11. Constrained least squares

- least norm problem
- least squares with equality constraints
- linear quadratic control

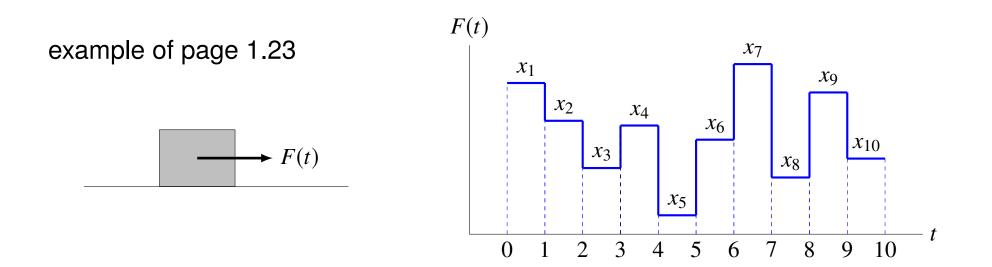
Least norm problem

minimize $||x||^2$ subject to Cx = d

- *C* is a $p \times n$ matrix, *d* is a *p*-vector
- in most applications p < n and the equation Cx = d is underdetermined
- the goal is to find the solution of the equation Cx = d with the smallest norm

we will assume that C has linearly independent rows

- the equation Cx = d has at least one solution for every d
- *C* is wide or square $(p \le n)$
- if p < n there are infinitely many solutions



- unit mass, with zero initial position and velocity
- piecewise-constant force $F(t) = x_j$ for $t \in [j 1, j)$ for j = 1, ..., 10
- position and velocity at t = 10 are given by y = Cx where

$$C = \begin{bmatrix} 19/2 & 17/2 & 15/2 & \cdots & 1/2 \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

forces that move mass over a unit distance with zero final velocity satisfy

$$\begin{bmatrix} 19/2 & 17/2 & 15/2 & \cdots & 1/2 \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

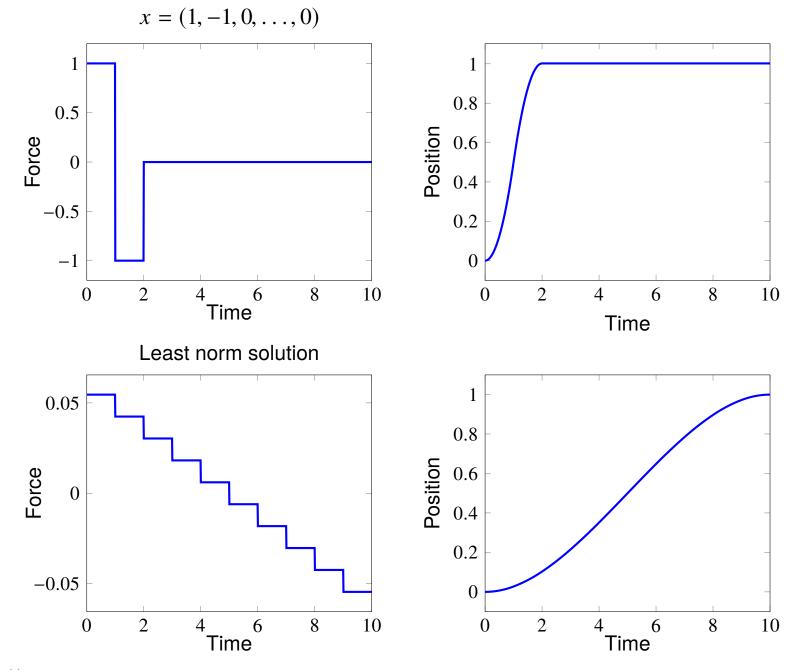
some interesting solutions:

• solutions with only two nonzero elements:

$$x = (1, -1, 0, \dots, 0), \qquad x = (0, 1, -1, \dots, 0), \qquad \dots$$

• least norm solution: minimizes

$$\int_0^{10} F(t)^2 dt = x_1^2 + x_2^2 + \dots + x_{10}^2$$



Least distance solution

as a variation, we can minimize the distance to a given point $a \neq 0$:

minimize $||x - a||^2$ subject to Cx = d

• reduces to least norm problem by a change of variables y = x - a

minimize
$$||y||^2$$

subject to $Cy = d - Ca$

• from least norm solution *y*, we obtain solution x = y + a of first problem

Solution of least norm problem

if *C* has linearly independent rows (is right-invertible), then

$$\hat{x} = C^T (CC^T)^{-1} d$$
$$= C^{\dagger} d$$

is the unique solution of the least norm problem

minimize $||x||^2$ subject to Cx = d

- in other words if Cx = d and $x \neq \hat{x}$, then $||x|| > ||\hat{x}||$
- recall from page 4.25 that

$$C^T (CC^T)^{-1} = C^{\dagger}$$

is the pseudo-inverse of a right-invertible matrix C

Proof

1. we first verify that \hat{x} satisfies the equation:

$$C\hat{x} = CC^T (CC^T)^{-1}d = d$$

2. next we show that $||x|| > ||\hat{x}||$ if Cx = d and $x \neq \hat{x}$

$$||x||^{2} = ||\hat{x} + x - \hat{x}||^{2}$$

= $||\hat{x}||^{2} + 2\hat{x}^{T}(x - \hat{x}) + ||x - \hat{x}||^{2}$
= $||\hat{x}||^{2} + ||x - \hat{x}||^{2}$
 $\geq ||\hat{x}||^{2}$

with equality only if $x = \hat{x}$

on line 3 we use $Cx = C\hat{x} = d$ in

$$\hat{x}^{T}(x - \hat{x}) = d^{T}(CC^{T})^{-1}C(x - \hat{x}) = 0$$

QR factorization method

use the QR factorization $C^T = QR$ of the matrix C^T :

$$\hat{x} = C^{T} (CC^{T})^{-1} d$$

$$= QR (R^{T}Q^{T}QR)^{-1} d$$

$$= QR (R^{T}R)^{-1} d$$

$$= QR^{-T} d$$

Algorithm

- 1. compute QR factorization $C^T = QR (2p^2n \text{ flops})$
- 2. solve $R^T z = d$ by forward substitution (p^2 flops)
- 3. matrix-vector product $\hat{x} = Qz$ (2*pn* flops)

complexity: $2p^2n$ flops

$$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 0 & 1/2 & 1/2 \end{bmatrix}, \qquad d = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• QR factorization $C^T = QR$

$$\begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 1 & 1/2 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/\sqrt{2} \\ -1/2 & 1/\sqrt{2} \\ 1/2 & 0 \\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1/\sqrt{2} \end{bmatrix}$$

• solve
$$R^T z = b$$

 $\begin{bmatrix} 2 & 0 \\ 1 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $z_1 = 0, z_2 = \sqrt{2}$

• evaluate $\hat{x} = Qz = (1, 1, 0, 0)$

Outline

- least norm problem
- least squares with equality constraints
- linear quadratic control

Constrained least squares

minimize $||Ax - b||^2$ subject to Cx = d

- A is an $m \times n$ matrix, C is a $p \times n$ matrix, b is an m-vector, d is a p-vector
- in most applications p < n, so equations are underdetermined
- the goal is to find the solution of Cx = d with smallest value of $||Ax b||^2$
- we make no assumptions about the shape of *A*

Special cases

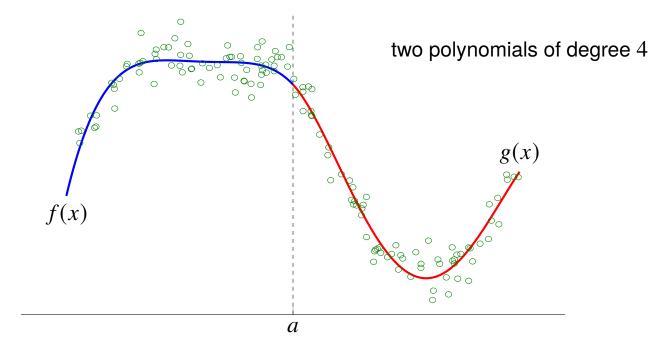
- least squares problem is a special case with p = 0 (no constraints)
- least norm problem is a special case with A = I and b = 0

Piecewise-polynomial fitting

• fit two polynomials f(x), g(x) to points (x_1, y_1) , ..., (x_N, y_N)

```
f(x_i) \approx y_i for points x_i \leq a, g(x_i) \approx y_i for points x_i > a
```

• make values and derivatives continuous at point *a*: f(a) = g(a), f'(a) = g'(a)



Constrained least squares formulation

• assume points are numbered so that $x_1, \ldots, x_M \leq a$ and $x_{M+1}, \ldots, x_N > a$:

minimize
$$\sum_{i=1}^{M} (f(x_i) - y_i)^2 + \sum_{i=M+1}^{N} (g(x_i) - y_i)^2$$

subject to $f(a) = g(a), \quad f'(a) = g'(a)$

• for polynomials $f(x) = \theta_1 + \dots + \theta_d x^{d-1}$ and $g(x) = \theta_{d+1} + \dots + \theta_{2d} x^{d-1}$

$$A = \begin{bmatrix} 1 & x_1 & \cdots & x_1^{d-1} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & x_M & \cdots & x_M^{d-1} & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & x_{M+1} & \cdots & x_{M+1}^{d-1} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 1 & x_N & \cdots & x_N^{d-1} \end{bmatrix}, \qquad b = \begin{bmatrix} y_1 \\ \vdots \\ y_M \\ y_{M+1} \\ \vdots \\ y_N \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & a & \cdots & a^{d-1} & -1 & -a & \cdots & -a^{d-1} \\ 0 & 1 & \cdots & (d-1)a^{d-2} & 0 & -1 & \cdots & -(d-1)a^{d-2} \end{bmatrix}, \qquad d = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Assumptions

minimize $||Ax - b||^2$ subject to Cx = d

we will make two assumptions:

1. the stacked $(m + p) \times n$ matrix

$$\left[\begin{array}{c}A\\C\end{array}\right]$$

has linearly independent columns (is left-invertible)

2. C has linearly independent rows (is right-invertible)

- note that assumption 1 is a weaker condition than left invertibility of A
- assumptions imply that $p \le n \le m + p$

Optimality conditions

 \hat{x} solves the constrained LS problem if and only if there exists a *z* such that

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ z \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

(proof on next page)

- this is a set of n + p linear equations in n + p variables
- we'll see that the matrix on the left-hand side is nonsingular
- equations are also known as Karush–Kuhn–Tucker (KKT) equations

Special cases

- least squares: when p = 0, reduces to normal equations $A^T A \hat{x} = A^T b$
- least norm: when A = I, b = 0, reduces to $C\hat{x} = d$ and $\hat{x} + C^T z = 0$

Proof

suppose *x* satisfies Cx = d, and (\hat{x}, z) satisfies the equation on page 11.15

$$\begin{aligned} \|Ax - b\|^2 &= \|A(x - \hat{x}) + A\hat{x} - b\|^2 \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(x - \hat{x})^T A^T (A\hat{x} - b) \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 - 2(x - \hat{x})^T C^T z \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 \\ &\ge \|A\hat{x} - b\|^2 \end{aligned}$$

- on line 3 we use $A^T A \hat{x} + C^T z = A^T b$; on line 4, $Cx = C \hat{x} = d$
- inequality shows that \hat{x} is optimal
- \hat{x} is the unique optimum because equality holds only if

$$A(x - \hat{x}) = 0, \quad C(x - \hat{x}) = 0 \implies x = \hat{x}$$

by the first assumption on page 11.14

Nonsingularity

if the two assumptions hold, then the matrix

$$\left[\begin{array}{rrr} A^T A & C^T \\ C & 0 \end{array}\right]$$

is nonsingular

Proof.

$$\begin{bmatrix} A^{T}A & C^{T} \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = 0 \implies x^{T}(A^{T}Ax + C^{T}z) = 0, \quad Cx = 0$$
$$\implies ||Ax||^{2} = 0, \quad Cx = 0$$
$$\implies Ax = 0, \quad Cx = 0$$
$$\implies x = 0 \quad \text{by assumption 1}$$

if x = 0, we have $C^T z = -A^T A x = 0$; hence also z = 0 by assumption 2

Nonsingularity

if the assumptions do not hold, then the matrix

$$\left[\begin{array}{rrr} A^T A & C^T \\ C & 0 \end{array}\right]$$

is singular

• if assumption 1 does not hold, there exists $x \neq 0$ with Ax = 0, Cx = 0; then

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix} = 0$$

• if assumption 2 does not hold there exists a $z \neq 0$ with $C^T z = 0$; then

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} 0 \\ z \end{bmatrix} = 0$$

in both cases, this shows that the matrix is singular

Constrained least squares

Solution by LU factorization

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

Algorithm

- 1. compute $H = A^T A$ (mn^2 flops)
- 2. compute $c = A^T b$ (2*mn* flops)
- 3. solve the linear equation

$$\left[\begin{array}{cc} H & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} x \\ z \end{array}\right] = \left[\begin{array}{c} c \\ d \end{array}\right]$$

by the LU factorization $((2/3)(p+n)^3$ flops)

complexity: $mn^2 + (2/3)(p+n)^3$ flops

Solution by QR factorization

we derive one of several possible methods based on the QR factorization

$$\begin{bmatrix} A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ z \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

• if we make a change of variables w = z - d, the equation becomes

$$\begin{bmatrix} A^T A + C^T C & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ w \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

- assumption 1 guarantees that $A^T A + C^T C$ is nonsingular (see page 4.21)
- assumption 1 guarantees that the following QR factorization exists:

$$\left[\begin{array}{c}A\\C\end{array}\right] = QR = \left[\begin{array}{c}Q_1\\Q_2\end{array}\right]R$$

Solution by QR factorization

substituting the QR factorization gives the equation

$$\begin{bmatrix} R^T R & R^T Q_2^T \\ Q_2 R & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ w \end{bmatrix} = \begin{bmatrix} R^T Q_1^T b \\ d \end{bmatrix}$$

• multiply first equation with R^{-T} and make change of variables $y = R\hat{x}$:

$$\begin{bmatrix} I & Q_2^T \\ Q_2 & 0 \end{bmatrix} \begin{bmatrix} y \\ w \end{bmatrix} = \begin{bmatrix} Q_1^T b \\ d \end{bmatrix}$$

• next we note that the matrix $Q_2 = CR^{-1}$ has linearly independent rows:

$$Q_2^T u = R^{-T} C^T u = 0 \implies C^T u = 0 \implies u = 0$$

because C has linearly independent rows (assumption 2)

Constrained least squares

Solution by QR factorization

we use the QR factorization of Q_2^T to solve

$$\begin{bmatrix} I & Q_2^T \\ Q_2 & 0 \end{bmatrix} \begin{bmatrix} y \\ w \end{bmatrix} = \begin{bmatrix} Q_1^T b \\ d \end{bmatrix}$$

• from the 1st block row, $y = Q_1^T b - Q_2^T w$; substitute this in the 2nd row:

$$Q_2 Q_2^T w = Q_2 Q_1^T b - d$$

• we solve this equation for w using the QR factorization $Q_2^T = \tilde{Q}\tilde{R}$:

$$\tilde{R}^T \tilde{R} w = \tilde{R}^T \tilde{Q}^T Q_1^T b - d$$

which can be simpflified to

$$\tilde{R}w = \tilde{Q}^T Q_1^T b - \tilde{R}^{-T} d$$

Summary of QR factorization method

$$\begin{bmatrix} A^T A + C^T C & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ w \end{bmatrix} = \begin{bmatrix} A^T b \\ d \end{bmatrix}$$

Algorithm

1. compute the two QR factorizations

$$\begin{bmatrix} A \\ C \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R, \qquad Q_2^T = \tilde{Q}\tilde{R}$$

2. solve $\tilde{R}^T u = d$ by forward substitution and compute $c = \tilde{Q}^T Q_1^T b - u$

- 3. solve $\tilde{R}w = c$ by back substitution and compute $y = Q_1^T b Q_2^T w$
- 4. compute $R\hat{x} = y$ by back substitution

complexity: $2(p+m)n^2 + 2np^2$ flops for the QR factorizations

Constrained least squares

Comparison of the two methods

Complexity: roughly the same

• LU factorization

$$mn^2 + \frac{2}{3}(p+n)^3 \le mn^2 + \frac{16}{3}n^3$$
 flops

• QR factorization

$$2(p+m)n^2 + 2np^2 \le 2mn^2 + 4n^3$$
 flops

upper bounds follow from $p \leq n$ (assumption 2)

Stability: 2nd method avoids calculation of Gram matrix $A^T A$

Outline

- least norm problem
- least squares with equality constraints
- linear quadratic control

Linear quadratic control

Linear dynamical system

$$x_{t+1} = A_t x_t + B_t u_t, \qquad y_t = C_t x_t, \qquad t = 1, 2, \dots$$

- *n*-vector x_t is system *state* at time t
- *m*-vector u_t is system *input*
- p-vector y_t is system *output*
- x_t , u_t , y_t often represent deviations from a standard operating condition

Objective: choose inputs u_1, \ldots, u_{T-1} that minimizes $J_{\text{output}} + \rho J_{\text{input}}$ with

$$J_{\text{output}} = ||y_1||^2 + \dots + ||y_T||^2, \qquad J_{\text{input}} = ||u_1||^2 + \dots + ||u_{T-1}||^2$$

State constraints: initial state and (possibly) the final state are specified $x_1 = x^{\text{init}}, \qquad x_T = x^{\text{des}}$

Linear quadratic control problem

minimize
$$||C_1x_1||^2 + \dots + ||C_Tx_T||^2 + \rho(||u_1||^2 + \dots + ||u_{T-1}||^2)$$

subject to $x_{t+1} = A_t x_t + B_t u_t, \quad t = 1, \dots, T-1$
 $x_1 = x^{\text{init}}, \quad x_T = x^{\text{des}}$

variables: $x_1, ..., x_T, u_1, ..., u_{T-1}$

Constrained least squares formulation

minimize
$$\|\tilde{A}z - \tilde{b}\|^2$$

subject to $\tilde{C}z = \tilde{d}$

variables: the (nT + m(T - 1))-vector

$$z = (x_1, \ldots, x_T, u_1, \ldots, u_{T-1})$$

Linear quadratic control problem

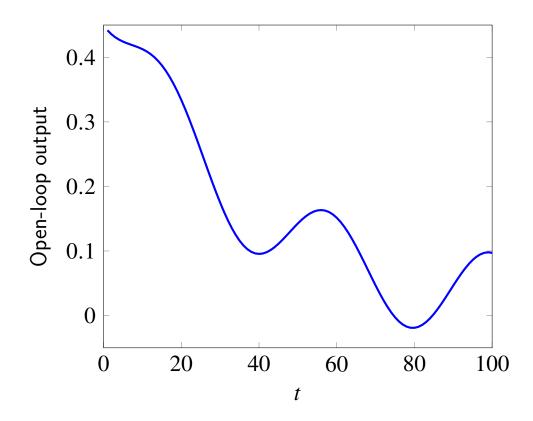
Objective function: $\|\tilde{A}z - \tilde{b}\|^2$ with

$$\tilde{A} = \begin{bmatrix} C_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & C_T & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & \sqrt{\rho I} & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & \sqrt{\rho I} \end{bmatrix}, \qquad \tilde{b} = 0$$

Constraints: $\tilde{C}_{z} = \tilde{d}$ with

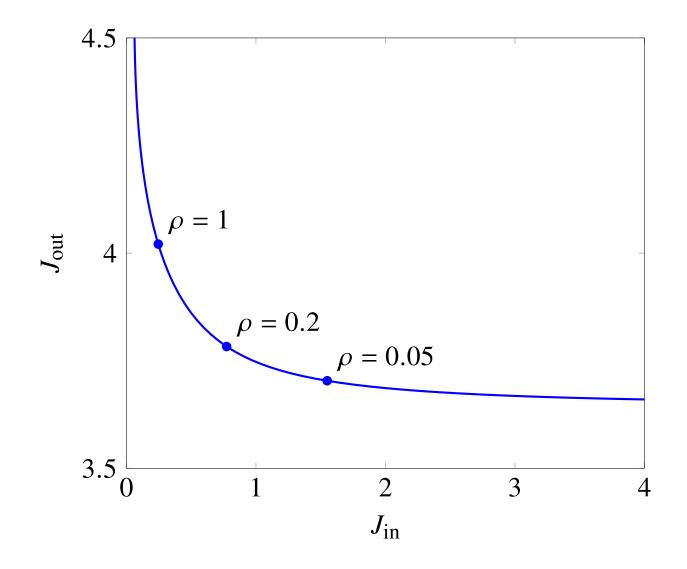
$$\tilde{C} = \begin{bmatrix} A_1 & -I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\ 0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \\ \hline I & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0 \end{bmatrix}, \qquad \tilde{d} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \frac{x^{\text{init}}}{x^{\text{des}}} \end{bmatrix}$$

- a system with three states, one input, one output
- system is time-invariant (matrices $A_t = A$, $B_t = B$, and $C_t = C$ are constant)
- figure shows "open-loop" output $CA^{t-1}x^{\text{init}}$

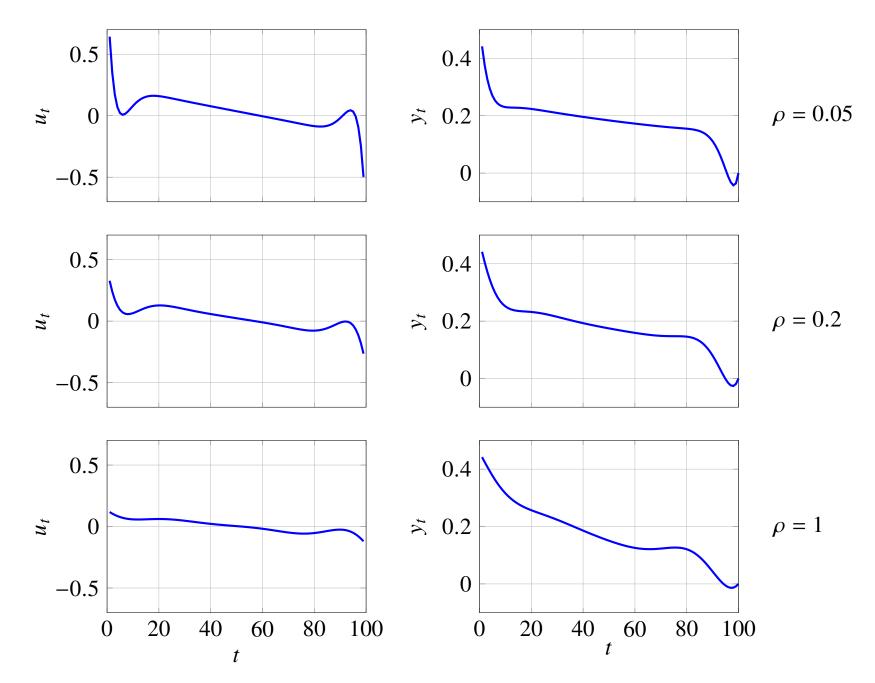


• we minimize $J_{\text{output}} + \rho J_{\text{input}}$ with final state constraint $x^{\text{des}} = 0$ at T = 100

Optimal trade-off curve



Three solutions on the trade-off curve



Linear state feedback control

Linear state feedback

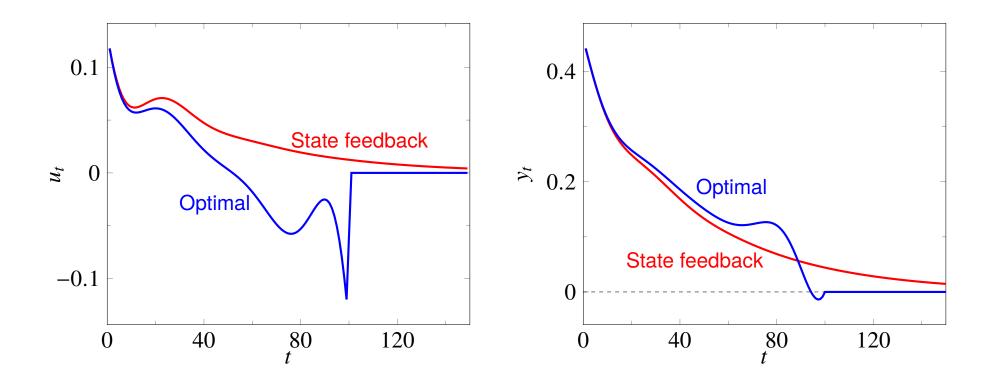
• linear state feedback control uses the input

 $u_t = K x_t, \quad t = 1, 2, \ldots$

- *K* is the *state feedback gain matrix*
- widely used, especially when x_t should converge to zero, T is not specified

One possible choice for *K*

- solve the linear quadratic control problem with $x^{\text{des}} = 0$
- solution u_t is a linear function of x^{init} , hence u_1 can be written as $u_1 = Kx^{\text{init}}$
- columns of *K* can be found by computing u_1 for $x^{\text{init}} = e_1, \ldots, e_n$
- use this *K* as state feedback gain matrix



- system matrices of previous example
- blue curve uses optimal linear quadratic control for T = 100
- red curve uses simple linear state feedback $u_t = Kx_t$