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Chapter 1

LU factorization

In this chapter we discuss the standard method for solving a square set of linear
equations Ax = b with nonsingular coefficient matrix A.

1.1 Definition

Every nonsingular n× n matrix A can be factored as

A = PLU

where P is a permutation matrix, L is a unit lower triangular matrix, and U is a
nonsingular upper triangular matrix. The matrices P , L, and U have size n × n.
This is called the LU factorization of A. The factorization can also be written as
PTA = LU , where the matrix PTA is obtained from A by reordering the rows.

An example of a 3× 3 LU factorization is





0 5 5
2 9 0
6 8 8



 =





0 0 1
0 1 0
1 0 0









1 0 0
1/3 1 0
0 15/19 1









6 8 8
0 19/3 −8/3
0 0 135/19



 . (1.1)

Another factorization of the same matrix is





0 5 5
2 9 0
6 8 8



 =





0 1 0
1 0 0
0 0 1









1 0 0
0 1 0
3 −19/5 1









2 9 0
0 5 5
0 0 27



 .

This shows that the LU factorization is not always unique.

The standard algorithm for computing an LU factorization is called Gaussian

elimination with partial pivoting (GEPP) or Gaussian elimination with row pivot-

ing, and will be described in section 1.4. The complexity is (2/3)n3 flops.
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1.2 Nonsingular sets of linear equations

If we use the LU factorization in the factor–solve method we obtain an algorithm
for solving linear equations with a general nonsingular coefficient matrix.

Algorithm 1.1. Solving linear equations by LU factorization.

given a set of linear equations Ax = b with A n× n and nonsingular.

1. LU factorization: factor A as A = PLU ((2/3)n3 flops).

2. Permutation: v = PT b (0 flops).

3. Forward substitution: solve Lw = v (n2 flops).

4. Back substitution: solve Ux = w (n2 flops).

The complexity of the factorization step is (2/3)n3, and the complexity of the three
other steps is 2n2. The total complexity is (2/3)n3 + 2n2, or (2/3)n3 flops if we
keep only the leading term. This algorithm is the standard method for solving
linear equations.

Example We solve the equations





0 5 5
2 9 0
6 8 8









x1

x2

x3



 =





15
7
18





using the factorization of the coefficient matrix given in (1.1). In the permutation
step we solve





0 0 1
0 1 0
1 0 0









v1
v2
v3



 =





15
7
18



 ,

which yields v = (18, 7, 15). Next, we solve





1 0 0
1/3 1 0
0 15/19 1









w1

w2

w3



 =





18
7
15





by forward substitution. The solution is w = (18, 1, 270/19). Finally, we solve





6 8 8
0 19/3 −8/3
0 0 135/19









x1

x2

x3



 =





18
1

270/19





by backward substitution, and find the solution x = (−1, 1, 2).
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Equations with multiple right-hand sides Multiple sets of linear equations with
different right-hand sides,

Ax1 = b1, Ax2 = b2, . . . , Axm = bm,

with a nonsingular coefficient matrix A, can be solved in

(2/3)n3 + 2mn2

flops, since we factor A once, and carry out m pairs of forward and backward
substitutions. For example, we can solve two sets of linear equations, with the
same coefficient matrix but different right-hand sides, at essentially the same cost
as solving one.

1.3 Inverse of a nonsingular matrix

IfA is nonsingular with LU factorization A = PLU then its inverse can be expressed
as

A−1 = U−1L−1PT .

This expression gives another interpretation of algorithm 1.1. In steps 2–4, we
evaluate x = A−1b = U−1L−1PT b as x = U−1(L−1(PT b)). First v = PT b is
computed, then w = L−1v, and finally x = U−1w.

Computing the inverse The inverse A−1 can be computed by solving the matrix
equation

AX = I

or, equivalently, the n equations Axi = ei, for i = 1, . . . , n, where xi is the ith
column of X, and ei is the ith unit vector. This requires one LU factorization and n
pairs of forward and backward substitutions. The complexity is (2/3)n3+n(2n2) =
(8/3)n3 flops, or about 3n3 flops.

The complexity can be reduced by taking advantage of the zero structure in
the right-hand sides ei. Note that forward substitution with the unit vector ej as
right-hand side takes (n− j + 1)2 flops. Therefore L−1PT can be computed in

n
∑

j=1

(n− j + 1)2 ∼ n3

3

flops, reducing the complexity for computing A−1 to 2n3 flops.

1.4 Computing the LU factorization without pivoting

Before we describe the general algorithm for LU factorization, it is useful to consider
the simpler factorization

A = LU
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where L is unit lower triangular and U is upper triangular and nonsingular. We
refer to this factorization as the LU factorization without permutations (or without
pivoting). It is a special case of the general LU factorization with P = I.

To see how we can calculate L and U , we partition the matrices on both sides
of A = LU as

[

A11 A1,2:n

A2:n,1 A2:n,2:n

]

=

[

1 0
L2:n,1 L2:n,2:n

] [

U11 U1,2:n

0 U2:n,2:n

]

.

If we work out the product on the right-hand side, we obtain
[

A11 A1,2:n

A2:n,1 A2:n,2:n

]

=

[

U11 U1,2:n

U11L2:n,1 L2:n,1U1,2:n + L2:n,2:nU2:n,2:n

]

.

Equating both sides allows us to determine the first row of U and the first column
of L:

U11 = A11, U1,2:n = A1,2:n, L2:n,1 =
1

A11
A2:n,1.

Furthermore,

L2:n,2:nU2,2:n = A2:n,2:n − L2:n,1U1,2:n = A2:n,2:n − 1

A11
A2:n,1A1,2:n,

so we can calculate L2:n,2:n and U2:n,2:n by factoring A2:n,2:n − L2:n,1U1,2:n as

A2:n,2:n − L2:n,1U1,2:n = L2:n,2:nU2:n,2:n,

which is an LU factorization of size (n − 1) × (n − 1). This suggests a recursive
algorithm: to factor a matrix of size n× n, we calculate the first column of L and
the first row of U , and then factor a matrix of order n− 1. Continuing recursively,
we arrive at a factorization of a 1× 1 matrix, which is trivial.

Algorithm 1.2. LU factorization without pivoting.

given an n× n-matrix A that can be factored as A = LU .

1. Calculate the first row of U : U11 = A11 and U1,2:n = A1,2:n.

2. Calculate the first column of L: L2:n,1 = (1/A11)A2:n,1.

3. Calculate the LU factorization A2:n,2:n − L2:n,1U1,2:n = L2:n,2:nU2:n,2:n.

It can be shown that the complexity is (2/3)n3 flops.

Example As an example, let us factor the matrix

A =





8 2 9
4 9 4
6 7 9



 ,

as A = LU , i.e.,

A =





8 2 9
4 9 4
6 7 9



 =





1 0 0
L21 1 0
L31 L32 1









U11 U12 U13

0 U22 U23

0 0 U33



 .
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We start by calculating the first row of U and the first column of L:





8 2 9
4 9 4
6 7 9



 =





1 0 0
1/2 1 0
3/4 L32 1









8 2 9
0 U22 U23

0 0 U33



 .

The remaining elements are obtained from the identity

[

9 4
7 9

]

=

[

1/2 1 0
3/4 L32 1

]





2 9
U22 U23

0 U33





=

[

1/2
3/4

]

[

2 9
]

+

[

1 0
L32 1

] [

U22 U23

0 U33

]

or
[

8 −1/2
11/2 9/4

]

=

[

1 0
L32 1

] [

U22 U23

0 U33

]

.

This is a 2× 2 LU factorization. Again it is easy to find the first rows and columns
of the triangular matrices on the right:

[

8 −1/2
11/2 9/4

]

=

[

1 0
11/16 1

] [

8 −1/2
0 U33

]

.

Finally, the remaining element U33 follows from

9/4 = −(11/16) · (1/2) + U33,

i.e., U33 = 83/32. Putting everything together, we obtain the following factoriza-
tion:

A =





8 2 9
4 9 4
6 7 9



 =





1 0 0
1/2 1 0
3/4 11/16 1









8 2 9
0 8 −1/2
0 0 83/32



 .

Existence of LU factorization without permutations Simple examples show that
not every nonsingular matrix can be factored as A = LU . The matrix

A =

[

0 1
1 −1

]

,

for example, is nonsingular, but it cannot be factored as

[

0 1
1 −1

]

=

[

1 0
L21 1

] [

U11 U12

0 U22

]

.

If we apply algorithm 1.2, we first find U11 = 0, U12 = 1. Hence, L21 must satisfy
1 = L21 ·0, which is impossible. In this example the factorization algorithm breaks
down in the first step because A11 = 0. Even if the first step succeeds (A11 6= 0),
we might run into the same problem (division by zero) in any of the subsequent
recursive steps.
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1.5 Computing the LU factorization (with pivoting)

We now extend algorithm 1.2 to the full LU factorization A = PLU . We will see
that such a factorization exists if A is nonsingular, and we will describe a recursive
algorithm to compute it.

We first note that a nonsingular 1 × 1 matrix A is simply a nonzero scalar, so
its LU factorization is trivial: A = PLU with P = 1, L = 1, U = A. Next we
show that if it is true that every nonsingular (n − 1) × (n − 1) matrix has an LU
factorization, then the same is true for nonsingular n× n matrices. By induction,
this proves that every nonsingular matrix has an LU factorization.

Let us therefore assume that every nonsingular matrix of size (n− 1)× (n− 1)
has an LU factorization. Suppose we want to factor a nonsingular matrix A of
size n× n. At least one element in the first column of A must be nonzero (since a
matrix with a zero column is singular). We can therefore apply a row permutation
that makes the 1,1 element nonzero. In other words, there exists a permutation
matrix P1 such that the matrix B = PT

1 A satisfies B11 6= 0. Clearly, the matrix B
is nonsingular if A is nonsingular. We partition the permuted matrix B as

B = PT
1 A =

[

B11 B1,2:n

B2:n,1 B2:n,2:n

]

.

Now consider the (n− 1)× (n− 1) matrix

B2:n,2:n − 1

B11
B2:n,1B1,2:n. (1.2)

We show that this matrix is nonsingular if B is. Suppose an (n − 1)-vector x
satisfies

(

B2:n,2:n − 1

B11
B2:n,1B1,2:n

)

x = 0. (1.3)

Then x and y = −(1/B11)B1,2:nx satisfy
[

B11 B1,2:n

B2:n,1 B2:n,2:n

] [

y
x

]

=

[

0
0

]

.

Since B is nonsingular, y and x must be zero. Hence, (1.3) holds only if x = 0,
which means that the matrix (1.2) is nonsingular.

By the induction assumption, this means that it can be factored as

B2:n,2:n − 1

B11
B2:n,1B1,2:n = P2L2U2.

This provides the desired LU factorization of A:

A = P1

[

B11 B1,2:n

B2:n,1 B2:n,2:n

]

= P1

[

1 0
0 P2

] [

B11 B1,2:n

PT
2 B2:n,1 PT

2 B2:n,2:n

]

= P1

[

1 0
0 P2

] [

B11 B1,2:n

PT
2 B2:n,1 L2U2 + (1/B11)P

T
2 B2:n,1B1,2:n

]

= P1

[

1 0
0 P2

] [

1 0
(1/B11)P

T
2 B2:n,1 L2

] [

B11 B1,2:n

0 U2

]

.
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If we define

P = P1

[

1 0
0 P2

]

, L =

[

1 0
(1/B11)P

T
2 B2:n,1 L2

]

, U =

[

B11 B1,2:n

0 U2

]

,

then P is a permutation matrix, L is unit lower triangular, U is upper triangular,
and A = PLU .

We summarize the idea by stating the algorithm recursively.

Algorithm 1.3. LU factorization.

given a nonsingular n× n-matrix A.

1. Choose P1 such that B = PT
1 A satisfies B11 6= 0.

2. Compute the LU factorization B2:n,2:n − (1/B11)B2:n,1B1,2;n = P2L2U2.

3. The LU factorization of A is A = PLU with

P = P1

[

1 0
0 P2

]

, L =

[

1 0
(1/B11)P

T
2 B2:n,1 L2

]

, U =

[

B11 B1,2:n

0 U2

]

.

It can be shown that the total complexity is (2/3)n3 flops.

Example Let us factor the matrix

A =





0 5 5
2 3 0
6 9 8



 .

Since A11 = 0 we need a permutation that brings the second row or the third row
in the first position. For example, we can choose

P1 =





0 0 1
0 1 0
1 0 0



 ,

and proceed with the factorization of

B = PT
1 A =





0 0 1
0 1 0
1 0 0









0 5 5
2 3 0
6 9 8



 =





6 9 8
2 3 0
0 5 5



 .

To factor B we need the LU factorization of

A(1) = B2:n,2:n − (1/B11)B2:n,1B1,2:n =

[

3 0
5 5

]

− (1/6)

[

2
0

]

[

9 8
]

=

[

0 −8/3
5 5

]

.

The first element is zero, so we need to apply a permutation

P2 =

[

0 1
1 0

]

,
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in order to switch the two rows. We denote the permuted matrix as B(1):

B(1) = PT
2 A(1) =

[

0 1
1 0

] [

0 −8/3
5 5

]

=

[

5 5
0 −8/3

]

.

This matrix is upper triangular, so we do not have to go to the next level of the
recursion to find its factorization: B(1) = L2U2 and A(1) = P2L2U2 where

L2 =

[

1 0
0 1

]

, U2 =

[

5 5
0 −8/3

]

.

The LU factorization A = PLU can now be assembled as in step 3 of the algorithm
outline. The permutation matrix is

P = P1

[

1 0
0 P2

]

=





0 0 1
0 1 0
1 0 0









1 0 0
0 0 1
0 1 0



 =





0 1 0
0 0 1
1 0 0



 .

The lower triangular matrix is

L =

[

1 0
(1/B11)P

T
2 B2:n,1 L2

]

=





1 0 0
0 1 0

1/3 0 1



 .

The upper triangular matrix is

U =

[

B11 B1,2:n

0 U2

]

=





6 9 8
0 5 5
0 0 −8/3



 .

In summary, an LU factorization of A is





0 5 5
2 3 0
6 9 8



 =





0 1 0
0 0 1
1 0 0









1 0 0
0 1 0

1/3 0 1









6 9 8
0 5 5
0 0 −8/3



 .

1.6 Effect of rounding error

In this section we discuss the effect of rounding errors on the accuracy of the LU
factorization method for solving linear equations. As an example, we consider two
equations in two variables

10−5x1 + x2 = 1

x1 + x2 = 0.

The solution is

x1 =
−1

1− 10−5
, x2 =

1

1− 10−5
(1.4)
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as is easily verified by substitution. We will solve the equations using the LU
factorization, and introduce small errors by rounding some of the intermediate
results to four significant decimal digits.

The matrix

A =

[

10−5 1
1 1

]

has two LU factorizations:

A =

[

1 0
0 1

] [

1 0
105 1

] [

10−5 1
0 1− 105

]

(1.5)

=

[

0 1
1 0

] [

1 0
10−5 1

] [

1 1
0 1− 10−5

]

. (1.6)

Suppose we use the first factorization, and round the 2, 2 element of U ,

U22 = 1− 105 = −0.99999 · 105,

to four significant digits, i.e., replace it with −1.0000 · 105 = −105. (The other
elements of L and U do not change if we round them to four significant digits.) We
proceed with the solve step, using the approximate factorization

A ≈
[

1 0
0 1

] [

1 0
105 1

] [

10−5 1
0 −105

]

.

In the forward substitution step we solve
[

1 0
105 1

] [

z1
z2

]

=

[

1
0

]

,

which gives z1 = 1, z2 = −105. In the back substitution step we solve
[

10−5 1
0 −105

] [

x1

x2

]

=

[

1
−105

]

.

The solution is x1 = 0, x2 = 1. Comparing this with the exact solution (1.4), we
see that the error in x1 is 100%! One small rounding error (replacing −0.99999 by
−1) has caused a huge error in the result.

This phenomenon is called numerical instability. An algorithm is numerically
unstable if small rounding errors can cause a very large error in the result. The
example shows that solving linear equations using the LU factorization can be
numerically unstable.

In a similar way, we can examine the effect of rounding errors on the second
factorization (1.6). Suppose we round the 2, 2 element U22 = 1 − 10−5 = 0.99999
to 1, and use the approximate factorization

A ≈
[

0 1
1 0

] [

1 0
10−5 1

] [

1 1
0 1

]

.

In the forward substitution step we solve
[

1 0
10−5 1

] [

z1
z2

]

=

[

0
1

]
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which gives z1 = 0, z2 = 1. Solving
[

1 1
0 1

] [

x1

x2

]

=

[

0
1

]

by back substitution, yields x1 = −1, x2 = 1. In this case the error in the result
is very small (about 10−5, i.e., of the same order as the rounding error that we
introduced).

We conclude that choosing the wrong permutation matrix P can have a disas-
trous effect on the accuracy of the solution.

An error analysis and extensive practical experience have provided a good rem-
edy for numerical instability in the LU factorization: when selecting the permuta-
tion matrix P in step 1 of the algorithm of section 1.5, choose P so that B11 is the
element with the largest absolute value in the first column of A. (This is consistent
with our observation in the small example: the largest element of the first column
of A is 1, so according to this guideline, we should permute the two rows of A.)
With this selection rule for P , the algorithm is stable, except in rare cases.

1.7 Sparse linear equations

When the matrix A is sparse, the LU factorization usually includes both row and
column permutations, i.e., A is factored as

A = P1LUP2, (1.7)

where P1 and P2 are permutation matrices, L is unit lower triangular, and U is
upper triangular. If the factors L and U are sparse, the forward and backward
substitutions can be carried out efficiently, and we have an efficient method for
solving Ax = b.

Sparse LU factorization algorithms must take into account two criteria when
selecting the permutation matrices P1 and P2:

1. Numerical stability. As we have seen in section 1.6 the LU factorization
algorithm may be numerically unstable (or may not exist) for certain choices
of the permutation matrix. The same is true for the factorization (1.7).

2. Sparsity of L and U . The sparsity of the factors L and U depends on the
permutations P1 and P2, which have to be chosen in a way that tends to yield
sparse L and U .

Achieving a good compromise between these two objectives is quite difficult, and
codes for sparse LU factorization are much more complicated than codes for dense
LU factorization.

The complexity of computing the sparse LU factorization depends in a compli-
cated way on the size of A, the number of nonzero elements, its sparsity pattern,
and the particular algorithm used, but is often much smaller than the complexity
of a dense LU factorization. In many cases the complexity grows approximately
linearly with n, when n is large. This means that when A is sparse, we can solve
Ax = b very efficiently, often with an order approximately n.



Chapter 2

Cholesky factorization

2.1 Positive definite matrices

2.1.1 Definition

A square matrix A is positive definite if it is symmetric (A = AT ) and

xTAx > 0 for all nonzero x.

In other words, xTAx ≥ 0 for all x and xTAx = 0 only if x = 0. A slightly larger
class is the set of positive semidefinite matrices: a matrix A is positive semidefinite
if it is symmetric and

xTAx ≥ 0 for all x.

All positive definite matrices are positive semidefinite but not vice-versa, because
the definition of positive definite matrix includes the extra requirement that x = 0
is the only vector for which xTAx = 0.

Examples Practical methods for checking positive definiteness of a matrix will
be discussed later in this chapter. For small matrices, one can directly apply the
definition and examine the sign of the product xTAx. It is useful to note that for
a general square matrix A, the product xTAx can be expanded as

xTAx =

n
∑

i=1

n
∑

j=1

Aijxixj ,

i.e., xTAx is a sum of all products xixj multiplied with the i, j element of A.
Each product xixj for i 6= j appears twice in the sum, and if A is symmetric the
coefficients of the two terms are equal (Aij = Aji). Therefore, for a symmetric
matrix,

xTAx =

n
∑

i=1

Aiix
2
i + 2

n
∑

i=1

i−1
∑

j=1

Aijxixj .
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The first sum is over the diagonal elements of A; the second sum is over the strictly
lower-triangular elements.

For example, with

A =

[

9 6
6 5

]

we get xTAx = 9x2
1 + 12x1x2 + 5x2

2. To check the sign of xTAx, we complete the
squares:

xTAx = 9x2
1 + 12x1x2 + 5x2

2

= (3x1 + 2x2)
2 − 4x2

2 + 5x2
2

= (3x1 + 2x2)
2 + x2

2.

Clearly xTAx ≥ 0 for all x. Moreover xTAx = 0 only if x1 = x2 = 0. Therefore
xTAx > 0 for all nonzero x and we conclude that A is positive definite.

The matrix

A =

[

9 6
6 3

]

, (2.1)

on the other hand, is not positive semidefinite, because

xTAx = 9x2
1 + 12x1x2 + 3x2

2

= (3x1 + 2x2)
2 − 4x2

2 + 3x2
2

= (3x1 + 2x2)
2 − x2

2.

From this expression it is easy to find values of x for which xTAx < 0. For example,
for x = (−2/3, 1), we get xTAx = −1.

The matrix

A =

[

9 6
6 4

]

is positive semidefinite because

xTAx = 9x2
1 + 12x1x2 + 4x2

2

= (3x1 + 2x2)
2

and this is nonnegative for all x. A is not positive definite because xTAx = 0 for
some nonzero x, e.g., x = (2,−3).

2.1.2 Properties

Diagonal The diagonal elements of a positive definite matrix are all positive. This
is easy to show from the definition. If A is positive definite, then xTAx > 0 for all
nonzero x. In particular, xTAx > 0 for x = ei (the ith unit vector). Therefore,

eTi Aei = Aii > 0

for i = 1, . . . , n. Positivity of the diagonal elements is a necessary condition for
positive definitess of A, but it is far from sufficient. For example, the matrix defined
in (2.1) is not positive definite, although it has positive diagonal elements.
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Schur complement Consider a positive definite matrix A of size n×n. Partition
A as

A =

[

A11 AT
2:n,1

A2:n,1 A2:n,2:n

]

.

(Since A is symmetric, we wrote its 1, 2 block as the transpose of the 2, 1 block.)
The matrix

S = A2:n,2:n − 1

A11
A2:n,1A

T
2:n,1,

is called the Schur complement of A11 and is defined because A11 6= 0. To show
that S is positive definite, pick any nonzero (n− 1)-vector v. Then the vector

x =

[

−(1/A11)A
T
2:n,1v

v

]

is nonzero and satisfies

xTAx

=
[

−(1/A11)v
TA2:n,1 vT

]

[

A11 AT
2:n,1

A2:n,1 A2:n,2:n

] [

−(1/A11)A
T
2:n,1v

v

]

=
[

−(1/A11)v
TA2:n,1 vT

]

[

0
Sv

]

= vTSv.

Since A is positive definite, we have xTAx = vTSv > 0 for all nonzero v. Therefore
S is positive definite.

Positive definite matrices are nonsingular Positive definite matrices are nonsin-
gular: if Ax = 0 then xTAx = 0 and if A is positive definite, this implies x = 0.

2.1.3 Gram matrices

A Gram matrix is a matrix of the form BTB. All Gram matrices are positive
semidefinite since

xTBTBx = (Bx)T (Bx) = ‖Bx‖2 ≥ 0 (2.2)

for all x. This holds regardless of the values and dimensions of B. A Gram matrix
is not necessarily positive definite and (2.2) shows what the required properties of
B are: the matrix BTB is positive definite if ‖Bx‖ = 0 implies x = 0. In other
words, BTB is positive definite if and only if B has linearly independent columns.

2.1.4 Singular positive semidefinite matrices

We have seen that positive definite matrices are nonsingular. We now show that if
A is positive semidefinite but not positive definite, then it is singular.
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Assume that A is positive semidefinite (xTAx ≥ 0 for all x) but not positive
definite, i.e., there exists a nonzero x with xTAx = 0. We will show that Ax = 0
and therefore A is singular.

Take an arbitrary y and define the function

f(t) = (x+ ty)TA(x+ ty)

where t is a scalar variable. We have f(t) ≥ 0 for all t because A is positive
semidefinite. Expanding the products in the definition of f and using xTAx = 0,
we obtain

f(t) = xTAx+ txTAy + tyTAx+ t2yTAy

= 2tyTAx+ t2yTAy.

The function f is quadratic in t, with f(0) = 0. Since f(t) ≥ 0 for all t the
derivative of f at t = 0 must be zero, i.e., f ′(0) = 2yTAx = 0. Since y is arbitrary,
this is only possible if Ax = 0.

2.2 Cholesky factorization

Every positive definite matrix A can be factored as

A = RTR

where R is upper triangular with positive diagonal elements. This is called the
Cholesky factorization of A. The matrix R, which is uniquely determined by A, is
called the Cholesky factor of A. If n = 1 (i.e., A is a positive scalar), then R is
just the square root of A. So we can also interpret the Cholesky factor as a kind
of “square root” of a positive definite matrix A.

An example of a 3× 3 Cholesky factorization is




25 15 −5
15 18 0
−5 0 11



 =





5 0 0
3 3 0

−1 1 3









5 3 −1
0 3 1
0 0 3



 . (2.3)

In section 2.3 we will discuss how the Cholesky factorization is computed, and
we will find that the complexity of factoring a matrix of order n is (1/3)n3 flops.

2.2.1 Positive definite sets of linear equations

It is straightforward to solve Ax = b, with A positive definite, if we first compute
the Cholesky factorization A = RTR. To solve RTRx = b, we introduce an inter-
mediate variable w = Rx, and compute w and x by solving two triangular sets of
equations. We first solve RTw = b for w. Then we solve Rx = w to find x. These
two equations are solvable, because R is upper triangular with positive diagonal
elements.
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Algorithm 2.1. Solving linear equations by Cholesky factorization.

given a set of linear equations with A positive definite of size n× n.

1. Cholesky factorization: factor A as A = RTR ((1/3)n3 flops).

2. Forward substitution: solve RTw = b (n2 flops).

3. Back substitution: solve Rx = w (n2 flops).

The total complexity is (1/3)n3 + 2n2, or roughly (1/3)n3 flops.

Example We compute the solution of




25 15 −5
15 18 0
−5 0 11









x1

x2

x3



 =





30
15

−16



 ,

using the factorization in (2.3). We first solve




5 0 0
3 3 0

−1 1 3









w1

w2

w3



 =





30
15

−16





by forward substitution. The solution is w = (6,−1,−3). Then we solve




5 3 −1
0 3 1
0 0 3









x1

x2

x3



 =





6
−1
−3





by back substitution and obtain the solution x = (1, 0,−1).

Equations with multiple right-hand sides Suppose we need to solve m equations

Ax1 = b1, Ax2 = b2, . . . , Axm = bm,

where A is positive definite of size n × n, and b1, . . . , bm are n-vectors. These m
sets of equations have the same coefficient matrix but different right-hand sides b1,
. . . , bm. Alternatively, we can think of the problem as solving the matrix equation

AX = B

where X and B are the n×m-matrices

X =
[

x1 x2 · · · xm

]

, B =
[

b1 b2 · · · bm
]

.

We first compute the Cholesky factorization of A, which costs (1/3)n3. Then
for i = 1, . . . ,m, we solve Axi = bi using forward and backward substitution (this
costs 2n2 flops per right-hand side). Since we only factor A once, the total effort is

(1/3)n3 + 2mn2

flops. Had we (needlessly) repeated the factorization step for each right-hand side,
the cost would have been m((1/3)n3 +2n2). Since the factorization cost ((1/3)n3)
dominates the cost of forward and backward substitution (2n2), this method allows
us to solve a small number of linear systems, with the same coefficient matrix, at
roughly the cost of solving one.
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2.2.2 Inverse of a positive definite matrix

If A is positive definite with Cholesky factorization A = RTR, then its inverse can
be expressed as

A−1 = R−1R−T .

This follows from the expressions for the inverse of a product of nonsingular ma-
trices and for the inverse of a transpose, and the fact that R is invertible because
it is upper-triangular with nonzero diagonal elements.

This expression provides another interpretation of algorithm 2.1. If we multiply
both sides of the equation Ax = b on the left by A−1, we get

x = A−1b = R−1R−T b.

Steps 2 and 3 of the algorithm evaluate this expression by first computing w =
R−T b, and then x = R−1w = R−1R−T b.

Computing the inverse The inverse of a positive definite matrix can be computed
by solving

AX = I,

using the method for solving equations with multiple right-hand sides described
in the previous section. Only one Cholesky factorization of A is required. Given
the Cholesky factors, we first compute Y = R−T by solving RTY = I, column
by column, via n forward substitutions. Then we compute X = R−1Y by solving
RX = Y , column by column, via n backward substitutions The complexity of
computing the inverse using this method is (1/3)n3+2n3 = (7/3)n3, or about 2n3.

This number can be reduced by taking advantage of two properties. First,
when solving RTY = I, we can use the fact that the solution Y is lower triangular.
Therefore the kth column can be computed by a forward substitution of length
n− k + 1, and the complexity of solving RTY = I is

n
∑

k=1

(n− k + 1)2 ∼ n3

3
flops.

Second, the solution X = A−1 is a symmetric matrix, so it is sufficient to compute
its lower triangular part. When computing column k of X, we can stop the back
substitution once Xnk, Xn−1,k, . . . , Xkk have been computed, and this is a back
substitution of length n − k + 1. The lower triangular part of the solution of
RX = Y can therefore be computed in roughly (1/3)n3 operations. With these
two improvements, the complexity of computing A−1 is roughly n3 flops.

2.3 Computing the Cholesky factorization

Algorithm 2.2 below is a recursive method for computing the Cholesky factorization
of a positive definite matrix A of order n. It refers to the following block matrix
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partitioning of A and its Cholesky factor R:

A =

[

A11 A1,2:n

A2:n,1 A2:n,2:n

]

, R =

[

R11 R1,2:n

0 R2:n,2:n

]

where A11 and R11 are scalars. By definition the Cholesky factor R is upper trian-
gular with positive diagonal elements, so R11 > 0 and R2:n,2:n is upper triangular
with positive diagonal elements.

Algorithm 2.2. Cholesky factorization.

given a positive definite matrix A of size n× n.

1. Calculate the first row of R:

R11 =
√
A11, R1,2:n =

1

R11
A1,2:n.

2. Compute the Cholesky factorization

A2:n,2:n −RT
1,2:nR1,2:n = RT

2:n,2:nR2:n,2:n.

It can be shown that the complexity of this algorithm is (1/3)n3 flops.
To verify the correctness of the algorithm, we write out the equality A = RTR

for the partitioned matrices:
[

A11 A1,2:n

A2:n,1 A2:n,2:n

]

=

[

R11 0

RT
1,2:n RT

2:n,2:n

][

R11 R1,2:n

0 R2:n,2:n

]

=

[

R2
11 R11R1,2:n

R11R
T
1,2:n RT

1,2:nR1,2:n +RT
2:n,2:nR2:n,2:n

]

.

The equality allows us to determine the first row of R:

R11 =
√

A11, R1,2:n =
1

R11
A1,2:n.

(Recall that A11 > 0 if A is positive definite.) Furthermore,

RT
2:n,2:nR2:n,2:n = A2:n,2:n −RT

1,2:nR1,2:n,

so we must choose R2:n,2:n so that RT
2:n,2:nR2:n,2:n is the Cholesky factorization of

the matrix

A2:n,2:n −RT
1,2:nR1,2:n = A2:n,2:n − 1

A11
A2:n,1A

T
2:n,1.

This is the Schur complement of A11 and, as we have seen in section 2.1.2, it is a
positive definite matrix of size (n− 1)× (n− 1).

If we continue recursively, we arrive at a Cholesky factorization of a 1 × 1
positive definite matrix, which is trivial (it is just the square root). Algorithm 2.2
therefore works for all positive definite matrices A. It also provides a practical
way of checking whether a given matrix is positive definite. If we try to factor a
matrix that is not positive definite, we will encounter a nonpositive leading diagonal
element at some point during the recursion.
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Example As an example, we derive the factorization (2.3).





25 15 −5
15 18 0
−5 0 11



 =





R11 0 0
R12 R22 0
R13 R23 R33









R11 R12 R13

0 R22 R23

0 0 R33



 .

We start with the first row of R:




25 15 −5
15 18 0
−5 0 11



 =





5 0 0
3 R22 0

−1 R23 R33









5 3 −1
0 R22 R23

0 0 R33



 .

The remainder of the factorization follows from

[

18 0
0 11

]

=

[

3 R22 0
−1 R23 R33

]





3 −1
R22 R23

0 R33





=

[

3
−1

]

[

3 −1
]

+

[

R22 0
R23 R33

] [

R22 R23

0 R33

]

,

[

9 3
3 10

]

=

[

R22 0
R23 R33

] [

R22 R23

0 R33

]

.

To factor this 2× 2-matrix, we first determine R22 and R23:

[

9 3
3 10

]

=

[

3 0
1 R33

] [

3 1
0 R33

]

.

Finally, the last element follows from

10 = 1 +R2
33

i.e., R33 = 3.

2.4 Sparse positive definite matrices

If A is very sparse (most of its elements are zero), then the Cholesky factor R is
usually quite sparse as well, and the Cholesky factorization can be computed in
much less than (1/3)n3 flops (provided we store A in a format that allows us to
easily skip multiplications and additions with zero). If R is sparse, the associated
forward and backward substitutions can also be carried out in much less than 2n2

flops.
The sparsity pattern of R (i.e., the location of its zeros and nonzeros) can be

determined from the sparsity pattern of A. Let us examine the first two steps
of algorithm 2.2. The sparsity pattern of R1,2:n, computed in the first step, is
exactly the same as the sparsity pattern of A1,2:n. In step 2, the matrix A2:n,2:n −
RT

1,2:nR1,2:n is formed, and this matrix will usually have some nonzero elements
in positions where A2:n,2:n is zero. More precisely, the i, j element of A2:n,2:n −
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RT
1,2:nR1,2:n can be nonzero if the i, j element of A2:n,2:n is nonzero, but also if the

ith and the jth elements of R1,2:n are nonzero. If we then proceed to the next
cycle in the recursion and determine the first column of the Cholesky factor of
A2:n,2:n − RT

1,2:nR1,2:n, some nonzero elements may be introduced in positions of
R where the original matrix A had a zero element. The creation of new nonzero
elements in the sparsity pattern of R, compared to the sparsity pattern of A, is
called fill-in. If the amount of fill-in is small, R will be sparse, and the Cholesky
factorization can be computed very efficiently.

In some cases the fill-in is very extensive, or even complete. Consider for ex-
ample, the set of linear equations

[

1 aT

a I

] [

u
v

]

=

[

b
c

]

(2.4)

where a is an n-vector with ‖a‖ < 1. It can be shown that the coefficient matrix is
positive definite (see exercises). Its Cholesky factorization is

[

1 aT

a I

]

=

[

1 0
a RT

2:n,2:n

] [

1 aT

0 R2:n,2:n

]

where I − aaT = RT
2:n,2:nR2:n,2:n is the factorization of I − aaT . Now if all the

elements of a are nonzero, then I − aaT is a dense matrix. Therefore R2:n,2:n will
be dense and we have 100% fill-in.

If, on the other hand, we first rewrite the equations (2.4) as

[

I a
aT 1

] [

v
u

]

=

[

c
b

]

(by reordering the variables and right-hand sides) and then factor the reordered
coefficient matrix, we obtain a factorization with zero fill-in:

[

I a
aT 1

]

=

[

I 0

aT
√
1− aTa

] [

I a

0
√
1− aTa

]

.

This simple example shows that reordering the equations and variables can have
a dramatic effect on the amount of fill-in, and hence on the efficiency of solving a
sparse set of equations.

Sparse Cholesky factorization When A is symmetric positive definite and sparse,
it is usually factored as

A = PRTRPT (2.5)

where P is a permutation matrix and R is upper triangular with positive diagonal
elements. We can express this as PTAP = RTR, i.e., RTR is the Cholesky factor-
ization of PTAP , the matrix A with its rows and columns permuted by the same
permutation.

The matrix PTAP arises when we reorder the equations and the variables in
Ax = b. If we define new variables x̃ = PTx and apply the same permutation to
the right-hand side to get b̃ = PT b, then x̃ satisfies the equation (PTAP )x̃ = b̃.
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Since PTAP is positive definite for any permutation matrix P , we are free to
choose any permutation matrix; for every P there is a unique Cholesky factor R.
The choice of P , however, can greatly affect the sparsity of R, which in turn can
greatly affect the efficiency of solving Ax = b. Very effective heuristic methods are
known to select a permutation matrix P that leads to a sparse factor R.



Chapter 3

Complexity of iterative
algorithms

3.1 Iterative algorithms

The matrix algorithms we discussed so far are non-iterative. They require a fi-
nite number of floating-point operations, that can be counted and expressed as a
polynomial function of the problem dimensions. In chapters 4 and 5 we discuss
problems that are solved by iterative algorithms. By this is meant an algorithm
that computes a sequence of values x(0), x(1), x(2), . . ., with

x(k) → x∗

as k → ∞, where the scalar or vector x∗ is a solution of the problem. x(0) is called
the starting point of the algorithm, and x(k) is called the kth iterate. Moving from
x(k) to x(k+1) is called an iteration of the algorithm. The algorithm is terminated
when ‖x(k) − x∗‖ ≤ ǫ, where ǫ > 0 is some specified tolerance, or when it is
determined that the sequence is not converging (for example, when a limit on the
number of iterations is exceeded).

The total cost of an iterative algorithm is more difficult to estimate than the
cost of a non-iterative algorithm, because the number of iterations depends on
the problem parameters and on the starting point. The efficiency of an iterative
algorithm is therefore usually not expressed by giving its flop count, but by giving
upper bounds on the number of iterations to reach a given accuracy. Deriving such
bounds is the purpose of convergence analysis.

Iterative algorithms are often classified according to their rate of convergence.
In the following paragraphs we give an overview of the most common definitions.
For simplicity we will assume x∗ is a scalar, and x(k) (k = 0, 1, 2, . . .) is a sequence
of numbers converging to x⋆.

Absolute and relative error The error after k iterations can be expressed as the
absolute error, |x(k) −x⋆|, or as the relative error |x(k) −x⋆|/|x⋆| (which is defined
only if x⋆ 6= 0). The relative error can also be expressed as the number of correct
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digits, for which several slightly different definitions exist. The definition that we
will adopt is the following: if the relative error |x(k) − x⋆|/|x⋆| is less than one,
then the number of correct digits in x(k) is defined as

⌊

− log10

( |x(k) − x⋆|
|x⋆|

)⌋

(by ⌊α⌋ we mean the largest integer less than or equal to α). In other words, we
take the logarithm with base 10 of the relative error (which is a negative number
if the relative error is less than one), change its sign, and round it down to the
nearest integer. This means that r correct digits correspond to relative errors in
the interval [10−r, 10−r−1).

As an example, the table shows three numbers x close to x⋆ = π = 3.141592 . . .,
the relative error |x− π|/π, and the number of correct digits ⌊− log10(|x− π|/π)⌋.

x(k) rel. error #correct digits

3.14150 2.9 · 10−5 4
3.14160 2.3 · 10−6 5
3.14165 1.8 · 10−5 4

Note that other, perhaps more intuitive, definitions of correct digits might give
slightly different results. For example, if we simply count the number of leading
digits where π and x agree, we would say there are 5 correct digits in 3.14150, and
4 correct digits in 3.14160 and 3.14165. On the other hand, we might also argue
that the number of correct digits in x = 3.14150 is actually 4, because if we round
x and π to 4 digits, we obtain the same number (3.142), but if we round them to
5 digits, they are different (3.1415 and 3.1416).

These discrepancies do not matter in practice. If we use the number of correct
digits to describe the accuracy of an approximation, it is understood that we are
only giving a rough indication of the relative error. “Four correct digits” means
that the relative error is roughly 10−4. It could be a little more or little less,
depending on the definition, but that does not matter, because if we want to say
exactly what the accuracy is, we can simply give the relative (or absolute) error.

3.2 Linear and R-linear convergence

A sequence x(k) with limit x⋆ is linearly convergent if there exists a constant c ∈
(0, 1) such that

|x(k) − x⋆| ≤ c |x(k−1) − x⋆| (3.1)

for k sufficiently large. For example, the sequence x(k) = 1 + (1/2)k converges
linearly to x⋆ = 1, because

|x(k+1) − x⋆| = (1/2)k+1 =
1

2
|x(k) − x⋆|

so the definition is satisfied with c = 1/2.
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k 1 + 0.5k

0 2.00000000000000
1 1.50000000000000
2 1.25000000000000
3 1.12500000000000
4 1.06250000000000
5 1.03125000000000
6 1.01562500000000
7 1.00781250000000
8 1.00390625000000
9 1.00195313125000
10 1.00097656250000

Table 3.1 The first ten values of x(k) = 1 + 1/2k.

If x⋆ 6= 0, we can give an intuitive interpretation of linear convergence in terms
of the number of correct digits in x(k). Let

r(k) = − log10
|x(k) − x⋆|

|x⋆| . (3.2)

Except for rounding to an integer, r(k) is the number of correct digits in x(k). If
we divide both sides of the inequality (3.1) by |x⋆| and take logarithms, we obtain

r(k+1) ≥ r(k) − log10 c.

Ignoring the effect of rounding, we can say we gain at least − log10 c correct digits
per iteration.

We can verify this using the example x(k) = 1 + 1/2k. As we have seen,
this sequence is linearly convergent with c = 1/2, so we expect to gain roughly
− log10 1/2 = 0.3 correct digits per iteration, or in other words, one correct digit
per three or four iterations. This is confirmed by table 3.1, which shows the first
ten values of x(k).

R-linear convergence Linear convergence is also sometimes defined as follows. A
sequence x(k) with limit x⋆ is R-linearly convergent if there exists a positive M and
c ∈ (0, 1) such that

|x(k) − x⋆| ≤ Mck (3.3)

for sufficiently large k. This means that for large k the error decreases at least
as fast as the geometric series Mck. We refer to this as R-linear convergence to
distinguish it from the first definition. Every linearly convergent sequence is also
R-linearly convergent, but the converse is not true. For example, the error in an
R-linearly convergent sequence does not necessarily decrease monotonically, while
the inequality (3.1) implies that |x(k) − x⋆| < |x(k−1) − x⋆| for sufficiently large k.
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k 1 + 0.52
k

0 1.50000000000000
1 1.25000000000000
2 1.06250000000000
3 1.00390625000000
4 1.00001525878906
5 1.00000000023283
6 1.00000000000000

Table 3.2 The first six values of x(k) = 1 + (1/2)2
k

.

3.3 Quadratic convergence

A sequence x(k) with limit x⋆ is quadratically convergent if there exists a constant
c > 0 such that

|x(k) − x⋆| ≤ c |x(k−1) − x⋆|2 (3.4)

for k sufficiently large. The sequence x(k) = 1+ (1/2)2
k

converges quadratically to
x⋆ = 1, because

|x(k+1) − x⋆| = (1/2)2
k+1

=
(

(1/2)2
k
)2

= |x(k) − x⋆|2,

so the definition is satisfied with c = 1.
If x⋆ 6= 0, we can relate the definition to the number of correct digits in x(k).

If we define r(k) as in (3.2), then we can write the inequality (3.4) as

r(k) ≥ 2r(k−1) − log10(|x⋆c|).

Since |x(k) − x⋆| → 0, we must have r(k) → +∞, so sooner or later the first
term on the right-hand side will dominate the second term, which is constant. For
sufficiently large k, the number of correct digits roughly doubles in each iteration.

Table 3.2 shows the first few values of the sequence x(k) = 1 + (1/2)2
k

which
converges quadratically with c = 1, and x⋆ = 1. We start with one correct digit.
It takes two iterations to get the second correct digit. The next iteration we gain
one digit, then we gain two in one iteration, etc.

3.4 Superlinear convergence

A sequence x(k) with limit x⋆ is superlinearly convergent if there exists a sequence
ck > 0 with ck → 0 such that

|x(k) − x⋆| ≤ ck |x(k−1) − x⋆| (3.5)

for sufficiently large k.
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The sequence x(k) = 1 + (1/(k + 1))k is superlinearly convergent because

|x(k) − x⋆| = 1

(k + 1)k
=

kk−1

(k + 1)k
1

kk−1
=

kk−1

(k + 1)k
|x(k−1) − x⋆|,

so the definition is satisfied with ck = kk−1/(k + 1)k, which indeed goes to zero.
If we define r(k) as above, we can write the inequality (3.4) as

r(k) ≥ r(k−1) − log10(ck),

and since ck → 0, − log10 ck → ∞. For sufficiently large k, the number of correct
digits gained per iteration (− log10(ck)) increases with k.

Table 3.3 shows the first values of 1+(1/(k+1))k. The number of correct digits
increases faster than linearly, but does not quite double per iteration.

k 1 + (1/(k + 1)k)

0 2.00000000000000
1 1.50000000000000
2 1.11111111111111
3 1.01562500000000
4 1.00160000000000
5 1.00012860082305
6 1.00000849985975
7 1.00000047683716
8 1.00000002323057
9 1.00000000100000
10 1.00000000003855

Table 3.3 The first ten values of x(k) = 1 + (1/(k + 1))k.





Chapter 4

Nonlinear equations

In this chapter we discuss methods for finding a solution of n nonlinear equations
in n variables

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0.

To simplify notation, we will often express this as

f(x) = 0

where

f(x) =











f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fn(x1, x2, . . . , xn)











, x =











x1

x2

...
xn











.

We assume that f is at least continuous (i.e., limy→x f(y) = f(x) for all x), and
for some algorithms, stronger assumptions will be needed (for example, differentia-
bility).

4.1 Bisection method

The first method we discuss only applies to problems with n = 1.
We start with an interval [l, u] that satisfies f(l)f(u) < 0 (the function values

at the end points of the interval have opposite signs). Since f is continuous, this
guarantees that the interval contains at least one solution of f(x) = 0. In each
iteration we evaluate f at the midpoint (l+u)/2 of the interval, and depending on
the sign of f((l+ u)/2), replace l or u with (l+ u)/2. If f((u+ l)/2) has the same
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sign as f(l), we replace l with (u+ l)/2. Otherwise we replace u. Thus we obtain
a new interval that still satisfies f(l)f(u) < 0. The method is called bisection
because the interval is replaced by either its left or right half at each iteration.

Algorithm 4.1. Bisection algorithm.

given l, u with l < u and f(l)f(u) < 0; a required tolerance ǫ > 0
repeat

1. x := (l + u)/2.

2. Compute f(x).

3. if f(x) = 0, return x.

4. if f(x)f(l) < 0, u := x, else, l := x.

until u− l ≤ ǫ

The convergence of the bisection method is easy to analyze. If we denote by
[l(0), u(0)] the initial interval, and by [l(k), u(k)] the interval after iteration k, then

u(k) − l(k) =
u(0) − l(0)

2k
, (4.1)

because the length of the interval is divided by two at each iteration. This means
that the exit condition u(k) − l(k) ≤ ǫ will be satisfied if

log2(
u(0) − l(0)

2k
) = log2(u

(0) − l(0))− k ≤ log2 ǫ,

i.e., as soon as k ≥ log2((u
(0) − l(0))/ǫ). The algorithm therefore terminates after

⌈

log2

(

u(0) − l(0)

ǫ

)⌉

iterations. (By ⌈α⌉ we mean the smallest integer greater than or equal to α.)
Since the final interval contains at least one solution x⋆, we are guaranteed that

its midpoint

x(k) =
1

2
(l(k) + u(k))

is no more than a distance u(k) − l(k) from x⋆. Thus we have

|x(k) − x⋆| ≤ ǫ,

when the algorithm terminates.
The advantages of the bisection method are its simplicity and the fact that it

does not require derivatives. It also does not require a starting point close to x⋆.
The disadvantages are that it is not very fast, and that it does not extend to n > 1.
Selecting an initial interval that satisfies f(l)f(u) < 0 may also be difficult.

Convergence rate The bisection method is R-linearly convergent (as defined in
section 3.2). After k iterations, the midpoint x(k) = (u(k) + l(k))/2 satisfies

|x(k) − x⋆| ≤ u(k) − l(k) ≤ (1/2)k(u(0) − l(0)),

(see equation (4.1)). Therefore the definition (3.3) is satisfied with c = 1/2 and
M = u(0) − l(0).
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4.2 Newton’s method for one equation with one variable

Newton’s method is the most popular method for solving nonlinear equations. We
first explain the method for n = 1, and then extend it to n > 1. We assume that
f is differentiable.

Algorithm 4.2. Newton’s method for one equation with one variable.

given initial x, required tolerance ǫ > 0
repeat

1. Compute f(x) and f ′(x).

2. if |f(x)| ≤ ǫ, return x.

3. x := x− f(x)/f ′(x).

until maximum number of iterations is exceeded.

For simplicity we assume that f ′(x) 6= 0 in step 3. (In a practical implementation
we would have to make sure that the code handles the case f ′(x) = 0 gracefully.)

The algorithm starts at some initial value x(0), and then computes iterates x(k)

by repeating

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, k = 0, 1, 2, . . . .

This update has a simple interpretation. After evaluating the function value f(x(k))
and the derivative f ′(x(k)), we construct the first-order Taylor approximation to f
around x(k):

f̂(y) = f(x(k)) + f ′(x(k))(y − x(k)).

We then solve f̂(y) = 0, i.e.,

f(x(k)) + f ′(x(k))(y − x(k)) = 0,

for the variable y. This is called the linearized equation. If f ′(x(k)) 6= 0, the solution
exists and is given by

y = x(k) − f(x(k))

f ′(x(k))
.

We then take y as the next value x(k+1). This is illustrated in figure 4.1.

Examples We first consider the nonlinear equation

f(x) = ex − e−x − 1 = 0.

The derivative is f ′(x) = ex + e−x, so the Newton iteration is

x(k+1) = x(k) − ex
(k) − e−x(k) − 1

ex(k) + e−x(k)
, k = 0, 1, . . .

If we start at x = 4, the algorithm converges very quickly to x⋆ = 0.4812 (see
figure 4.2).
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f(y)

f̂(y)

x(k) x(k+1)

0

Figure 4.1 One iteration of Newton’s method. The iterate x(k+1) is the zero-
crossing of the first-order Taylor approximation of f at x(k).
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Figure 4.2 The solid line in the left plot is f(x) = ex − e−x − 1. The dashed
line and the circles indicate the iterates in Newton’s method for solving
f(x) = 0, starting at x(0) = 4. The right plot shows the error |x(k) − x⋆|
versus k.
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Figure 4.3 The solid line in the left plot is f(x) = (ex − e−x)/(ex + e−x).
The dashed line and the circles indicate the iterates in Newton’s method for
solving f(x) = 0, starting at x(0) = 0.85 (left) and x(0) = 1.15 (right). In
the first case the method converges rapidly to x⋆ = 0. In the second case it
does not converge.

As a second example, we consider the equation

f(x) =
ex − e−x

ex + e−x
= 0.

The derivative is f ′(x) = 4/(ex + e−x)2, so the Newton iteration is

x(k+1) = x(k) − 1

4
(e2x

(k) − e−2x(k)

), k = 0, 1, . . .

Figure 4.3 shows the iteration, starting at two starting points, x(0) = 0.85, and
x(0) = 1.15. The method converges rapidly from x(0) = 0.85, but does not converge
from x(0) = 1.15.

The two examples are typical for the convergence behavior of Newton’s method:
it works very well if started near a solution; it may not work when started far from
a solution.

4.3 Newton’s method for sets of nonlinear equations

We now extend Newton’s method to a nonlinear equation f(x) = 0 where f : Rn →
R

n (a function that maps an n-vector x to an n-vector f(x)).

We start with an initial point x(0). At iteration k we evaluate f(x(k)), the
derivative matrix Df(x(k)), and form the first-order approximation of f at x(k):

f̂(y) = f(x(k)) +Df(x(k))(y − x(k)).



32 4 Nonlinear equations

We set f̂(y) = 0 and solve for y, which gives

y = x(k) −Df(x(k))−1f(x(k))

(assuming Df(x(k)) is nonsingular). This value is taken as the next iterate x(k+1).
In summary,

x(k+1) = x(k) −Df(x(k))−1f(x(k)), k = 0, 1, 2, . . .

Algorithm 4.3. Newton’s method for sets of nonlinear equations.

given an initial x, a required tolerance ǫ > 0
repeat

1. Evaluate g = f(x) and H = Df(x).

2. if ‖g‖ ≤ ǫ, return x.

3. Solve Hv = −g.

4. x := x+ v.

until maximum number of iterations is exceeded.

Example As an example, we take a problem with two variables

f1(x1, x2) = log(x2
1 + 2x2

2 + 1)− 0.5, f2(x1, x2) = −x2
1 + x2 + 0.2. (4.2)

There are two solutions, (0.70, 0.29) and (−0.70, 0.29). The derivative matrix is

Df(x) =

[

2x1/(x
2
1 + 2x2

2 + 1) 4x2/(x
2
1 + 2x2

2 + 1)
−2x1 1

]

.

Figure 4.4 shows what happens if we use three different starting points.
The example confirms the behavior we observed for problems with one variable.

Newton’s method does not always work, but if started near a solution, it takes
only a few iterations. The main advantage of the method is its very fast local
convergence. The disadvantages are that it requires a good starting point, and
that it requires the n2 partial derivatives of f .

Many techniques have been proposed to improve the convergence properties.
(A simple idea for n = 1 is to combine it with the bisection method.) These
globally convergent Newton methods are designed in such a way that locally, in
the neighborhood of a solution, they automatically switch to the standard Newton
method.

A variation on Newton’s method that does not require derivatives is the secant
method, discussed in the next paragraph.

4.4 Secant method

Although the idea of the secant method extends to problems with several variables,
we will describe it only for n = 1.



4.4 Secant method 33

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x
2

f2(x) = 0

f1(x) = 0

Figure 4.4 The solid lines are the zero-level curves of the functions f1 and
f2 in (4.2). The circles are the iterates of Newton’s method from three

starting points. With x(0) = (−1, 1), the method converges to the solution

(−0.70, 0.29) in 2 or 3 steps. With x(0) = (1, 2), it converges to the solution

(0.70, 0.29) in about 5 steps. With x(0) = (0.2,−0.3), it does not converge.

The secant method can be interpreted as a variation of Newton’s method in
which we replace the first-order approximation

f̂(y) = f(x(k)) + f ′(x(k))(y − x(k))

with the function

f̂(y) = f(x(k)) +
f(x(k))− f(x(k−1))

x(k) − x(k−1)
(y − x(k)).

This is the affine function that agrees with f(y) at y = x(k) and y = x(k−1). We

then set f̂(y) equal to zero, solve for y, and take the solution as x(k+1) (figure 4.5).

Algorithm 4.4. Secant method for one equation with one variable.

given two initial points x, x−, required tolerance ǫ > 0
repeat

1. Compute f(x)

2. if |f(x)| ≤ ǫ, return x.

3. g := (f(x)− f(x−))/(x− x−).

4. x− := x.

5. x := x− f(x)/g.

until maximum number of iterations is exceeded.
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f(y)

f̂(y)

x(k−1) x(k) x(k+1)

0

Figure 4.5 One iteration of the secant method. The iterate x(k+1) is the
zero-crossing of the affine function through the points (x(k−1), f(x(k−1)) and

(x(k), f(x(k)).

The convergence of the secant method is slower than the Newton method, but
it does not require derivatives, so the amount of work per iteration is smaller.

Example

Figure 4.6 shows the convergence of the secant method for the same example as in
figure 4.2, with starting points x(0) = 4, x(−1) = 4.5.

4.5 Convergence analysis of Newton’s method

Newton’s method converges quadratically if f ′(x⋆) 6= 0, and we start sufficiently
close to x⋆. More precisely we can state the following result.

Suppose I = [x⋆ − δ, x⋆ + δ], with δ > 0, is an interval around a solution x⋆ on
which f satisfies the following two properties.

1. There exists a constant m > 0 such that |f ′(x)| ≥ m for all x ∈ I.

2. There exists a constant L > 0 such that |f ′(x) − f ′(y) ≤ L|x − y| for all
x, y ∈ I.

We will show that if |x(k) − x⋆| ≤ δ, then

|x(k+1) − x⋆| ≤ L

2m
|x(k) − x⋆|2. (4.3)

In other words, the inequality (3.4) is satisfied with c = L/(2m), so if x(k) converges
to x⋆, it converges quadratically.
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Figure 4.6 Error |x(k) − x⋆| versus k for the secant method applied to the

equation ex − e−x − 1 = 0, with starting points x(0) = 4, x(−1) = 4.5.

The inequality (4.3) is proved as follows. For simplicity we denote x(k) by x
and x(k+1) by x+, i.e.,

x+ = x− f(x)

f ′(x)
.

We have

|x+ − x⋆| = |x− f(x)

f ′(x)
− x⋆|

=
|−f(x)− f ′(x)(x⋆ − x)|

|f ′(x)|

=
|f(x⋆)− f(x)− f ′(x)(x⋆ − x)|

|f ′(x)| .

(Recall that f(x⋆) = 0.) We have |f ′(x)| ≥ m by the first property, and hence

|x+ − x⋆| ≤ |f(x⋆)− f(x)− f ′(x)(x⋆ − x)|
m

. (4.4)

We can use the second property to bound the numerator:

|f(x⋆)− f(x)− f ′(x)(x⋆ − x)| =

∣

∣

∣

∣

∣

∫ x⋆

x

(f ′(u)− f ′(x)) du

∣

∣

∣

∣

∣

≤
∫ x⋆

x

|f ′(u)− f ′(x)| du

≤ L

∫ x⋆

x

|u− x| du

=
L

2
|x⋆ − x|2. (4.5)
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Putting (4.4) and (4.5) together, we obtain |x+ − x| ≤ L|x⋆ − x|2/(2m), which
proves (4.3).

The inequality (4.3) by itself does not guarantee that |x(k)−x⋆| → 0. However, if
we assume that |x(0)−x⋆| ≤ δ and that δ ≤ m/L, then convergence readily follows.
Since |x(0) − x⋆| ≤ δ, we can apply the inequality (4.3) to the first iteration, which
yields

|x(1) − x⋆| ≤ L

2m
|x(0) − x⋆|2 ≤ L

2m
δ2 ≤ δ

2
.

Therefore |x(1) − x⋆| ≤ δ, so we can apply the inequality to k = 1, and obtain a
bound on the error in x(2),

|x(2) − x⋆| ≤ L

2m
|x(1) − x⋆|2 ≤ L

2m

δ2

4
≤ δ

8
,

and therefore also

|x(3) − x⋆| ≤ L

2m
|x(2) − x⋆|2 ≤ L

2m

δ2

82
≤ δ

128

et cetera. Continuing in this fashion, we have

|x(k+1) − x⋆| ≤ L

2m
|x(k) − x⋆|2 ≤ 2

(

1

4

)2k

δ,

which shows that the error converges to zero very rapidly.
A final note on the practical importance of this (and most other) convergence

results. If f ′(x⋆) 6= 0 and f ′(x) is a continuous function, then it is reasonable
to assume that the assumptions we made are satisfied for some δ, m, and L. In
practice, of course, we almost never know δ, m, L, so the convergence result does
not provide any practical guidelines that might help us, for example, when selecting
a starting point.

The result does provide some interesting qualitative or conceptual information.
It establishes convergence of Newton’s method, provided we start sufficiently close
to a solution. It also explains the very fast local convergence observed in practice.
As an interesting detail that we have not observed so far, the proof suggests that
quadratic convergence only occurs if f ′(x⋆) 6= 0. A simple example will confirm
this. Suppose we apply Newton’s method to the nonlinear equation

f(x) = x2 − a = 0,

where a is a nonnegative number. Newton’s method uses the iteration

x(k+1) = x(k) − (x(k))2 − a

2x(k)

=
1

2
(x(k) +

a

x(k)
), k = 0, 1, 2, . . . .

Figures 4.7 and 4.8 show the result for a = 5 and a = 0 respectively, with starting
point x(0) = 5. Newton’s method converges in both cases, but much more slowly
when a = 0 (and hence f ′(x⋆) = 0).
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Figure 4.7 The solid line on the left is the function x2. The circles and
dashed lines show the iterates in Newton’s method applied to the function
x2 − 5 = 0. The right plot shows the error versus k.
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Figure 4.8 The solid line on the left is the function x2. The circles and
dashed lines show the iterates in Newton’s method applied to the function
x2 = 0. The right plot shows the error versus k.
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Sets of equations The quadratic convergence result for Newton’s method gener-
alizes to functions of several variables. The precise statement is as follows. Suppose
there is a neighborhood

I = {x | ‖x− x⋆‖ ≤ δ}
around a solution x⋆ on which f satisfies the following two properties.

1. There exists a constant m > 0 such that ‖Df(x)−1‖2 ≤ 1/m for all x ∈ I.

2. There exists a constant L > 0 such that ‖Df(x) −Df(y)‖2 ≤ L‖x − y‖ for
all x, y ∈ I.

(Note that the norms ‖Df(x)−1‖2 and ‖Df(x)−Df(y)‖2 are matrix norms, defined
in §6.2, and ‖x− y‖ is a vector norm.) If ‖x(k) − x⋆‖ ≤ δ, then

‖x(k+1) − x⋆‖ ≤ L

2m
‖x(k) − x⋆‖2.

Secant method Under similar assumptions as Newton’s method (including, in
particular, f ′(x⋆) 6= 0 and a starting point sufficiently close to x⋆), the secant
method converges superlinearly. We omit the precise statement and the proof.



Chapter 5

Unconstrained minimization

5.1 Introduction

Let g : Rn → R be a scalar-valued function of n variables x = (x1, x2, . . . , xn). We
say x⋆ = (x⋆

1, x
⋆
2, . . . , x

⋆
n) minimizes g if g(x⋆) ≤ g(x) for all n-vectors x. We use

the notation
minimize g(x)

to denote the problem of finding an x⋆ that minimizes g. This is called an un-

constrained minimization problem, with variables x1, . . . , xn, and with objective

function or cost function g.
If x⋆ minimizes g, then we say x⋆ is a solution of the minimization problem, or

a minimum of g. A minimum is also sometimes referred to as a global minimum.
A vector x⋆ is a local minimum if there exists an R > 0 such that g(x⋆) ≤ g(x)
for all x with ‖x− x⋆‖ ≤ R. In other words, there is a neighborhood around x⋆ in
which g(x) ≥ g(x⋆). In this chapter, minimum means global minimum. The word
“global” in “global minimum” is redundant, but is sometimes added for emphasis.

The greatest α such that α ≤ g(x) for all x is called the optimal value of the
minimization problem, and denoted

min g(x)

or minx g(x). If x
⋆ is a minimum of g, then g(x⋆) = min g(x), and we say that the

optimal value is attained at x⋆. It is possible that min g(x) is finite, but there is no
x⋆ with g(x⋆) = min g(x) (see the examples below). In that case the optimal value
is not attained. It is also possible that g(x) is unbounded below, in which case we
define the optimal value as min g(x) = −∞.

Examples We illustrate the definitions with a few examples with one variable.

• g(x) = (x − 1)2. The optimal value is min g(x) = 0, and is attained at the
(global) minimum x⋆ = 1. There are no other local minima.

• g(x) = ex + e−x− 3x2, shown in the left-hand plot of figure 5.1. The optimal
value is −7.02. There are two (global) minima, at x⋆ = ±2.84. There are no
other local minima.
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Figure 5.1 Left: the function g(x) = ex + e−x − 3x2. Right: the function
g(x) = ex + e−x − 3x2 + x.

• g(x) = ex + e−x − 3x2 + x, shown in figure 5.1 (right). The optimal value is
−9.90, attained at the minimum x⋆ = −2.92. There is another local minimum
at x = 2.74.

• g(x) = e−x. The optimal value is min g(x) = 0, but is not attained. There
are no local or global minima.

• g(x) = −x + e−x. This function is unbounded below; the optimal value is
min g(x) = −∞. There are no local or global minima.

5.2 Gradient and Hessian

Gradient The gradient of a function g(x) of n variables, at x̂, is the vector of first
partial derivatives evaluated at x̂, and is denoted ∇g(x̂):

∇g(x̂) =

(

∂g

∂x1
(x̂),

∂g

∂x2
(x̂), . . . ,

∂g

∂xn
(x̂)

)

.

The gradient is used in the first-order (or affine) approximation of g around x̂,

ĝ(x) = g(x̂) +
n
∑

i=1

∂g

∂xi
(x̂)(xi − x̂i)

= g(x̂) +∇g(x̂)T (x− x̂).

If n = 1, the gradient is simply the first derivative g′(x̂), and the first-order ap-
proximation reduces to

ĝ(x) = g(x̂) + g′(x̂)(x− x̂).
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Hessian The Hessian of a function g(x) of n variables, at x̂, is the matrix of
second partial derivatives evaluated at x̂, and is denoted as ∇2g(x̂):

∇2g(x̂) =



























∂2g

∂x2
1

(x̂)
∂2g

∂x1∂x2
(x̂) · · · ∂2g

∂x1∂xn
(x̂)

∂2g

∂x2∂x1
(x̂)

∂2g

∂x2
2

(x̂) · · · ∂2g

∂x2∂xn
(x̂)

...
...

. . .
...

∂2g

∂xn∂x1
(x̂)

∂2g

∂xn∂x2
(x̂) · · · ∂2g

∂x2
n

(x̂)



























.

This is a symmetric matrix, because

∂2g

∂xi∂xj
(x̂) =

∂2g

∂xj∂xi
(x̂).

The Hessian is related to the second-order (or quadratic) approximation of g around
x̂, which is defined as

gq(x) = g(x̂) +

n
∑

i=1

∂g

∂xi
(x̂)(xi − x̂i) +

1

2

n
∑

i=1

n
∑

j=1

∂2g

∂xi∂xj
(x̂)(xi − x̂i)(xj − x̂j)

= g(x̂) +∇g(x̂)T (x− x̂) +
1

2
(x− x̂)T∇2g(x̂)(x− x̂).

If n = 1, the Hessian is the second derivative g′′(x̂), and the second-order approxi-
mation reduces to

gq(x) = g(x̂) + g′(x̂)(x− x̂) +
1

2
g′′(x̂)(x− x̂)2.

As an example, the Hessian of the function

g(x1, x2) = ex1+x2−1 + ex1−x2−1 + e−x1−1 (5.1)

is

∇2g(x) =

[

ex1+x2−1 + ex1−x2−1 + e−x1−1 ex1+x2−1 − ex1−x2−1

ex1+x2−1 − ex1−x2−1 ex1+x2−1 + ex1−x2−1

]

, (5.2)

so the second-order approximation around x̂ = 0 is

gq(x) =
1

e
(3 + x1 + (3/2)x2

1 + x2
2).

Properties We list here a few properties that often simplify the task of calculat-
ing gradients and Hessians. These facts are straightforward (although sometimes
tedious) to verify, directly from the definition of gradient and Hessian.

1. Linear and affine functions. The gradient and Hessian of g(x) = aTx+ b are

∇g(x) = a, ∇2g(x) = 0.
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2. Quadratic functions. The gradient and Hessian of g(x) = xTPx + qTx + r,
where P is a symmetric matrix, are

∇g(x) = 2Px+ q, ∇2g(x) = 2P.

3. Sum of two functions. If g(x) = g1(x) + g2(x), then

∇g(x) = ∇g1(x) +∇g2(x), ∇2g(x) = ∇2g1(x) +∇2g2(x).

4. Scalar multiplication. If g(x) = αf(x) where α is a scalar, then

∇g(x) = α∇f(x), ∇2g(x) = α∇2f(x).

5. Composition with affine function. If g(x) = f(Cx+ d) where C is an m× n
matrix, d is an m-vector, and f(y) is a function of m variables, then

∇g(x) = CT∇f(Cx+ d), ∇2g(x) = CT∇2f(Cx+ d)C.

Note that f(Cx + d) denotes the function f(y), evaluated at y = Cx + d.
Similarly, ∇f(Cx + d) is the gradient ∇f(y), evaluated at y = Cx + d, and
∇2f(Cx+ d) is the Hessian ∇2f(y), evaluated at y = Cx+ d.

Examples As a first example, consider the least squares function

g(x) = ‖Ax− b‖2.

We can find the gradient and Hessian by expanding g in terms of its variables xi,
and then taking the partial derivatives. An easier derivation is from the properties
listed above. We can express g as

g(x) = (Ax− b)T (Ax− b)

= xTATAx− bTAx− xTAT b+ bT b

= xTATAx− 2bTAx+ bT b.

This shows that g is a quadratic function: g(x) = xTPx+ qTx+ r with P = ATA,
q = −2AT b, r = bT b. From property 2,

∇g(x) = 2ATAx− 2AT b, ∇2g(x) = 2ATA.

An alternative derivation is based on property 5. We can express g as g(x) =
f(Cx+ d) where C = A, d = −b, and

f(y) = ‖y‖2 =
m
∑

i=1

y2i .

The gradient and Hessian of f are

∇f(y) =











2y1
2y2
...

2ym











= 2y, ∇2f(y) =











2 0 · · · 0
0 2 · · · 0

0 0
. . . 0

0 0 · · · 2











= 2I.
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Applying property 5, we find that

∇g(x) = AT∇f(Ax− b)

= 2AT (Ax− b),

∇2g(x) = AT∇2f(Ax− b)A

= 2ATA,

the same expressions as we derived before.
We can use the same method to find the gradient and Hessian of the function

in (5.1),
g(x1, x2) = ex1+x2−1 + ex1−x2−1 + e−x1−1.

We can express g as g(x) = f(Cx+ d), where f(y) = ey1 + ey2 + ey3 , and

C =





1 1
1 −1

−1 0



 , d =





−1
−1
−1



 .

The gradient and Hessian of f are

∇f(y) =





ey1

ey2

ey3



 , ∇2f(y) =





ey1 0 0
0 ey2 0
0 0 ey3



 ,

so it follows from property 5 that

∇g(x) = CT∇f(Cx+ d) =

[

1 1 −1
1 −1 0

]





ex1+x2−1

ex1−x2−1

e−x1−1





and

∇2g(x) = CT∇2f(Cx+ d)C

=

[

1 1 −1
1 −1 0

]





ex1+x2−1 0
0 ex1−x2−1 0
0 0 e−x1−1









1 1
1 −1

−1 0



 .(5.3)

5.3 Optimality conditions

Local or global minima of a function g can be characterized in terms of the gradient
and Hessian. In this section we state the optimality conditions (without proofs).

Global optimality A function g is convex if ∇2g(x) is positive semidefinite every-
where (for all x). If g is convex, then x⋆ is a minimum if and only if

∇g(x⋆) = 0.

There are no other local minima, i.e., every local minimum is global.
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Examples with n = 1 A function of one variable is convex if g′′(x) ≥ 0 everywhere.
Therefore x⋆ is a minimum of a convex function if and only if

g′(x⋆) = 0.

The functions g(x) = x2 and g(x) = x4 are convex, with second derivatives
g′′(x) = 2 and g′′(x) = 12x2, respectively. Therefore we can find the minimum by
setting the first derivative equal to zero, which in both cases yields x⋆ = 0.

The first and second derivatives of the function

g(x) = log(ex + e−x)

are

g′(x) =
ex − e−x

ex + e−x
, g′′(x) =

4

(ex + e−x)2
.

The second derivative is nonnegative everywhere, so g is convex, and we can find
its minimum by solving g′(x⋆) = 0, which gives x⋆ = 0.

Examples with n > 1 A quadratic function g(x) = xTPx + qTx + r (with P
symmetric) is convex if P is positive semidefinite. (Recall that ∇2g(x) = 2P .)
Therefore x⋆ is a minimum if and only if

∇g(x⋆) = 2Px⋆ + q = 0,

which is a set of n linear equations in n variables. If P is positive definite, the
equations have a unique solution x⋆ = −(1/2)P−1q, and can be efficiently solved
using the Cholesky factorization.

The least squares function g(x) = ‖Ax−b‖2 is convex, because∇2g(x) = 2ATA,
and the matrix ATA is positive semidefinite. Therefore x⋆ is a minimum if and
only if

∇g(x⋆) = 2ATAx⋆ − 2AT b = 0.

We can find x⋆ by solving the set of linear equations

ATAx⋆ = AT b,

in which we recognize the normal equations associated with the least squares prob-
lem.

In these first two examples, we can solve ∇g(x⋆) = 0 by solving a set of linear
equations, so we do not need an iterative method to minimize g. In general,
however, the optimality condition ∇g(x⋆) = 0 is a set of nonlinear equations in
x⋆ that has to be solved by an iterative algorithm.

The function g defined in (5.1), for example, is convex, because its Hessian is
positive definite everywhere. Although that is not obvious from the expression
in (5.2), it follows from (5.3) which shows that

∇2g(x) = CTDC

where D is a diagonal matrix with diagonal elements

d11 = ex1+x1−1, d22 = ex1+x1−1, d33 = e−x1−1,
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Figure 5.2 Contour lines and graph of the function g(x) = exp(x1 + x2 −
1) + exp(x1 − x2 − 1) + exp(−x1 − 1).

and C is a left-invertible 3× 2 matrix. It can be shown that vTCTDCv > 0 for all
nonzero v, hence CTDC is positive definite. It follows that x is a minimum of g if
and only if

∇g(x) =

[

ex1+x2−1 + ex1−x2−1 − e−x1−1

ex1+x2−1 − ex1−x2−1

]

= 0.

This is a set of two nonlinear equations in two variables.

The contour lines and graph of the function g are shown in figure 5.2.

Local optimality It is much harder to characterize optimality if g is not convex
(i.e., if there are points where the Hessian is not positive semidefinite). It is not
sufficient to set the gradient equal to zero, because such a point might correspond
to a local minimum, a local maximum, or a saddle point (see for example, the
second function in figure 5.1). However, we can state some simple conditions for
local optimality.

• Necessary condition. If x⋆ is locally optimal, then ∇g(x⋆) = 0 and ∇2g(x⋆)
is positive semidefinite.

• Sufficient condition. If ∇g(x⋆) = 0 and ∇2g(x⋆) is positive definite, then x⋆

is locally optimal.

The function g(x) = x3 provides an example that shows that “positive definite”
cannot be replaced by “positive semidefinite” in the sufficient condition. At x = 0
it satisfies g′(x) = 3x2 = 0 and g′′(x) = 6x = 0, although x = 0 is not a local
minimum.
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5.4 Newton’s method for minimizing a convex function

We first consider the important case when the objective function g is convex. As
we have seen in section 5.3, we can find the minimum by solving ∇g(x) = 0. This
is a set of n nonlinear equations in n variables that we can solve using any method
for nonlinear equations, for example, Newton’s method.

For simplicity we assume that ∇2g(x) is positive definite everywhere, which is
a little stronger than requiring ∇2g(x) to be positive semidefinite.

Newton’s method for solving nonlinear equations, applied to ∇g(x) = 0, is
based on the iteration

x(k+1) = x(k) −∇2g(x(k))−1∇g(x(k)), k = 0, 1, 2, . . . .

A more detailed description is as follows.

Algorithm 5.1. Newton’s method for unconstrained minimization.

given initial x, tolerance ǫ > 0
repeat

1. Evaluate ∇g(x) and ∇2g(x).

2. if ‖∇g(x)‖ ≤ ǫ, return x.

3. Solve ∇2g(x)v = −∇g(x).

4. x := x+ v.

until a limit on the number of iterations is exceeded

Since ∇2g(x) is positive definite, we can use the Cholesky factorization in step 3.
The vector v computed in the kth iteration is called the Newton step at x(k):

v(k) = −∇2g(x(k))−1∇g(x(k)).

The Newton step can be interpreted in several ways.

Interpretation as solution of linearized optimality condition In chapter 4 we
have seen that the iterates in Newton’s method for solving nonlinear equations can
be interpreted as solutions of linearized problems.

If we linearize the optimality condition ∇g(x) = 0 near x̂ = x(k) we obtain

∇g(x) ≈ ∇g(x̂) +∇2g(x̂)(x− x̂) = 0.

This is a linear equation in x, with solution

x = x̂−∇2g(x̂)−1∇g(x̂) = x(k) + v(k).

So the Newton step v(k) is what must be added to x(k) so that the linearized
optimality condition holds.

When n = 1 this interpretation is particularly simple. The solution of the
linearized optimality condition is the zero-crossing of the derivative g′(x), which is
monotonically increasing since g′′(x) > 0. Given our current approximation x(k) of
the solution, we form a first-order Taylor approximation of g′(x) at x(k). The zero-
crossing of this approximation is then x(k) + v(k). This interpretation is illustrated
in figure 5.3.



5.4 Newton’s method for minimizing a convex function 47

g′(x)

f̂(x)

x(k) x(k) + v(k)

0

Figure 5.3 The solid curve is the derivative g′(x) of the function g. f̂(x) =

g′(x(k))+g′′(x(k))(x−x(k)) is the affine approximation of g′(x) at x(k). The

Newton step v(k) is the difference between the root of f̂ and the point x(k).

Interpretation as minimum of second-order approximation The second-order
approximation gq of g near x̂ = x(k) is

gq(x) = g(x̂) +∇g(x̂)T (x− x̂) +
1

2
(x− x̂)T∇2g(x̂)(x− x̂) (5.4)

which is a convex quadratic function of y. To find the gradient and Hessian of gq,
we express the function as

gq(x) = xTPx+ qTx+ r

where

P =
1

2
∇2g(x̂), q = ∇g(x̂)−∇2g(x̂)x̂, r = g(x̂)−∇g(x̂)T x̂+

1

2
x̂T∇2g(x̂)x̂,

and then apply the second property in section 5.2:

∇2gq(x) = 2P = ∇2g(x̂)

and
∇gq(x) = 2Px+ q = ∇g(x̂) +∇2g(x̂)(x− x̂).

The minimum of gq is

x = −1

2
P−1q = x̂−∇2g(x̂)−1∇g(x̂).

Thus, the Newton step v(k) is what should be added to x(k) to minimize the second-
order approximation of g at x(k). This is illustrated in figure 5.4.

This interpretation gives us some insight into the Newton step. If the function
g is quadratic, then x(k) + v(k) is the exact minimum of g. If the function g is
nearly quadratic, x(k) + v(k) should be a very good estimate of the minimum of g.
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g(x)

gq(x)

x(k) x(k) + v(k)

Figure 5.4 The function g (solid line) and its second-order approximation

gq at x(k) (dashed). The Newton step v(k) is the difference between the

minimum of gq and the point x(k).

Example We apply Newton’s method to the convex function

g(x) = log(ex + e−x).

Figure 5.5 shows the iteration when we start at x(0) = 0.85. Figure 5.6 shows the
iteration when we start at x(0) = 1.15.

We notice that Newton’s method only converges when started near the solution,
as expected based on the general properties of the method. In the next paragraph
we describe a simple and easily implemented modification that makes the method
globally convergent (i.e., convergent from any starting point).

5.5 Newton’s method with line search

The purpose of the line search is to avoid the behavior of figure 5.6, in which the
function values increase from iteration to iteration. A look at the example shows
that there is actually nothing wrong with the direction of the Newton step, since
it always points in the direction of decreasing g. The problem is that we step too
far in that direction. So the remedy is quite obvious. At each iteration, we first
attempt the full Newton step x(k) + v(k), and evaluate g at that point. If the
function value g(x(k) + v(k)) is higher than g(x(k)), we reject the update, and try
x(k) + (1/2)v(k), instead. If the function value is still higher than g(x(k)), we try
x(k)+(1/4)v(k), and so on, until a value of t is found with g(x(k)+ tv(k)) < g(x(k)).
We then take x(k+1) = x(k) + tv(k). In practice, this backtracking idea is often
implemented as shown in the following outline.
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Figure 5.5 The solid line in the left figure is g(x) = log(exp(x) + exp(−x)).
The circles indicate the function values at the successive iterates in Newton’s
method, starting at x(0) = 0.85. The solid line in the right figure is the
derivative g′(x). The dashed lines in the right-hand figure illustrate the first
interpretation of Newton’s method (linearization of the optimality condition
g′(x) = 0).
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Figure 5.6 The solid line in the left figure is g(x) = log(exp(x) + exp(−x)).
The circles indicate the function values at the successive iterates in Newton’s
method, starting at x(0) = 1.15. The solid line in the right figure is the
derivative g′(x). The dashed lines in the right-hand figure illustrate the first
interpretation of Newton’s method.
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Algorithm 5.2. Newton’s method with line search.

given initial x, tolerance ǫ > 0, parameter α ∈ (0, 1/2).
repeat

1. Evaluate ∇g(x) and ∇2g(x).

2. if ‖∇g(x)‖ ≤ ǫ, return x.

3. Solve ∇2g(x)v = −∇g(x).

4. t := 1.
while g(x+ tv) > g(x) + αt∇g(x)T v, t := t/2.

5. x := x+ tv.

until a limit on the number of iterations is exceeded

The parameter α is usually chosen quite small (e.g., α = 0.01).
The scalar t computed in step 4 is called the step size, and the algorithm used

to calculate the step size (i.e., step 4) is called the line search. During the line
search, we examine candidate updates x + tv (for t = 1, 1/2, 1/4, . . .) on the line
that passes through x and x+ v, hence the name line search.

The purpose of the line search is to find a step size t such that g(x + tv) is
sufficiently less than g(x). More specifically, the condition of sufficient decrease
(used in step 4) is that the step size t is accepted if

g(x+ tv) ≤ g(x) + αt∇g(x)T v. (5.5)

To clarify this condition, we consider g(x + tv), where x = x(k), v = v(k), as a
function of t. The function h(t) = g(x + tv) is a function of one variable t, and
gives the values of g on the line x+tv, as a function of the step size t (see figure 5.7).
At t = 0, we have h(0) = g(x).

A first important observation is that the quantity ∇g(x)T v is the derivative of
h at t = 0. More generally,

h′(t) =
∂g

∂x1
(x+ tv)v1 +

∂g

∂x2
(x+ tv)v2 + · · ·+ ∂g

∂xn
(x+ tv)vn

= ∇g(x+ tv)T v,

so at t = 0 we have h′(0) = ∇g(x)T v. (The inner product ∇g(x)T v is known as
the directional derivative of g at x in the direction v.) It immediately follows that
h′(0) < 0:

h′(0) = ∇g(x)T v = −vT∇2g(x)v < 0,

because v is defined as v = −∇2g(x)−1∇g(x), and ∇2g(x) is positive definite.
The linear approximation of h(t) = g(x+ tv) at t = 0 is

h(0) + h′(0)t = g(x) + t∇g(x)T v,

so for small enough t we have

g(x+ tv) ≈ g(x) + t∇g(x)T v < g(x) + αt∇g(x)T v.

This shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in g predicted by linear extrap-
olation that we will accept.
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t

h(t) = g(x+ tv)

t = 0 t0

g(x) + αt∇g(x)T vg(x) + t∇g(x)T v

Figure 5.7 Backtracking line search. The curve shows g, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of g, and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that g(x + tv) lies below the upper dashed line,
i.e., 0 ≤ t ≤ t0. The line search starts with t = 1, and divides t by 2 until
t ≤ t0.

Examples We start with two small examples. Figure 5.8 shows the iterations in
Newton’s method with backtracking, applied to the example of figure 5.6, starting
from x(0) = 4. As expected the convergence problem has been resolved. From the
plot of the step sizes we note that the method accepts the full Newton step (t = 1)
after a few iterations. This means that near the solution the algorithm works like
the pure Newton method, which ensures fast (quadratic) convergence.

Figure 5.9 shows the results of Newton’s method applied to

g(x1, x2) = exp(x1 + x2 − 1) + exp(x1 − x2 − 1) + exp(−x1 − 1),

starting at x(0) = (−2, 2).

To give a larger example, suppose we are given an m × n-matrix A and an
m-vector b, and we are interested in minimizing

g(x) =
m
∑

i=1

log(ea
T

i
x−bi + e−aT

i
x+bi). (5.6)

where aTi denotes the ith row of A. To implement Newton’s method, we need the
gradient and Hessian of g. The easiest method is to use the composition property
in section 5.2. We express g as g(x) = f(Ax− b), where f is the following function
of m variables:

f(y) =

m
∑

i=1

log(eyi + e−yi).
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Figure 5.8 The solid line in the figure on the left is g(x) = log(exp(x) +
exp(−x)). The circles indicate the function values at the successive iterates

in Newton’s method with backtracking, starting at x(0) = 4. The right-hand
figure shows the step size t(k) at each iteration. In the first iteration (k = 0)
the step size is 1/27, i.e., 7 backtracking steps were made. In the second
iteration the step size is 0.25 (2 backtracking steps). The other iterations
take a full Newton step (t = 1).
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Figure 5.9 The left figure shows the contour lines of the function g(x) =
exp(x1 + x2 − 1) + exp(x1 − x2 − 1) + exp(−x1 − 1). The circles indicate
the iterates of Newton’s method, started at (−2, 2). The figure on the right

shows g(x(k))− g(x⋆) versus k.
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The partial derivatives of f are given by

∂f

∂yi
(y) =

eyi − e−yi

eyi + e−yi

,
∂2f

∂yi∂yj
(y) =

{

4/(eyi + e−yi)2 i = j
0 i 6= j.

(In other words,∇2f(y) is diagonal with diagonal elements 4/(exp(yi)+exp(−yi))
2.)

Given the gradient and Hessian of f , we can find the gradient and Hessian of g:

∇g(x) = AT∇f(Ax− b), ∇2g(x) = AT∇2f(Ax− b)A.

Once we have the correct expressions for the gradient and Hessian, the imple-
mentation of Newton’s method is straightforward. The MATLAB code is given
below.

x = ones(n,1);

for k = 1:50

y = A*x-b;

val = sum(log(exp(y)+exp(-y)));

grad = A’*((exp(y)-exp(-y))./(exp(y)+exp(-y)));

if (norm(grad) < 1e-5), break; end;

hess = 4*A’*diag(1./(exp(y)+exp(-y)).^2)*A;

v = -hess\grad;

t = 1;

while ( sum(log(exp(A*(x+t*v)-b)+exp(-A*(x+t*v)+b))) ...

> val + 0.01*t*grad’*v), t = 0.5*t; end;

x = x+t*v;

end;

We start with x(0) = (1, 1, . . . , 1), set the line search parameter α to α = 0.01, and
terminate if ‖∇f(x)‖ ≤ 10−5.

The results, for an example with m = 500 and n = 100 are shown in figure 5.10.
We note that many backtracking steps are needed in the first few iterations, until we
reach a neighborhood of the solution in which the pure Newton method converges.

5.6 Newton’s method for nonconvex functions

Minimization problems with a nonconvex cost function g presents additional dif-
ficulties to Newton’s method, even if the only goal is to find a local minimum. If
∇2g(x(k)) is not positive definite, then the Newton step

v(k) = −∇2g(x(k))−1∇g(x(k)),

might not be a descent direction. In other words, it is possible that the function
h(t) = g(x(k)+ tv(k)) that we considered in figure 5.7, has a positive slope at t = 0.
To see this, recall that the slope of h at t = 0 is given by

h′(0) = ∇g(x(k))T v(k),
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Figure 5.10 Results of Newton’s method with backtracking applied to the
function (5.6) for an example with m = 500, and n = 100. The figure on the

left is g(x(k)) − g(x⋆) versus k. The convergence accelerates as k increases,
and is very fast in the last few iterations. The right-hand figure shows the
step size t(k) versus k. The last four iterations use a full Newton step (t = 1).

g(x)

gq(x)

x(k) x(k) + v(k)

Figure 5.11 A nonconvex function g(x) and the second-order approximation

gq(x) of g around x(k). The Newton step v(k) = −g′(x(k))/g′′(x(k)) is the

difference between the maximum of gq and x(k).
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and that the proof that h′(0) < 0 in section 5.5 was based on the assumption that
∇2g(x(k)) was positive definite. Figure 5.11 shows an example in one dimension.

Practical implementations of Newton’s method for nonconvex functions make
sure that the direction v(k) used at each iteration is a descent direction, i.e., a
direction that satisfies

h′(0) = ∇g(x(k))T v(k) < 0.

Many techniques have been proposed to find such a v(k). The simplest choice is to
take v(k) = −∇g(x(k)) at points where the Hessian is not positive definite. This is
a descent direction, because

h′(0) = ∇g(x(k))T v(k) = −∇g(x(k))T∇g(x(k)) = −‖∇g(x(k))‖2.

With this addition, Newton’s method can be summarized as follows.

Algorithm 5.3. Newton’s method for nonconvex local minimization.

given initial x, tolerance ǫ > 0, parameter α ∈ (0, 1/2).
repeat

1. Evaluate ∇g(x) and ∇2g(x).

2. if ‖∇g(x)‖ ≤ ǫ, return x.

3. if ∇2g(x) is positive definite, solve ∇2g(x)v = −∇g(x) for v
else, v := −∇g(x).

4. t := 1.
while g(x+ tv) > g(x) + αt∇g(x)T v, t := t/2.

5. x := x+ tv.

until a limit on the number of iterations is exceeded

Although the algorithm guarantees that the function values decrease at each
iteration, it is still far from perfect. Note for example, that if we start at a point
where∇g(x) is zero (or very small), the algorithm terminates immediately in step 2,
although we might be at a local maximum. Experience also shows that the conver-
gence can be very slow, until we get close to a local minimum where the Hessian
is positive definite. Practical implementations of Newton’s method for nonconvex
minimization use more complicated methods for finding good descent directions
when the Hessian is not positive definite, and more sophisticated line searches.





Chapter 6

Condition and stability

The final two chapters are a short introduction to topics related to the accuracy of
numerical algorithms. In this chapter we discuss the concepts of problem condition
and algorithm stability.

6.1 Problem condition

A mathematical problem is well conditioned if small changes in the problem pa-
rameters (the problem data) lead to small changes in the solution. A problem is
badly conditioned or ill-conditioned if small changes in the parameters can cause
large changes in the solution. In other words, the solution of a badly conditioned
problem is very sensitive to changes in the parameters. Note that this is an in-
formal definition. A precise definition requires defining what we mean by large or
small errors (e.g., relative or absolute error, choice of norm), and a statement of
which of the parameters are subject to error.

In engineering problems, the data are almost always subject to uncertainty, due
to measurement errors, imperfect knowledge of the system, modeling approxima-
tions, rounding errors in previous calculations, etc., so it is important in practice
to have an idea of the condition of a problem.

Example Consider the two equations in two variables

x1 + x2 = b1

(1 + 10−5)x1 + (1− 10−5)x2 = b2.

It is easily verified that the coefficient matrix

A =

[

1 1
1 + 10−5 1− 10−5

]

is nonsingular, with inverse

A−1 =
1

2

[

1− 105 105

1 + 105 −105

]

,
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so the solution of Ax = b is

x = A−1b =
1

2

[

1− 105 105

1 + 105 −105

] [

b1
b2

]

=
1

2

[

b1 − 105(b1 − b2)
b1 + 105(b1 − b2)

]

.

Plugging in a few values for b1 and b2 around (1, 1) gives the following results.

b1 b2 x1 x2

1.00 1.00 0.500 0.500
1.01 1.01 0.505 0.505
0.99 1.01 1000.495 −999.505
1.01 0.99 −999.505 1000.495
0.99 0.99 0.495 0.495

We immediately notice that small changes in b sometimes lead to very large changes
in the solution x. In most applications that would pose a very serious problem.
Suppose for example that the values b1 = 1 and b2 = 1 are obtained from measure-
ments with a precision of 1%, so the actual values of b1 and b2 can be anywhere in
the interval [0.99, 1.01]. The five values of x1 and x2 in the table are all in agreement
with the measurements, so it would be foolish to accept the value x1 = x2 = 0.5,
obtained from the measured values b1 = b2 = 1, as the correct solution.

A second observation is that the error in x is not always large. In the second
and fifth rows of the table, the error in x is 1%, of the same order as the error in b.

In this example we only changed the values of the right-hand side b, and assumed
that the matrix A is exactly known. We can also consider the effect of small changes
in the coefficients of A, with similar conclusions. In fact, A is very close to the
singular matrix

[

1 1
1 1

]

,

so small changes in A might result in an unsolvable set of equations.
The most common method for examining the condition of a problem is precisely

what we did in the small example above. We generate a number of possible values
of the problem data, solve the problem for each of those values, and compare the
results. If the results vary widely, we conclude the problem is ill-conditioned. If the
results are all close, we can say with some confidence that the problem is probably
well-conditioned. This method is simple and applies to any type of problem, not
just linear equations. It can also be misleading. If in the small example above,
we had solved the equations for three right-hand sides, (b1, b2) = (1, 1), (b1, b2) =
(1.01, 1.01), (b1, b2) = (0.99, 0.99), then we would have incorrectly concluded that
the problem is well-conditioned.

A more rigorous method is to mathematically derive bounds on the error in the
solution, given a certain error in the problem data. For most numerical problems
this is quite difficult, and it is the subject of a field of mathematics called Numerical
Analysis. In this course we will give one example of such an error analysis: in
section 6.3 we will derive simple and easily computed bounds on the error of the
solution of a set of linear equations, given an error in the right-hand side. The
analysis will require the notion of matrix norm, which we discuss first.
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6.2 Matrix norm

The norm of a matrix serves the same purpose as the norm of a vector. It is a
measure of the size or magnitude of the matrix. As for vectors, many possible
definitions exist. For example, in analogy with the Euclidean norm of a vector x,

‖x‖ = (x2
1 + x2

2 + · · ·+ x2
n)

1/2,

we can define the norm of an m× n matrix A as

‖A‖F = (

m
∑

i=1

n
∑

j=1

A2
ij)

1/2,

i.e., the square root of the sum of the squares of the elements of A. This is called
the Frobenius norm of A.

In this chapter, we use a different definition of matrix norm (known as spectral
norm or 2-norm). The 2-norm of an m× n matrix A, denoted ‖A‖2, is defined as

‖A‖2 = max
x 6=0

‖Ax‖
‖x‖ . (6.1)

We will include the subscripts in the norm of a matrix to distinguish between the
Frobenius norm ‖A‖F and the 2-norm ‖A‖2.

Since the ratio ‖Ax‖/‖x‖ remains the same if we scale x with a nonzero scalar,
an equivalent definition is

‖A‖2 = max
‖x‖=1

‖Ax‖.

To better understand the definition of ‖A‖2, it is useful to recall the “operator”
or “function” interpretation of a matrix A: we can associate with an m×n matrix
A a linear function

f(x) = Ax

that maps n-vectors x to m-vectors y = Ax. For each nonzero x, we can calculate
the norm of x and Ax, and refer to the ratio ‖Ax‖/‖x‖ as the gain or amplification

factor of the operator f in the direction of x. Of course, the gain generally depends
on x, and can be large for some vectors x and small (or zero) for others. The matrix
norm, as defined in (6.1), is the maximum achievable gain, over all possible choices
of x. Although it is not yet clear how we can actually compute ‖A‖2 using this
definition, it certainly makes sense as a measure for the magnitude of A. If ‖A‖2
is small, say, ‖A‖2 ≪ 1, then ‖Ax‖ ≪ ‖x‖ for all x 6= 0, which means that the
function f strongly attenuates the input vectors x. If ‖A‖2 is large, then there
exist input vectors x for which the gain ‖Ax‖/‖x‖ is large.

Simple examples The norm of simple matrices can be calculated directly by ap-
plying the definition. For example, if A = 0, then Ax = 0 for all x, so ‖Ax‖/‖x‖ = 0
for all x, and hence ‖A‖ = 0. If A = I, we have Ax = x, and hence

‖A‖2 = max
x 6=0

‖Ax‖
‖x‖ = max

x 6=0

‖x‖
‖x‖ = 1.
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As another example, suppose

A =





0 1 0
0 0 −1
1 0 0



 .

We have Ax = (x2,−x3, x1), hence

‖Ax‖2 =
√

x2
2 + x2

3 + x2
1 = ‖x‖,

so this matrix also has norm one:

‖A‖2 = max
x 6=0

‖Ax‖
‖x‖ = max

x 6=0

‖x‖
‖x‖ = 1.

Next, assume that A is an m× 1 matrix,

A =











a1
a2
...

am











.

In this case x is a scalar, so ‖x‖ = |x| and

Ax =











a1x
a2x
...

amx











, ‖Ax‖ = |x|
√

a21 + a22 + · · ·+ a2m.

Therefore ‖Ax‖/‖x‖ =
√

a21 + a22 + · · ·+ a2m for all nonzero x, and

‖A‖2 =
√

a21 + a22 + · · ·+ a2m.

The matrix norm of a matrix with one column is equal to the Euclidean norm of
the column vector.

In these four examples, the ratio ‖Ax‖/‖x‖ is the same for all nonzero x, so
maximizing over x is trivial. As an example where the gain varies with x, we
consider a diagonal matrix

A =











A11 0 · · · 0
0 A22 · · · 0
...

...
. . .

...
0 0 · · · Ann











.

Here the gain is not independent of x. For example, for x = (1, 0, . . . , 0), we have
Ax = (A11, 0, . . . , 0), so

‖Ax‖
‖x‖ =

|A11|
1

= |A11|.
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If x = (0, 1, 0, . . . , 0), the gain is |A22|, etc. To find the matrix norm, we have
to find the value of x that maximizes the gain. For general x, we have Ax =
(A11x1, A22x2, . . . , Annxn), and therefore

‖A‖2 = max
x 6=0

√

A2
11x

2
1 +A2

22x
2
2 + · · ·+A2

nnx
2
n

√

x2
1 + x2

2 + · · ·+ x2
n

.

We will show that this is equal to the maximum of the absolute values of the
diagonal elements Aii:

‖A‖2 = max{|A11|, |A22|, . . . , |Ann|}.

Suppose for simplicity that

A2
11 ≥ A2

22 ≥ · · · ≥ A2
nn,

so |A11| = maxi |Aii|. Then

A2
11x

2
1 +A2

22x
2
2 + · · ·+A2

nnx
2
n ≤ A2

11(x
2
1 + x2

2 + · · ·+ x2
n)

for all x 6= 0, and therefore

√

A2
11x

2
1 +A2

22x
2
2 + · · ·+A2

nnx
2
n

√

x2
1 + x2

2 + · · ·+ x2
n

≤ |A11|.

Moreover for x = (1, 0, . . . , 0), we have

√

A2
11x

2
1 +A2

22x
2
2 + · · ·+A2

nnx
2
n

√

x2
1 + x2

2 + · · ·+ x2
n

= |A11|

so it follows that

max
x 6=0

√

A2
11x

2
1 +A2

22x
2
2 + · · ·+A2

nnx
2
n

√

x2
1 + x2

2 + · · ·+ x2
n

= |A11| = max
i=1,...,n

|Aii|.

Properties of the matrix norm The following properties of the matrix norm follow
from the definition. We leave the proofs as an exercise.

• Homogeneity. ‖βA‖2 = |β| ‖A‖2.

• Triangle inequality. ‖A+B‖2 ≤ ‖A‖2 + ‖B‖2.

• Definiteness. ‖A‖2 ≥ 0 for all A and ‖A‖2 = 0 if and only if A = 0.

• Matrix–vector product. ‖Ax‖ ≤ ‖A‖2 ‖x‖ for all vectors x (that can be mul-
tiplied with A).

• Matrix product. ‖AB‖2 ≤ ‖A‖2 ‖B‖2 for all matrices B (that can be multi-
plied with A).

• Transpose. ‖A‖2 = ‖AT ‖2 (see exercises).
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Computing the norm of a matrix The simple examples given above are meant to
illustrate the definition of matrix norm, and not to suggest a practical method for
calculating the matrix norm. In fact, except for simple matrices, it is very difficult
to see which vector x maximizes ‖Ax‖/‖x‖ and it is usually impossible to find the
norm by inspection or a simple calculation.

In practice, however, there exist efficient and reliable numerical methods for
calculating the norm of a matrix. In MATLAB the command is norm(A). Algo-
rithms for computing the matrix norm are based on techniques that are not covered
in this course. For our purposes it is sufficient to know that the norm of a matrix
is readily computed.

6.3 Condition number

Suppose we are given a set of linear equations Ax = b, with A nonsingular and of
order n. The solution x exists and is unique, and can be expressed as x = A−1b.
Now suppose we replace b with b+∆b. The new solution is

x+∆x = A−1(b+∆b) = A−1b+A−1∆b = x+A−1∆b,

so ∆x = A−1∆b. We are interested in deriving bounds on ∆x, given bounds on ∆b.
We discuss two types of bounds: one relating the absolute errors ‖∆x‖ and ‖∆b‖

(measured in Euclidean norm), the second relating the relative errors ‖∆x‖/‖x‖
and ‖∆b‖/‖b‖.

Absolute error bounds Using the fifth property of matrix norms on page 61, we
find the following bound on ‖∆x‖ = ‖A−1∆b‖:

‖∆x‖ ≤ ‖A−1‖2 ‖∆b‖. (6.2)

This means that if ‖A−1‖2 is small, then small changes in the right-hand side b
always result in small changes in x. On the other hand if ‖A−1‖2 is large, then
small changes in b may result in large changes in x.

Relative error bounds We find a bound on the relative error by combining (6.2)
and ‖b‖ ≤ ‖A‖2 ‖x‖ (which follows from b = Ax and property 5):

‖∆x‖
‖x‖ ≤ ‖A‖2 ‖A−1‖2

‖∆b‖
‖b‖ . (6.3)

The product ‖A‖2 ‖A−1‖2 is called the condition number of A, and is denoted
κ(A):

κ(A) = ‖A‖2 ‖A−1‖2.
Using this notation we can write the inequality (6.3) as

‖∆x‖
‖x‖ ≤ κ(A)

‖∆b‖
‖b‖ .
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It follows from the sixth property of matrix norms on page 61 that

κ(A) = ‖A‖2‖A−1‖2 ≥ ‖AA−1‖2 = ‖I‖2 = 1

for all nonsingular A. A small condition number (i.e., κ(A) close to one), means
that the relative error in x is not much larger than the relative error in b. We
say that the matrix A is well-conditioned if its condition number is small. A large
condition number means that the relative error in x may be much larger than the
relative error in b. If κ(A) is large, we say that A is ill-conditioned.

Computing the condition number The MATLAB command cond(A) computes
the condition number of a matrix A (using a method that we will not cover). The
commands rcond(A) and condest(A) provide very fast estimates of the condi-
tion number or its inverse. Fast condition number estimators are useful for large
matrices, when calculating the exact condition number is too expensive.

6.4 Algorithm stability

Numerical algorithms almost never compute the exact solution of a mathematical
problem, but only a very good approximation. The most important source of er-
ror is rounding error, introduced by the finite precision used by computers. The
result of an algorithm may also be inaccurate because the method is based on dis-
cretization (e.g., in numerical integration, or when solving differential equations),
or truncation (e.g., evaluating a function based on the Taylor series).

An algorithm is numerically stable if small errors introduced during the calcu-
lations lead to small errors in the result. It is unstable if small errors during the
calculation can lead to very large errors in the result. Again, this is an informal
definition, but sufficient for our purposes.

We have already encountered two examples of instability. In section 1.6 we
noted that solving linear equations via the LU factorization without row permuta-
tions is unstable. We have also seen that the QR factorization method for solving
least-squares problems is more stable than the Cholesky factorization method. We
will give other examples of instability in section 6.5.

Note the difference between condition and stability. Condition is a property
of a problem, while stability is a property of an algorithm. If a problem is badly
conditioned and the parameters are subject to error, then the solution will be
inaccurate, regardless of how it is computed. If an algorithm is unstable, then the
result is inaccurate because the algorithm introduces “unnecessarily” large errors.

In practice, of course, we should always try to use stable algorithms, while the
condition of a problem is not always under our control.
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6.5 Cancellation

Instability in an algorithm is often (but not always) caused by an effect called
cancellation. Cancellation occurs when two numbers are subtracted that are almost
equal, and one of the numbers or both are subject to error (for example, due to
rounding error in previous calculations).

Suppose
x̂ = x+∆x, ŷ = y +∆y

are approximations of two numbers x, y, with absolute errors |∆x| and |∆y|, re-
spectively. The relative error in the difference x̂− ŷ is

|(x̂− ŷ)− (x− y)|
|x− y| =

|∆x−∆y|
|x− y| ≤ |∆x|+ |∆y|

|x− y| .

(The upper bound is achieved when ∆x and ∆y have opposite signs.) We see that
if x− y is small, then the relative error in x̂− ŷ can be very large, and much larger
than the relative errors in x̂ and ŷ. The result is that the relative errors |∆x|/|x|,
|∆y|/|y| are magnified enormously.

For example, suppose x = 1, y = 1+10−5, and x and y have been calculated with
an accuracy of about 10 significant digits, i.e., |∆x|/|x| ≈ 10−10 and |∆y|/|y| ≈
10−10. The error in the result is

|(x̂− ŷ)− (x− y)|
|x− y| ≤ |∆x|+ |∆y|

|x− y| ≈ 2 · 10−10

|x− y| = 2 · 10−5.

The result may only have about 5 correct digits.

Example The most straightforward method for computing the two roots of the
quadratic equation

ax2 + bx+ c = 0

(with a 6= 0) is to evaluate the expressions

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

−b−
√
b2 − 4ac

2a
.

This method is unstable if b2 ≫ |4ac|. If b > 0, there is a danger of cancellation in
the expression for x1. If b < 0, cancellation may occur in the expression for x2.

For example, suppose a = c = 1, b = 105 + 10−5. The exact roots are given by

x1 =
−b+

√
b2 − 4ac

2a
= −10−5, x2 =

−b−
√
b2 − 4ac

2a
= −105,

We evaluate these expressions in MATLAB, rounding the square roots to 6 correct
digits using the chop function:

>> a = 1; b = 1e5 + 1e-5; c = 1;

>> x1 = (-b + chop(sqrt(b^2 - 4*a*c), 6)) / (2*a)

ans =

-5.0000e-6

>> x2 = (-b - chop(sqrt(b^2 - 4*a*c), 6)) / (2*a)

ans =

-1.0000e+05
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The relative error in x1 is 50%, and is due to cancellation.
We can formulate an algorithm that is more stable if b2 ≫ |4ac| as follows.

First suppose b > 0, so we have cancellation in the expression for x1. In this case
we can calculate x2 accurately. The expression for x1 can be reformulated as

x1 =

(

−b+
√
b2 − 4ac

) (

−b−
√
b2 − 4ac

)

(2a)
(

−b−
√
b2 − 4ac

)

=
b2 − b2 + 4ac

(2a)(−b−
√
b2 − 4ac)

=
c

ax2
.

Similarly, if b > 0, we can use the expression x2 = c/(ax1) to compute x2, given
x1. The modified algorithm that avoids cancellation is therefore:

• if b ≤ 0, calculate

x1 =
−b+

√
b2 − 4ac

2a
, x2 =

c

ax1

• if b > 0, calculate

x2 =
−b−

√
b2 − 4ac

2a
, x1 =

c

ax2
.

For the example, we get

>> a = 1; b = 1e5 + 1e-5; c = 1;

>> x2 = (-b - chop(sqrt(b^2 - 4*a*c), 6)) / (2*a)

ans =

-1.0000e+05

>> x1 = c / (a*x2)

ans =

-1.0000e-05





Chapter 7

Floating-point numbers

7.1 IEEE floating-point numbers

Binary floating-point numbers Modern computers use a binary floating-point
format to represent real numbers. We use the notation

x = ±(.d1d2 . . . dn)2 · 2e (7.1)

to represent a real number x in binary floating-point notation. The first part,
.d1d2 . . . dn, is called the mantissa, and di is called the ith bit of the mantissa. The
first bit d1 is always equal to 1; the other n− 1 bits can be 1 or 0. The number of
bits in the mantissa, n, is called the mantissa length. The exponent e is an integer
that can take any value between some minimum emin and a maximum emax.

The notation (7.1) represents the number

x = ±(d12
−1 + d22

−2 + · · ·+ dn2
−n) · 2e.

For example, the number 12.625 can be written as

12.625 = (1 · 2−1 +1 · 2−2 +0 · 2−3 +0 · 2−4 +1 · 2−5 +0 · 2−6 +1 · 2−7 +0 · 2−8) · 24

and therefore its binary representation (with mantissa length 8) is

12.625 = +(.11001010)2 · 24.

Example A binary floating-point number system is specified by three numbers:
the mantissa length n, the maximum exponent emax, and the minimum exponent
emin. As a simple example, suppose n = 3, emin = −1 and emax = 2. Figure 7.1
shows all possible positive numbers in this number system.

We can make several interesting observations. First, it is clear that there are
only finitely many numbers (16 positive and 16 negative numbers). The smallest
number is

+(.100)2 · 2−1 = 0.25,

and the largest number is

+(.111)2 · 22 = (2−1 + 2−2 + 2−3) · 22 = 3.5.
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0.25 0.5 1 1.5 2 2.5 3 3.5

Figure 7.1 Positive numbers in a binary floating-point system with n = 3,
emin = −1, emax = 2.

Second, the spacing between the numbers is not constant. There are four numbers
with exponent e = −1:

+(.100)2 · 2−1 = 0.25, +(.101)2 · 2−1 = 0.3125,

+(.110)2 · 2−1 = 0.375, +(.111)2 · 2−1 = 0.4375,

and the difference between these numbers is 2−4 = 0.0625. The next four numbers
are

+(.100)2 · 20 = 0.5, +(.101)2 · 20 = 0.625,

+(.110)2 · 20 = 0.75, +(.111)2 · 20 = 0.875,

with a spacing of 2−3 = 0.125. These are followed by the four numbers 1, 1.25,
1.5 and 1.75 (with a spacing of 2−2 = 0.25) and the four numbers 2, 2.5, 3 and 3.5
(with a spacing of 2−1 = 0.5).

Finally, we note that the number 0 cannot be represented, because the first bit
d1 is normalized to be 1. In practical implementations, the number 0 is represented
by giving the exponent e a special value (see below).

The IEEE standard Almost all computers implement the so-called IEEE floating-
point standard (published in 1985). The standard defines two types of floating-
point numbers: single and double. Since numerical computations almost always
use the double format, we will restrict the discussion to IEEE double precision
numbers.

The IEEE double format is a binary floating-point system with

n = 53, emin = −1021, emax = 1024.

To represent an IEEE double precision number we need 64 bits: one sign bit, 52
bits for the mantissa (recall that the first bit is always one, so we do not have to
store it), and 11 bits to represent the exponent. Note that the bit string for the
exponent can actually take 211 = 2048 different values, while only 2046 values are
needed to represent all integers between −1021 and 1024. The two remaining values
are given a special meaning. One value is used to represent subnormal numbers,
i.e., small numbers with first bit d1 = 0, including the number 0. The other value
represents ±∞ or NaN, depending on the value of the mantissa. The value ±∞
indicates overflow; NaN (not a number) indicates arithmetic error.

7.2 Machine precision

The mantissa length n is by far the most important of the three numbers n, emin,
emax, that specify a floating-point system. It is related to the machine precision,
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which is defined as
ǫM = 2−n.

In practice (for IEEE double-precision numbers), n = 53 and

ǫM = 2−53 ≈ 1.1102 · 10−16.

The machine precision can be interpreted in several ways. We can first note
that 1 + 2ǫM is the smallest floating-point number greater than 1: the number 1 is
represented as

1 = +(.100 · · · 00)2 · 21,
so the next higher floating-point number is

+(.100 · · · 01)2 · 21 = (2−1 + 2−n) · 21 = 1 + 2ǫM.

More generally, 2ǫM is the difference between consecutive floating-point numbers in
the interval [1, 2]. In the interval [2, 4], the spacing between floating-point numbers
increases:

2 = +(.100 · · · 00)2 · 22,
so the next number is

+(.100 · · · 01)2 · 22 = (2−1 + 2−n) · 22 = 2 + 4ǫM.

Similarly, the distance between consecutive numbers in [4, 8] is 8ǫM, and so on.

7.3 Rounding

If we want to represent a number x that is not a floating-point number, we have to
round it to the nearest floating-point number. We will denote by fl(x) the floating-
point number closest to x, and refer to fl(x) as the floating-point representation of x.
When there is a tie, i.e., when x is exactly in the middle between two consecutive
floating-point numbers, the floating-point number with least significant bit 0 (i.e.,
dn = 0) is chosen.

For example, as we have seen, the smallest floating-point number greater than
1 is 1 + 2ǫM. Therefore, fl(x) = 1 for 1 ≤ x < 1 + ǫM, and fl(x) = 1 + 2ǫM for
1 + ǫM < x ≤ 1 + 2ǫM. The number x = 1 + ǫM is the midpoint of the interval
[1, 1 + 2ǫM]. In this case we choose fl(1 + ǫM) = 1, because

1 = +(.10 . . . 00) · 21, 1 + 2ǫM = +(.10 . . . 01) · 21,

and the tie-breaking rule says that we choose the number with least significant
bit 0. This provides a second interpretation of the machine precision: all numbers
x ∈ [1, 1 + ǫM] are indistinguishable from 1.

The machine precision also provides a bound on the rounding error. For exam-
ple, if 1 ≤ x ≤ 2, the maximum rounding error is ǫM:

| fl(x)− x| ≤ ǫM
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for x ∈ [1, 2]. For x ∈ [2, 4], the maximum rounding error is | fl(x) − x| ≤ 2ǫM, et
cetera. It can also be shown that

| fl(x)− x|
x

≤ ǫM

for all x. This bound gives a third interpretation of the machine precision: ǫM is an
upper bound on the relative error that results from rounding a real number to the
nearest floating-point number. In IEEE double precision arithmetic, this means
that the relative error due to rounding is about 1.11 · 10−16, i.e., the precision is
roughly equivalent to 15 or 16 significant digits in a decimal representation.
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