L. Vandenberghe ECE133A (Fall 2024)

11. Constrained least squares

e least norm problem
e |east squares with equality constraints

e linear quadratic control



Least norm problem

minimize  ||x]|?
subjectto Cx =d

e (Cisa p Xn matrix, d is a p-vector
e in most applications p < n and the equation Cx = d is underdetermined

e the goal is to find the solution of the equation Cx = d with the smallest norm

we will assume that C has linearly independent rows

e the equation Cx = d has at least one solution for every d
e ( is wide or square (p < n)

e if p < n there are infinitely many solutions
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e unit mass, with zero initial position and velocity
e piecewise-constant force F(t) =x;fort e [j—1,j)forj=1,...,10

e position and velocity at r = 10 are given by y = Cx where
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Example

forces that move mass over a unit distance with zero final velocity satisfy

19/2 17/2 15/2 - 1/2] |1
| ] 1 - 1 "7 1o

some interesting solutions:

e solutions with only two nonzero elements:

x=(1,-1,0,...,0), x=(0,1,-1,...,0),

e |east norm solution: minimizes

10
/ F(1)dt :x%+x§+---+x%0
0
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x=(1,-1,0,...,0)
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Least distance solution

as a variation, we can minimize the distance to a given point a # O:

minimize  ||x — a||?
subjectto Cx =d

e reduces to least norm problem by a change of variables y = x — a

minimize  ||y||?
subjectto Cy=d - Ca

e from least norm solution y, we obtain solution x = y + a of first problem
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Solution of least norm problem

if C has linearly independent rows (is right-invertible), then

>

cl«cchla
= C'd

is the unique solution of the least norm problem

minimize  ||x]||?
subjectto Cx =d

e in other words if Cx = d and x # X, then ||x|| > ||X]|

e recall from page 4.25 that
clcchH='=c?

is the pseudo-inverse of a right-invertible matrix C
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Proof

1. we first verify that X satisfies the equation:

ct=cclcchHhla=d

2. next we show that ||x|| > ||X|| if Cx =d and x # X

2
lx[[” =

o>

+x — £
2

+ 28T (x = %) + [|x = 2|7

[l
o>

2 5112
+ ||lx — x|l
2
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o>
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=

with equality only if x = X

online3weuseCx=Cx=din
Tax=-n=d'«cchHlcx-% =0
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QR factorization method

use the QR factorization C' = QR of the matrix C”:
£ = clechHla
= QR(R'Q"QR)™'d
= QR(R'R) 4
= QOR'd

Algorithm

1. compute QR factorization CT = QR (2p?n flops)
2. solve Rz = d by forward substitution (p? flops)

3. matrix-vector product £ = Oz (2pn flops)
complexity: 2p?n flops
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Example

1 -1 1 1
“=l1 o0 12 1/2]’ d‘[

']

e QR factorization CT = OR

11 1 [ 172 1/v2]

-1 0 | _| =1/2 1/V2 [2 1 ]
11217 172 0 0 1/V2
112 | 172 0

e solve RIz=b

21=0,22=V2
e evaluate £ = Q0z=(1,1,0,0)
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Outline

e least norm problem
e |least squares with equality constraints

e linear quadratic control



Constrained least squares

minimize  ||Ax — b||?
subjectto Cx =d

e Aisanm X n matrix, C is a p X n matrix, b is an m-vector, d is a p-vector
e in most applications p < n, so equations are underdetermined
e the goal is to find the solution of Cx = d with smallest value of ||Ax — b||?

e we make no assumptions about the shape of A

Special cases

e least squares problem is a special case with p = 0 (no constraints)

e |east norm problem is a special case with A =7Tand b =0
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Piecewise-polynomial fitting

e fit two polynomials f(x), g(x) to points (x1,y1), ..., (xn, YN)

f(x;) = y; forpoints x; < a, g(x;) =~ y; forpointsx; > a

e make values and derivatives continuous at point a: f(a) = g(a), f'(a) = g’(a)

two polynomials of degree 4
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Constrained least squares formulation

e assume points are numbered so that x,...,xy <aand xp;41,...,xNy > a:

. M , N 2
minimize > (f(x;) —y)“+ 2 (g(x) — yi)
i=1 I=M+1

subjectto  f(a) =g(a), [f'(a)=¢g'(a)

e for polynomials f(x) =60 +---+ 0,44 L and g(x) = 0441 + - - - + Oy gx?d]

[ d-1 ] i
Ioxp  xf 0 0 0 y1
L oxy e xd1 00 e |
A — XM xy, 0 0 d(il | Lo | ym
O 0 --- 0 [ VS R X M+1 YM+1
0O O 0 I xpy xj‘f]_l YN
C = Il a - ad-1 -1 —-a --- —q4-1 g = 0
101 -+ d-Da*? 0 -1 -+ —(d-1Da%? |’ 10
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Assumptions

minimize  ||Ax — b||?
subjectto Cx =d

we will make two assumptions:
1. the stacked (m + p) X n matrix
A
C
has linearly independent columns (is left-invertible)

2. C has linearly independent rows (is right-invertible)

e note that assumption 1 is a weaker condition than left invertibility of A

e assumptionsimplythatp <n<m+p
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Optimality conditions

X solves the constrained LS problem if and only if there exists a z such that

Afa ct || =] | ATb
C 0 z | | d
(proof on next page)

e this is a set of n + p linear equations in n + p variables
e we’'ll see that the matrix on the left-hand side is nonsingular

e equations are also known as Karush—Kuhn—Tucker (KKT) equations

Special cases

e least squares: when p = 0, reduces to normal equations AT A% = ATb

e least norm: when A =1, b =0, reducesto Ct=dand£+Clz=0
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Proof

suppose x satisfies Cx = d, and (X, z) satisfies the equation on page 11.15

|Ax = b||> = ||A(x—2%)+ A% - b|]?

= JAx =D+ ||A% = b||> +2(x = $)TAT (A% - b)
Alx = D|? + |A% - b|)> - 2(x - D) CT;
A(x = D)|)? + ||A% - b]|?
A% - b|?

\Y

e online3weuse ATA2+CTz=A"b;onlined,Cx=Ct=d
e inequality shows that X is optimal

e 1 is the unique optimum because equality holds only if

Ax-x)=0, C(x-x)=0 —

-
|l
<>

by the first assumption on page 11.14

Constrained least squares 11.16



Nonsingularity

if the two assumptions hold, then the matrix

ATA (T
C 0

is nonsingular

Proof.

ATA T X
C 0 Z

]:o — x'(ATAx+CT7)=0, Cx=0

— [|Ax||?=0, Cx=0
— Ax=0, Cx=0

— x =0 by assumption 1

if x =0, we have CTz = —AT Ax = 0; hence also z = 0 by assumption 2
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Nonsingularity

if the assumptions do not hold, then the matrix

ATA T
cC 0

is singular

e if assumption 1 does not hold, there exists x # 0 with Ax =0, Cx = 0; then

¢ e

e if assumption 2 does not hold there exists a z # 0 with C*z = 0; then

KEABE

in both cases, this shows that the matrix is singular
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Solution by LU factorization

ATA ct [ x| | ATb
C 0 z | | d
Algorithm
1. compute H = ATA (mn? flops)

2. compute ¢ = ATb (2mn flops)

3. solve the linear equation

by the LU factorization ((2/3)(p + n)> flops)

complexity: mn? + (2/3)(p + n)° flops

Constrained least squares 11.19



Solution by QR factorization

we derive one of several possible methods based on the QR factorization
Ata ct x| | Afb
C 0 z | | d
e if we make a change of variables w = z — d, the equation becomes
£ ] | ATb
wl| | d

e assumption 1 guarantees that A’ A + CTC is nonsingular (see page 4.21)

Ala+clfc 7
C 0

e assumption 1 guarantees that the following QR factorization exists:

& |=or=] g ]x
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Solution by QR factorization

substituting the QR factorization gives the equation
R'R R'QY || 2 | _| RTOTD
QzR 0 w B d

e multiply first equation with R~! and make change of variables y = R#:

o S

e next we note that the matrix 0, = CR~! has linearly independent rows:

qu:R_TCTu:O — Clu=0 = u=0
because C has linearly independent rows (assumption 2)

Constrained least squares

11.21



Solution by QR factorization

we use the QR factorization of Qg to solve
o G2
0O, O w d
e from the 1st block row, y = Q15 — Q% w; substitute this in the 2nd row:
020,w = 0201b —d
e we solve this equation for w using the QR factorization Qg = OR:
R'Rw=R'0"01b-d
which can be simpflified to
Rw = QTQ{b —R1da
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Summary of QR factorization method

ATA+ctc ct || 2| _| Alb
C 0 wl| | d

Algorithm

1. compute the two QR factorizations
A
C

2. solve R'u = d by forward substitution and compute ¢ = Q"' 01b — u

_[Q1

- Qz]R’ 0; = OR

3. solve Rw = ¢ by back substitution and compute y = Q{b - ng

4. compute Rx = y by back substitution

complexity: 2(p + m)n? + 2np? flops for the QR factorizations
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Comparison of the two methods

Complexity: roughly the same

e LU factorization 5 16
mn® + g(p +n)> < mn®+ ?n?’ flops

e QR factorization

2(p + m)n2 + 2np2 < 2mn’ +4n° flops

upper bounds follow from p < n (assumption 2)

Stability: 2nd method avoids calculation of Gram matrix A’ A
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Linear quadratic control
Linear dynamical system
Xt+]l = Atxt + Bﬂ/lt, YVt = Ctxt, I = 1, 2, ce

e n-vector x; is system state at time ¢
e m-vector u; is system input
e p-vector y; is system output

e Xx;, Uz, y; often represent deviations from a standard operating condition
Objective: choose inputs uy, ..., ur_y that minimizes Joutput + pJinput With

2 2 2 2
Jouput = [Iy1ll”+---+ly7lls  Jinpue = llurl|”+ -+ + [luz—1||

State constraints: initial state and (possibly) the final state are specified

x| = xlmt, X7 = xdes
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Linear quadratic control problem

minimize  ||C1x1]|? + - - - + |Crx7|1> + p(lug||? + - - - + |luz_1 %)

SUbjeCt to Xt+] = Atxt + Bﬂ/tt, [ = 1, ce e T-1

x| = ximit X7 = xdes

variables: xy, ..., x7, uy, ..., ur—_

Constrained least squares formulation

minimize  ||Az — b||?
subjectto Cz=d

variables: the (nT + m(T — 1))-vector

2= (X1yeee, XT ULy, UT—])
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Linear quadratic control problem

Objective function: ||Az — b||* with

)

[ Cq 0 0
i |0 cr| 0 0
=70 Vol 0 |
0 0 Vol |
Constraints: Cz = d with
[ Ay -1 O 0 O | By O 0
0 A -1 0 0 0 B 0
O 0 O Ar_1 -1 0 O Br_q
I 0 O 0 0 0O O 0
0 0 0 0 1|0 0 0
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Example

e a system with three states, one input, one output

e system is time-invariant (matrices A; = A, B; = B, and C; = C are constant)

e figure shows “open-loop” output C A’ 1xMit
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e we minimize Joutput + 0Jinpur With final state constraint xdes =0 at T = 100
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Optimal trade-off curve
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Three solutions on the trade-off curve
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Linear state feedback control

Linear state feedback

e linear state feedback control uses the input
Mt:th, t:1,2,...

e K is the state feedback gain matrix

e widely used, especially when x; should converge to zero, T is not specified

One possible choice for K

e solve the linear quadratic control problem with x9¢ = (

e solution i, is a linear function of x™™t hence u can be written as u; = Kx™
e columns of K can be found by computing u; for x™ = ¢y, ..., e,

e use this K as state feedback gain matrix
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Example

0.1

State feedback

Uz
-
T
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0.2
Optimal

State feedback
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e system matrices of previous example
e blue curve uses optimal linear quadratic control for T = 100

e red curve uses simple linear state feedback u; = Kx;
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