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15. Problem condition

• condition of a mathematical problem

• matrix norm

• condition number

15.1



Sources of error in numerical computation

Example: evaluate a function 𝑓 : R → R at a given 𝑥

sources of error in the result:

• 𝑥 is not exactly known

– measurement errors
– errors in previous computations

−→ how sensitive is 𝑓 (𝑥) to errors in 𝑥?

• the algorithm for computing 𝑓 (𝑥) is not exact

– discretization (e.g., algorithm uses a table to look up function values)
– truncation (e.g., function is evaluated by truncating a Taylor series)
– rounding error during the computation

−→ how large is the error introduced by the algorithm?
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Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

• well-conditioned problem:

small changes in the data produce small changes in the solution

• ill-conditioned (badly conditioned) problem:

small changes in the data can produce large changes in the solution

a rigorous definition depends on what “large error” means

• absolute or relative error, which norm is used, . . .

• the informal definition is sufficient for our purposes
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Example: function evaluation

here the problem is: given 𝑥, evaluate 𝑦 = 𝑓 (𝑥)

• if 𝑥 is changed to 𝑥 + Δ𝑥, solution changes to

𝑦 + Δ𝑦 = 𝑓 (𝑥 + Δ𝑥)

• condition with respect to absolute error in 𝑥 and 𝑦

|Δ𝑦 | ≈ | 𝑓 ′(𝑥) | |Δ𝑥 |

problem is ill-conditioned with respect to absolute error if | 𝑓 ′(𝑥) | is very large

• condition with respect to relative errors in 𝑥 and 𝑦

|Δ𝑦 |
|𝑦 | ≈ | 𝑓 ′(𝑥) | |𝑥 |

| 𝑓 (𝑥) |
|Δ𝑥 |
|𝑥 |

ill-conditioned with respect to relative error if | 𝑓 ′(𝑥) | |𝑥 |/| 𝑓 (𝑥) | is very large
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Roots of a polynomial

𝑝(𝑥) = (𝑥 − 1) (𝑥 − 2) · · · (𝑥 − 10) + 𝛿 · 𝑥10

roots of 𝑝 computed by MATLAB for two values of 𝛿
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roots can be very sensitive to errors in the coefficients
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Condition of a set of linear equations

• assume 𝐴 is nonsingular and 𝐴𝑥 = 𝑏

• if we change 𝑏 to 𝑏 + Δ𝑏, the new solution is 𝑥 + Δ𝑥 with

𝐴(𝑥 + Δ𝑥) = 𝑏 + Δ𝑏

• the change in 𝑥 is
Δ𝑥 = 𝐴−1Δ𝑏

Condition

• the equations are well-conditioned if small Δ𝑏 results in small Δ𝑥

• the equations are ill-conditioned if small Δ𝑏 can result in large Δ𝑥
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Example of ill-conditioned equations

𝐴 =
1
2

[
1 1

1 + 10−10 1 − 10−10

]
, 𝐴−1 =

[
1 − 1010 1010

1 + 1010 −1010

]

• solution for 𝑏 = (1, 1) is 𝑥 = (1, 1)
• change in 𝑥 if we change 𝑏 to 𝑏 + Δ𝑏:

Δ𝑥 = 𝐴−1Δ𝑏 =

[
Δ𝑏1 − 1010(Δ𝑏1 − Δ𝑏2)
Δ𝑏1 + 1010(Δ𝑏1 − Δ𝑏2)

]

small Δ𝑏 can lead to extremely large Δ𝑥
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Outline

• condition of a mathematical problem

• matrix norm

• condition number



Matrix norms

the Frobenius norm of an 𝑚 × 𝑛 matrix 𝐴 is defined as

∥𝐴∥𝐹 =

√√
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴2
𝑖 𝑗

• denoted ∥𝐴∥ in the textbook

• in MATLAB: norm(A,’fro’); in Julia: norm(A)

the 2-norm or spectral norm is defined as

∥𝐴∥2 = max
𝑥≠0

∥𝐴𝑥∥
∥𝑥∥

• the norms ∥𝐴𝑥∥ and ∥𝑥∥ are Euclidean norms of vectors

• no simple explicit expression, except for special 𝐴

• readily computed numerically (in MATLAB: norm(A); in Julia: opnorm(A))
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Interpretation of 2-norm

the 𝑚 × 𝑛 matrix 𝐴 defines a linear function 𝑓 (𝑥) = 𝐴𝑥

�G H = 5 (G) = �G

• ∥𝐴𝑥∥/∥𝑥∥ gives the amplification factor or gain for input 𝑥

• the gain only depends on the direction of 𝑥

• the 2-norm of 𝐴 is the maximum gain over all directions:

∥𝐴∥2 = max
𝑥≠0

∥𝐴𝑥∥
∥𝑥∥ = max

∥𝑥∥=1
∥𝐴𝑥∥
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Computing the 2-norm of a matrix

Simple matrices: sometimes it is easy to maximize ∥𝐴𝑥∥/∥𝑥∥
• zero matrix: ∥0∥2 = 0

• identity matrix: ∥𝐼 ∥2 = 1

• diagonal matrix:

𝐴 =


𝐴11 0 · · · 0
0 𝐴22 · · · 0
... ... . . . ...
0 0 · · · 𝐴𝑛𝑛

 , ∥𝐴∥2 = max
𝑖=1,...,𝑛

|𝐴𝑖𝑖 |

• matrix with orthonormal columns: ∥𝐴∥2 = 1

General matrices: ∥𝐴∥2 must be computed by numerical algorithms
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Properties of the matrix norm

Properties satisfied by all matrix norms

• nonnegative: ∥𝐴∥2 ≥ 0 for all 𝐴

• positive definiteness: ∥𝐴∥2 = 0 only if 𝐴 = 0

• homogeneity: ∥𝛽𝐴∥2 = |𝛽 |∥𝐴∥2

• triangle inequality: ∥𝐴 + 𝐵∥2 ≤ ∥𝐴∥2 + ∥𝐵∥2

Additional properties satisfied by the 2-norm

• ∥𝐴𝑥∥ ≤ ∥𝐴∥2∥𝑥∥ if the product 𝐴𝑥 exists

• ∥𝐴𝐵∥2 ≤ ∥𝐴∥2∥𝐵∥2 if the product 𝐴𝐵 exists

• if 𝐴 is nonsingular: ∥𝐴∥2∥𝐴−1∥2 ≥ 1

• if 𝐴 is nonsingular: 1/∥𝐴−1∥2 = min𝑥≠0 (∥𝐴𝑥∥2/∥𝑥∥)
• ∥𝐴𝑇 ∥2 = ∥𝐴∥2
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Bound on absolute error

suppose 𝐴 is nonsingular and define

𝑥 = 𝐴−1𝑏, Δ𝑥 = 𝐴−1Δ𝑏

Upper bound on ∥Δ𝑥∥:

∥Δ𝑥∥ ≤ ∥𝐴−1∥2 ∥Δ𝑏∥

• follows from property 4 on page 15.11

• small ∥𝐴−1∥2 means that ∥Δ𝑥∥ is small when ∥Δ𝑏∥ is small

• large ∥𝐴−1∥2 means that ∥Δ𝑥∥ can be large, even when ∥Δ𝑏∥ is small

• for every 𝐴, there exists nonzero Δ𝑏 such that ∥Δ𝑥∥ = ∥𝐴−1∥2 ∥Δ𝑏∥
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Bound on relative error

suppose in addition that 𝑏 ≠ 0; hence 𝑥 ≠ 0

Upper bound on ∥Δ𝑥∥/∥𝑥∥:

∥Δ𝑥∥
∥𝑥∥ ≤ ∥𝐴∥2∥𝐴−1∥2

∥Δ𝑏∥
∥𝑏∥ (1)

• follows from ∥Δ𝑥∥ ≤ ∥𝐴−1∥2∥Δ𝑏∥ and ∥𝑏∥ ≤ ∥𝐴∥2∥𝑥∥
• ∥𝐴∥2∥𝐴−1∥2 small means ∥Δ𝑥∥/∥𝑥∥ is small when ∥Δ𝑏∥/∥𝑏∥ is small

• ∥𝐴∥2∥𝐴−1∥2 large means ∥Δ𝑥∥/∥𝑥∥ can be much larger than ∥Δ𝑏∥/∥𝑏∥
• for every 𝐴, there exist nonzero 𝑏, Δ𝑏 such that equality holds in (1)
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Condition number

Definition: the condition number of a nonsingular matrix 𝐴 is

𝜅(𝐴) = ∥𝐴∥2∥𝐴−1∥2

Properties

• 𝜅(𝐴) ≥ 1 for all 𝐴 (additional property 3 on page 15.11)

• 𝐴 is a well-conditioned matrix if 𝜅(𝐴) is small (close to 1):

the relative error in 𝑥 is not much larger than the relative error in 𝑏

• 𝐴 is badly conditioned or ill-conditioned if 𝜅(𝐴) is large:

the relative error in 𝑥 can be much larger than the relative error in 𝑏
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Example

• 𝐴 is blurring matrix, nonsingular with condition number ≈ 109

• we apply 𝐴 to image 𝑥ex

blurred image
𝑦1 = 𝐴𝑥ex

blurred and noisy image
𝑦2 = 𝐴𝑥ex + small noise
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Example

we solve 𝐴𝑥 = 𝑦 for the two blurred images

𝐴−1𝑦1 𝐴−1𝑦2

• illustrates ill conditioning of 𝐴

• explains need for regularization in deblurring algorithms
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Exercises

Exercise 1

𝐴 =
1
2

[
1 1

1 + 𝑎 1 − 𝑎

]
, 𝐴−1 =

1
𝑎

[
𝑎 − 1 1
𝑎 + 1 −1

]
𝑎 is small and nonzero (𝑎 = 10−10 on page 15.7); show that 𝜅(𝐴) ≥ 1/|𝑎 |

Exercise 2
suppose 𝐴 = 𝑈𝐵𝑉 with 𝑈, 𝑉 orthogonal, and 𝐵 nonsingular; show that

𝜅(𝐴) = 𝜅(𝐵)

Exercise 3
suppose 𝐴 = 𝑢𝑣𝑇 where 𝑢 and 𝑣 are vectors; show that ∥𝐴∥2 = ∥𝑢∥∥𝑣∥
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Exercises

Exercise 4 (ex. A15.3)

• let 𝑢 be a vector; show that

∥𝑢∥ = max
𝑣≠0

𝑣𝑇𝑢

∥𝑣∥
• let 𝐴 be a matrix; show that

∥𝐴∥2 = max
𝑦≠0, 𝑥≠0

𝑦𝑇𝐴𝑥

∥𝑥∥∥𝑦∥

therefore ∥𝐴∥2 = ∥𝐴𝑇 ∥2

Problem condition 15.18


