102

You can use the approximation
√
1 + x ≈ 1 + 1

2x for x ≈ 0, and the fact that
√
1 + x < 1 + 1

2x for
x 6= 0.

(b) Give a more stable method for evaluating f(x).

17.15 The two functions
f(x) = (1 + x)2 − 1, g(x) = x(2 + x)

are obviously identical. We evaluated the two functions in MATLAB, for small x, using the commands

f = (1 + x)^2 - 1, g = x * (2 + x),

and obtained the two graphs in the figure.
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(a) Which expression (f or g) was used for the solid line and which one for the dashed line? Briefly explain
your answer.

(b) Explain in detail the graph in solid line. At what values of x do the steps occur, and what is their
height?

17.16 Explain the results of the following calculations with IEEE double precision numbers.

(a) For each of the four values of x in the table, we evaluate the function f(x) = (exp(x)−1)/x in MATLAB
as f = (exp(x) - 1) / x.
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x f = (exp(x)-1) / x

5e-16 0.8882

8e-16 1.1102

-5e-16 1.1102

-8e-16 0.9714

Explain the numbers in column 2. You can use the approximation exp(x) ≈ 1 + x for small x.

(b) We repeat the same calculations using the equivalent expression f(x) = (exp(x)− 1)/ log(exp(x)) and
the MATLAB code f = (exp(x) - 1) / log(exp(x)).

x f = (exp(x)-1) / log(exp(x))

5e-16 1.0000

8e-16 1.0000

-5e-16 1.0000

-8e-16 1.0000

Explain why these results are more accurate. You can use the approximation log y ≈ y − 1 for y
around 1.

17.17 Consider the function
f(x) = ‖x‖ − |x1|,

where x is an n-vector.

(a) We evaluate f(x) in MATLAB for the 2-vector x = (1, 1.5 · 10−8), using the code

>> y = 1.5e-8;

>> sqrt(1 + y^2) - 1

ans =

0

Explain why the result is zero (instead of a small positive number). Hint. Assume that the sqrt

function returns the exact square root, rounded to the nearest floating point number. Also note that
1 <

√
1 + t < 1 + t/2 for t > 0.

(b) Give a numerically more stable method for evaluating f(x) when ‖x‖ is close to |x1|.

17.18 The C standard library contains a function expm1 that computes ex − 1 more accurately than by evaluating
the expression exp(x) - 1, which suffers from cancellation if x is small. The function expm1 is also included
in MATLAB, Octave, Julia, and Python.

(a) In the following table we evaluate

f(x) =
ex − 1

x
for two values of x, using the commands (exp(x)-1)/x and expm1(x)/x. The second method is clearly
more accurate, since lim

x→0
f(x) = 1.

x (exp(x)-1) / x expm1(x) / x

-3e-16 1.1102 1.0000

3e-16 0.7401 1.0000

Explain the values in the second column of the table and how they are related to the machine preci-
sion ǫM. Assume that exp(x) computes the exact value of exp(x), rounded to the nearest floating point
number. Instead of the exact value of exp(x), you can use the approximation exp(x) ≈ 1+x for small x.
(More precisely, from Taylor’s theorem, exp(x) = 1 + x+ 1

2 exp(ξ)x
2 for some ξ between 0 and x.)
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(b) The next table shows the values of the function

g(x) =
ex − e−2x

x

computed using (exp(x) - exp(-2*x)) / x.

x (exp(x)-exp(-2*x)) / x

1e-16 2.2204

1e-15 3.1086

1e-14 2.9976

1e-13 2.9987

You are not asked to explain these numbers, but they are clearly inaccurate, because lim
x→0

g(x) = 3.

Use the expm1 function to formulate a more stable method that avoids cancellation in evaluating g(x)
for small x. Test the method (in MATLAB, Octave, Julia, or Python) and give the results for the four
values of x in the table.

17.19 The hyperbolic cosine and sine functions are defined as

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
.

The figure shows the function

f(x) =
cosh(x)− 1

x2

in the interval [10−8, 5 · 10−8], evaluated using the MATLAB command f = (cosh(x) - 1) / x^2.
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We notice large errors: the Taylor series

cosh(x) = 1 +
x2

2
+

x4

4!
+ · · · (63)

shows that f(x) ≈ 1/2 for small x.

(a) Give the value of x at point (a) in the graph. Why is the computed value zero to the left of this point
and 1 immediately to the right?
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(b) Give the value of x at point (b) in the graph. What are the computed values immediately to the left
and to the right of this point?

(c) The computed value at point (c) is 1/2. What is the value of x at this point?

(d) Give a more stable method for computing f(x) for small x.

Explain your answers. In your explanations you can assume that the function cosh computes the exact value
of cosh(x), rounded to the nearest double precision floating point number. To estimate the exact value, you
can use the first two terms in the Taylor series (63).

17.20 The slope of the least squares straight-line fit to points (a1, b1), . . . , (an, bn) is given by

c =

n∑
i=1

(ai − ā)(bi − b̄)

n∑
i=1

(ai − ā)2
=

n∑
i=1

aibi − nāb̄

n∑
i=1

a2i − nā2
,

where ā = avg(a), b̄ = avg(b). We evaluate the second expression for c for the vectors

a = (108, 1 + 108, 2 + 108), b = (1, 2, 3).

These points are on a straight line with slope c = 1.

108 1 + 108 2 + 108

1

2

3

ai

bi

We used the MATLAB code

a = [ 1e8; 1 + 1e8; 2 + 1e8 ];

b = [ 1; 2; 3 ];

c = ( a’*b - 3*mean(a)*mean(b) ) / ( a’*a - 3*mean(a)^2 );

and obtained c = 0.5000. Explain the large error in the result. (Your explanation can be qualitative; you
are not expected to explain the exact value 0.5.)

17.21 The principal square root of a complex number a+ jb (where j =
√
−1) is given by

√
a+ jb =

√√
a2 + b2 + a

2
+ j sign(b)

√√
a2 + b2 − a

2
.

Here sign(b) is defined as 1 if b ≥ 0 and as −1 if b < 0.

(a) We used the MATLAB code

x = sqrt((sqrt(a^2 + b^2) + a) / 2);

y = sign(b) * sqrt((sqrt(a^2 + b^2) - a) / 2);
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to compute the real and imaginary parts of the square roots of the two complex numbers

a+ jb = 106 − 10−6 + j2, a+ jb = 10−6 − 106 + j2,

and obtained the following results.

a+ jb Exact square root x y

106 − 10−6 + j2 103 + j10−3 1.000000000000000e+03 1.000003807239438e-03

10−6 − 106 + j2 10−3 + j103 1.000003807239438e-03 1.000000000000000e+03

In the first result, the computed real part x is very accurate but not the imaginary part y. In the second
result, it is the opposite. Explain these errors.

(b) Give a numerically stable algorithm for computing
√
a+ jb when |a| ≫ |b|.

17.22 We evaluated the expression

y =
(1 + x)− (1− x)

x

in MATLAB (i.e., in IEEE double-precision floating-point arithmetic), using the command

y = ((1 + x) - (1 - x)) / x

The table shows the results for four values of x. Explain the numbers in the second column.

x y

1e-16 1.1102

2e-16 2.2204

3e-16 1.8504

4e-16 2.2204
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