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11. Constrained least squares

• least norm problem

• least squares with equality constraints

• linear quadratic control

11.1



Least norm problem

minimize ∥𝑥∥2

subject to 𝐶𝑥 = 𝑑

• 𝐶 is a 𝑝 × 𝑛 matrix, 𝑑 is a 𝑝-vector

• in most applications 𝑝 < 𝑛 and the equation 𝐶𝑥 = 𝑑 is underdetermined

• the goal is to find the solution of the equation 𝐶𝑥 = 𝑑 with the smallest norm

we will assume that 𝐶 has linearly independent rows

• the equation 𝐶𝑥 = 𝑑 has at least one solution for every 𝑑

• 𝐶 is wide or square (𝑝 ≤ 𝑛)

• if 𝑝 < 𝑛 there are infinitely many solutions
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Example

example of page 1.23
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• unit mass, with zero initial position and velocity

• piecewise-constant force 𝐹 (𝑡) = 𝑥 𝑗 for 𝑡 ∈ [ 𝑗 − 1, 𝑗) for 𝑗 = 1, . . . , 10

• position and velocity at 𝑡 = 10 are given by 𝑦 = 𝐶𝑥 where

𝐶 =

[
19/2 17/2 15/2 · · · 1/2

1 1 1 · · · 1

]
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Example

forces that move mass over a unit distance with zero final velocity satisfy[
19/2 17/2 15/2 · · · 1/2

1 1 1 · · · 1

]
𝑥 =

[
1
0

]

some interesting solutions:

• solutions with only two nonzero elements:

𝑥 = (1,−1, 0, . . . , 0), 𝑥 = (0, 1,−1, . . . , 0), . . .

• least norm solution: minimizes∫ 10

0
𝐹 (𝑡)2𝑑𝑡 = 𝑥2

1 + 𝑥2
2 + · · · + 𝑥2

10
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Example
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Least distance solution

as a variation, we can minimize the distance to a given point 𝑎 ≠ 0:

minimize ∥𝑥 − 𝑎∥2

subject to 𝐶𝑥 = 𝑑

• reduces to least norm problem by a change of variables 𝑦 = 𝑥 − 𝑎

minimize ∥𝑦∥2

subject to 𝐶𝑦 = 𝑑 − 𝐶𝑎

• from least norm solution 𝑦, we obtain solution 𝑥 = 𝑦 + 𝑎 of first problem
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Solution of least norm problem

if 𝐶 has linearly independent rows (is right-invertible), then

𝑥 = 𝐶𝑇 (𝐶𝐶𝑇)−1𝑑

= 𝐶†𝑑

is the unique solution of the least norm problem

minimize ∥𝑥∥2

subject to 𝐶𝑥 = 𝑑

• in other words if 𝐶𝑥 = 𝑑 and 𝑥 ≠ 𝑥, then ∥𝑥∥ > ∥𝑥∥
• recall from page 4.25 that

𝐶𝑇 (𝐶𝐶𝑇)−1 = 𝐶†

is the pseudo-inverse of a right-invertible matrix 𝐶
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Proof

1. we first verify that 𝑥 satisfies the equation:

𝐶𝑥 = 𝐶𝐶𝑇 (𝐶𝐶𝑇)−1𝑑 = 𝑑

2. next we show that ∥𝑥∥ > ∥𝑥∥ if 𝐶𝑥 = 𝑑 and 𝑥 ≠ 𝑥

∥𝑥∥2 = ∥𝑥 + 𝑥 − 𝑥∥2

= ∥𝑥∥2 + 2𝑥𝑇 (𝑥 − 𝑥) + ∥𝑥 − 𝑥∥2

= ∥𝑥∥2 + ∥𝑥 − 𝑥∥2

≥ ∥𝑥∥2

with equality only if 𝑥 = 𝑥

on line 3 we use 𝐶𝑥 = 𝐶𝑥 = 𝑑 in

𝑥𝑇 (𝑥 − 𝑥) = 𝑑𝑇 (𝐶𝐶𝑇)−1𝐶 (𝑥 − 𝑥) = 0
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QR factorization method

use the QR factorization 𝐶𝑇 = 𝑄𝑅 of the matrix 𝐶𝑇 :

𝑥 = 𝐶𝑇 (𝐶𝐶𝑇)−1𝑑

= 𝑄𝑅(𝑅𝑇𝑄𝑇𝑄𝑅)−1𝑑

= 𝑄𝑅(𝑅𝑇𝑅)−1𝑑

= 𝑄𝑅−𝑇𝑑

Algorithm

1. compute QR factorization 𝐶𝑇 = 𝑄𝑅 (2𝑝2𝑛 flops)

2. solve 𝑅𝑇 𝑧 = 𝑑 by forward substitution (𝑝2 flops)

3. matrix-vector product 𝑥 = 𝑄𝑧 (2𝑝𝑛 flops)

complexity: 2𝑝2𝑛 flops
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Example

𝐶 =

[
1 −1 1 1
1 0 1/2 1/2

]
, 𝑑 =

[
0
1

]
• QR factorization 𝐶𝑇 = 𝑄𝑅


1 1

−1 0
1 1/2
1 1/2

 =


1/2 1/
√

2
−1/2 1/

√
2

1/2 0
1/2 0


[

2 1
0 1/

√
2

]

• solve 𝑅𝑇 𝑧 = 𝑏 [
2 0
1 1/

√
2

] [
𝑧1
𝑧2

]
=

[
0
1

]
𝑧1 = 0, 𝑧2 =

√
2

• evaluate 𝑥 = 𝑄𝑧 = (1, 1, 0, 0)
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Outline

• least norm problem

• least squares with equality constraints

• linear quadratic control



Constrained least squares

minimize ∥𝐴𝑥 − 𝑏∥2

subject to 𝐶𝑥 = 𝑑

• 𝐴 is an 𝑚 × 𝑛 matrix, 𝐶 is a 𝑝 × 𝑛 matrix, 𝑏 is an 𝑚-vector, 𝑑 is a 𝑝-vector

• in most applications 𝑝 < 𝑛, so equations are underdetermined

• the goal is to find the solution of 𝐶𝑥 = 𝑑 with smallest value of ∥𝐴𝑥 − 𝑏∥2

• we make no assumptions about the shape of 𝐴

Special cases

• least squares problem is a special case with 𝑝 = 0 (no constraints)

• least norm problem is a special case with 𝐴 = 𝐼 and 𝑏 = 0

Constrained least squares 11.11



Piecewise-polynomial fitting

• fit two polynomials 𝑓 (𝑥), 𝑔(𝑥) to points (𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁)

𝑓 (𝑥𝑖) ≈ 𝑦𝑖 for points 𝑥𝑖 ≤ 𝑎, 𝑔(𝑥𝑖) ≈ 𝑦𝑖 for points 𝑥𝑖 > 𝑎

• make values and derivatives continuous at point 𝑎: 𝑓 (𝑎) = 𝑔(𝑎), 𝑓 ′(𝑎) = 𝑔′(𝑎)

a

two polynomials of degree 4

f (x)

g(x)

x
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Constrained least squares formulation

• assume points are numbered so that 𝑥1, . . . , 𝑥𝑀 ≤ 𝑎 and 𝑥𝑀+1, . . . , 𝑥𝑁 > 𝑎:

minimize
𝑀∑
𝑖=1

( 𝑓 (𝑥𝑖) − 𝑦𝑖)2 +
𝑁∑

𝑖=𝑀+1
(𝑔(𝑥𝑖) − 𝑦𝑖)2

subject to 𝑓 (𝑎) = 𝑔(𝑎), 𝑓 ′(𝑎) = 𝑔′(𝑎)

• for polynomials 𝑓 (𝑥) = 𝜃1 + · · · + 𝜃𝑑𝑥𝑑−1 and 𝑔(𝑥) = 𝜃𝑑+1 + · · · + 𝜃2𝑑𝑥
𝑑−1

𝐴 =



1 𝑥1 · · · 𝑥𝑑−1
1 0 0 · · · 0

... ... ... ... ... ...
1 𝑥𝑀 · · · 𝑥𝑑−1

𝑀 0 0 · · · 0
0 0 · · · 0 1 𝑥𝑀+1 · · · 𝑥𝑑−1

𝑀+1... ... ... ... ... ...
0 0 · · · 0 1 𝑥𝑁 · · · 𝑥𝑑−1

𝑁


, 𝑏 =



𝑦1
...
𝑦𝑀
𝑦𝑀+1
...
𝑦𝑁


𝐶 =

[
1 𝑎 · · · 𝑎𝑑−1 −1 −𝑎 · · · −𝑎𝑑−1

0 1 · · · (𝑑 − 1)𝑎𝑑−2 0 −1 · · · −(𝑑 − 1)𝑎𝑑−2

]
, 𝑑 =

[
0
0

]
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Assumptions

minimize ∥𝐴𝑥 − 𝑏∥2

subject to 𝐶𝑥 = 𝑑

we will make two assumptions:

1. the stacked (𝑚 + 𝑝) × 𝑛 matrix [
𝐴
𝐶

]
has linearly independent columns (is left-invertible)

2. 𝐶 has linearly independent rows (is right-invertible)

• note that assumption 1 is a weaker condition than left invertibility of 𝐴

• assumptions imply that 𝑝 ≤ 𝑛 ≤ 𝑚 + 𝑝
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Optimality conditions

𝑥 solves the constrained LS problem if and only if there exists a 𝑧 such that[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
𝑥
𝑧

]
=

[
𝐴𝑇𝑏
𝑑

]
(proof on next page)

• this is a set of 𝑛 + 𝑝 linear equations in 𝑛 + 𝑝 variables

• we’ll see that the matrix on the left-hand side is nonsingular

• equations are also known as Karush–Kuhn–Tucker (KKT) equations

Special cases

• least squares: when 𝑝 = 0, reduces to normal equations 𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏

• least norm: when 𝐴 = 𝐼, 𝑏 = 0, reduces to 𝐶𝑥 = 𝑑 and 𝑥 + 𝐶𝑇 𝑧 = 0
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Proof

suppose 𝑥 satisfies 𝐶𝑥 = 𝑑, and (𝑥, 𝑧) satisfies the equation on page 11.15

∥𝐴𝑥 − 𝑏∥2 = ∥𝐴(𝑥 − 𝑥) + 𝐴𝑥 − 𝑏∥2

= ∥𝐴(𝑥 − 𝑥)∥2 + ∥𝐴𝑥 − 𝑏∥2 + 2(𝑥 − 𝑥)𝑇𝐴𝑇 (𝐴𝑥 − 𝑏)
= ∥𝐴(𝑥 − 𝑥)∥2 + ∥𝐴𝑥 − 𝑏∥2 − 2(𝑥 − 𝑥)𝑇𝐶𝑇 𝑧
= ∥𝐴(𝑥 − 𝑥)∥2 + ∥𝐴𝑥 − 𝑏∥2

≥ ∥𝐴𝑥 − 𝑏∥2

• on line 3 we use 𝐴𝑇𝐴𝑥 + 𝐶𝑇 𝑧 = 𝐴𝑇𝑏; on line 4, 𝐶𝑥 = 𝐶𝑥 = 𝑑

• inequality shows that 𝑥 is optimal

• 𝑥 is the unique optimum because equality holds only if

𝐴(𝑥 − 𝑥) = 0, 𝐶 (𝑥 − 𝑥) = 0 =⇒ 𝑥 = 𝑥

by the first assumption on page 11.14
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Nonsingularity

if the two assumptions hold, then the matrix[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

]
is nonsingular

Proof. [
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
𝑥
𝑧

]
= 0 =⇒ 𝑥𝑇 (𝐴𝑇𝐴𝑥 + 𝐶𝑇 𝑧) = 0, 𝐶𝑥 = 0

=⇒ ∥𝐴𝑥∥2 = 0, 𝐶𝑥 = 0

=⇒ 𝐴𝑥 = 0, 𝐶𝑥 = 0

=⇒ 𝑥 = 0 by assumption 1

if 𝑥 = 0, we have 𝐶𝑇 𝑧 = −𝐴𝑇𝐴𝑥 = 0; hence also 𝑧 = 0 by assumption 2
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Nonsingularity

if the assumptions do not hold, then the matrix[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

]
is singular

• if assumption 1 does not hold, there exists 𝑥 ≠ 0 with 𝐴𝑥 = 0, 𝐶𝑥 = 0; then[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
𝑥
0

]
= 0

• if assumption 2 does not hold there exists a 𝑧 ≠ 0 with 𝐶𝑇 𝑧 = 0; then[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
0
𝑧

]
= 0

in both cases, this shows that the matrix is singular
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Solution by LU factorization

[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
𝑥
𝑧

]
=

[
𝐴𝑇𝑏
𝑑

]
Algorithm

1. compute 𝐻 = 𝐴𝑇𝐴 (𝑚𝑛2 flops)

2. compute 𝑐 = 𝐴𝑇𝑏 (2𝑚𝑛 flops)

3. solve the linear equation [
𝐻 𝐶𝑇

𝐶 0

] [
𝑥
𝑧

]
=

[
𝑐
𝑑

]
by the LU factorization ((2/3) (𝑝 + 𝑛)3 flops)

complexity: 𝑚𝑛2 + (2/3) (𝑝 + 𝑛)3 flops
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Solution by QR factorization

we derive one of several possible methods based on the QR factorization[
𝐴𝑇𝐴 𝐶𝑇

𝐶 0

] [
𝑥
𝑧

]
=

[
𝐴𝑇𝑏
𝑑

]

• if we make a change of variables 𝑤 = 𝑧 − 𝑑, the equation becomes[
𝐴𝑇𝐴 + 𝐶𝑇𝐶 𝐶𝑇

𝐶 0

] [
𝑥
𝑤

]
=

[
𝐴𝑇𝑏
𝑑

]
• assumption 1 guarantees that 𝐴𝑇𝐴 + 𝐶𝑇𝐶 is nonsingular (see page 4.21)

• assumption 1 guarantees that the following QR factorization exists:[
𝐴
𝐶

]
= 𝑄𝑅 =

[
𝑄1
𝑄2

]
𝑅

Constrained least squares 11.20



Solution by QR factorization

substituting the QR factorization gives the equation[
𝑅𝑇𝑅 𝑅𝑇𝑄𝑇2
𝑄2𝑅 0

] [
𝑥
𝑤

]
=

[
𝑅𝑇𝑄𝑇1𝑏
𝑑

]

• multiply first equation with 𝑅−𝑇 and make change of variables 𝑦 = 𝑅𝑥:[
𝐼 𝑄𝑇2
𝑄2 0

] [
𝑦
𝑤

]
=

[
𝑄𝑇1𝑏
𝑑

]
• next we note that the matrix 𝑄2 = 𝐶𝑅−1 has linearly independent rows:

𝑄𝑇2𝑢 = 𝑅−𝑇𝐶𝑇𝑢 = 0 =⇒ 𝐶𝑇𝑢 = 0 =⇒ 𝑢 = 0

because 𝐶 has linearly independent rows (assumption 2)
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Solution by QR factorization

we use the QR factorization of 𝑄𝑇2 to solve[
𝐼 𝑄𝑇2
𝑄2 0

] [
𝑦
𝑤

]
=

[
𝑄𝑇1𝑏
𝑑

]

• from the 1st block row, 𝑦 = 𝑄𝑇1𝑏 −𝑄𝑇2𝑤; substitute this in the 2nd row:

𝑄2𝑄
𝑇
2𝑤 = 𝑄2𝑄

𝑇
1𝑏 − 𝑑

• we solve this equation for 𝑤 using the QR factorization 𝑄𝑇2 = 𝑄̃𝑅̃:

𝑅̃𝑇 𝑅̃𝑤 = 𝑅̃𝑇𝑄̃𝑇𝑄𝑇1𝑏 − 𝑑

which can be simpflified to

𝑅̃𝑤 = 𝑄̃𝑇𝑄𝑇1𝑏 − 𝑅̃−𝑇𝑑
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Summary of QR factorization method

[
𝐴𝑇𝐴 + 𝐶𝑇𝐶 𝐶𝑇

𝐶 0

] [
𝑥
𝑤

]
=

[
𝐴𝑇𝑏
𝑑

]

Algorithm

1. compute the two QR factorizations[
𝐴
𝐶

]
=

[
𝑄1
𝑄2

]
𝑅, 𝑄𝑇2 = 𝑄̃𝑅̃

2. solve 𝑅̃𝑇𝑢 = 𝑑 by forward substitution and compute 𝑐 = 𝑄̃𝑇𝑄𝑇1𝑏 − 𝑢
3. solve 𝑅̃𝑤 = 𝑐 by back substitution and compute 𝑦 = 𝑄𝑇1𝑏 −𝑄𝑇2𝑤
4. compute 𝑅𝑥 = 𝑦 by back substitution

complexity: 2(𝑝 + 𝑚)𝑛2 + 2𝑛𝑝2 flops for the QR factorizations
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Comparison of the two methods

Complexity: roughly the same

• LU factorization
𝑚𝑛2 + 2

3
(𝑝 + 𝑛)3 ≤ 𝑚𝑛2 + 16

3
𝑛3 flops

• QR factorization

2(𝑝 + 𝑚)𝑛2 + 2𝑛𝑝2 ≤ 2𝑚𝑛2 + 4𝑛3 flops

upper bounds follow from 𝑝 ≤ 𝑛 (assumption 2)

Stability: 2nd method avoids calculation of Gram matrix 𝐴𝑇𝐴
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Outline

• least norm problem

• least squares with equality constraints

• linear quadratic control



Linear quadratic control

Linear dynamical system

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡, 𝑦𝑡 = 𝐶𝑡𝑥𝑡, 𝑡 = 1, 2, . . .

• 𝑛-vector 𝑥𝑡 is system state at time 𝑡

• 𝑚-vector 𝑢𝑡 is system input

• 𝑝-vector 𝑦𝑡 is system output

• 𝑥𝑡, 𝑢𝑡, 𝑦𝑡 often represent deviations from a standard operating condition

Objective: choose inputs 𝑢1, . . . , 𝑢𝑇−1 that minimizes 𝐽output + 𝜌𝐽input with

𝐽output = ∥𝑦1∥2 + · · · + ∥𝑦𝑇 ∥2, 𝐽input = ∥𝑢1∥2 + · · · + ∥𝑢𝑇−1∥2

State constraints: initial state and (possibly) the final state are specified

𝑥1 = 𝑥init, 𝑥𝑇 = 𝑥des
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Linear quadratic control problem

minimize ∥𝐶1𝑥1∥2 + · · · + ∥𝐶𝑇𝑥𝑇 ∥2 + 𝜌(∥𝑢1∥2 + · · · + ∥𝑢𝑇−1∥2)
subject to 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡, 𝑡 = 1, . . . , 𝑇 − 1

𝑥1 = 𝑥init, 𝑥𝑇 = 𝑥des

variables: 𝑥1, . . . , 𝑥𝑇 , 𝑢1, . . . , 𝑢𝑇−1

Constrained least squares formulation

minimize ∥ 𝐴̃𝑧 − 𝑏̃∥2

subject to 𝐶̃𝑧 = 𝑑

variables: the (𝑛𝑇 + 𝑚(𝑇 − 1))-vector

𝑧 = (𝑥1, . . . , 𝑥𝑇 , 𝑢1, . . . , 𝑢𝑇−1)
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Linear quadratic control problem

Objective function: ∥ 𝐴̃𝑧 − 𝑏̃∥2 with

𝐴̃ =



𝐶1 · · · 0 0 · · · 0
... . . . ... ... . . . ...
0 · · · 𝐶𝑇 0 · · · 0
0 · · · 0 √

𝜌𝐼 · · · 0
... . . . ... ... . . . ...
0 · · · 0 0 · · · √

𝜌𝐼


, 𝑏̃ = 0

Constraints: 𝐶̃𝑧 = 𝑑 with

𝐶̃ =



𝐴1 −𝐼 0 · · · 0 0 𝐵1 0 · · · 0
0 𝐴2 −𝐼 · · · 0 0 0 𝐵2 · · · 0
... ... ... ... ... ... ... . . . ...
0 0 0 · · · 𝐴𝑇−1 −𝐼 0 0 · · · 𝐵𝑇−1
𝐼 0 0 · · · 0 0 0 0 · · · 0
0 0 0 · · · 0 𝐼 0 0 · · · 0


, 𝑑 =



0
0
...
0
𝑥init

𝑥des


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Example

• a system with three states, one input, one output

• system is time-invariant (matrices 𝐴𝑡 = 𝐴, 𝐵𝑡 = 𝐵, and 𝐶𝑡 = 𝐶 are constant)

• figure shows “open-loop” output 𝐶𝐴𝑡−1𝑥init
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• we minimize 𝐽output + 𝜌𝐽input with final state constraint 𝑥des = 0 at 𝑇 = 100
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Optimal trade-off curve
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Three solutions on the trade-off curve
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Linear state feedback control

Linear state feedback

• linear state feedback control uses the input

𝑢𝑡 = 𝐾𝑥𝑡, 𝑡 = 1, 2, . . .

• 𝐾 is the state feedback gain matrix

• widely used, especially when 𝑥𝑡 should converge to zero, 𝑇 is not specified

One possible choice for 𝐾

• solve the linear quadratic control problem with 𝑥des = 0

• solution 𝑢𝑡 is a linear function of 𝑥init, hence 𝑢1 can be written as 𝑢1 = 𝐾𝑥init

• columns of 𝐾 can be found by computing 𝑢1 for 𝑥init = 𝑒1, . . . , 𝑒𝑛

• use this 𝐾 as state feedback gain matrix
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Example
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• system matrices of previous example

• blue curve uses optimal linear quadratic control for 𝑇 = 100

• red curve uses simple linear state feedback 𝑢𝑡 = 𝐾𝑥𝑡
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