L. Vandenberghe ECE133A (Fall 2024)

15. Problem condition

e condition of a mathematical problem
e matrix norm

e condition number
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Sources of error in numerical computation

Example: evaluate a function f : R — R at a given x

sources of error in the result;

e x is not exactly known

— measurement errors
— errors in previous computations

— how sensitive is f(x) to errors in x?
e the algorithm for computing f(x) is not exact

— discretization (e.g., algorithm uses a table to look up function values)
— truncation (e.g., function is evaluated by truncating a Taylor series)
— rounding error during the computation

— how large is the error introduced by the algorithm?
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Condition (conditioning) of a problem

describes sensitivity of the solution to changes in the problem data

e well-conditioned problem:
small changes in the data produce small changes in the solution
e ill-conditioned (badly conditioned) problem:

small changes in the data can produce large changes in the solution

a rigorous definition depends on what “large error” means

e absolute or relative error, which norm is used, ...

e the informal definition is sufficient for our purposes
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Example: function evaluation

here the problem is: given x, evaluate y = f(x)

e if x is changed to x + Ax, solution changes to

y+Ay = f(x + Ax)

e condition with respect to absolute errorin x and y

Ayl ~ |f"(x)[|Ax]

problem is ill-conditioned with respect to absolute error if | f/(x)| is very large

e condition with respect to relative errors in x and y

[Ay] L) llx] |Ax]
|| fl x|

ill-conditioned with respect to relative error if | f'(x)||x|/|f(x)]| is very large
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Roots of a polynomial

p(X)=(x=-Dx=2)--(x-10)+6 - x'?

roots of p computed by MATLAB for two values of 6

6 =107 5=1073
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roots can be very sensitive to errors in the coefficients
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Condition of a set of linear equations

e assume A is nonsingular and Ax = b

e if we change b to b + Ab, the new solution is x + Ax with

A(x +Ax) = b + Ab

e the change in x is
Ax = A™1AD

Condition

e the equations are well-conditioned if small Ab results in small Ax

e the equations are ill-conditioned if small Ab can result in large Ax

Problem condition
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Example of ill-conditioned equations

1-1019 1010

1+1010 —10

I 1 1 4
A=3] 1+10710 1—10—10]’ A=

e solutionforb = (1,1)isx = (1,1)

e change in x if we change b to b + Ab:

Aby — 1010(Ab| — Ab»)

_ 71 _
Av=ATAb = Abi + 10'9(Ab| — Aby)

small Ab can lead to extremely large Ax
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e matrix norm
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Matrix norms

the Frobenius norm of an m X n matrix A is defined as

m n
JAllr = | 30342
1

i=1 j=

e denoted ||A|| in the textbook
e in MATLAB: norm(A, ’fro’); in Julia: norm(A)

the 2-norm or spectral norm is defined as

Ax
1Al = max 1A
x#0  ||x]|

e the norms ||Ax|| and ||x|| are Euclidean norms of vectors

e no simple explicit expression, except for special A

e readily computed numerically (in MATLAB: norm(A); in Julia: opnorm(A))
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Interpretation of 2-norm

the m X n matrix A defines a linear function f(x) = Ax

x—— A ——y=f(x)=Ax

o ||Ax||/||x]|| gives the ampilification factor or gain for input x
e the gain only depends on the direction of x

e the 2-norm of A is the maximum gain over all directions:

Ax
|A]l> = max 1Ax] = max ||Ax||
x0 x| k)=t
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Computing the 2-norm of a matrix

Simple matrices: sometimes it is easy to maximize ||Ax||/||x||
e zero matrix: [|0]lo =0
e identity matrix: ||I||» =1

e diagonal matrix:

Air 0 0
0 A 0
A=| 2 S, |All, = max |Ay]
: : .. : i=1,...,n
0 0 Ann

e matrix with orthonormal columns: ||All, =1

General matrices: [|A||, must be computed by numerical algorithms
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Properties of the matrix norm

Properties satisfied by all matrix norms

e nonnegative: ||A|l, > 0 for all A
e positive definiteness: ||All, =0onlyif A =0
e homogeneity: ||BAll2 = |BIlIAll2
e triangle inequality: ||A + Bl|2 < ||All2 + || B]|2

Additional properties satisfied by the 2-norm

o ||Ax|| < [|All2]|x]|| if the product Ax exists

o ||AB||> < ||All2l|B]|7 if the product AB exists

e if A is nonsingular: [|[A|[z||[A7 ], > 1

e if A is nonsingular: 1/]|A7Y|, = ming.o (||Ax||2/]1x]|)

o A2 = lIAll2
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Bound on absolute error

suppose A is nonsingular and define

x=A""b,  Ax=A"'Ab

Upper bound on ||Ax||:

lAx| < [[A7H|2 [|AD|

e follows from property 4 on page 15.11
e small |[A~!||, means that ||Ax|| is small when ||Ab|| is small
e large ||A71||, means that ||Ax|| can be large, even when ||Ab]| is small

e for every A, there exists nonzero Ab such that ||Ax|| = ||[A7 ]|, ||AD]|
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Bound on relative error

suppose in addition that » # 0; hence x # 0

Upper bound on ||Ax||/||x]|:

[ Ax]] —1,_|IAD]]
< [l All2llA™ ]2
]| 151l

o follows from [|Ax|| < |A~Y||2]|AD|| and |15 < [|All2]1x]
o ||All2]lA™Y|, small means ||Ax]|/||x|| is small when ||Ab||/||b]| is small
° ||A||2||A‘1||2 large means ||Ax||/||x|| can be much larger than ||Ab||/]||b]|

e for every A, there exist nonzero b, Ab such that equality holds in (1)
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Condition number

Definition: the condition number of a nonsingular matrix A is

k(A) = |All2llA7 1

Properties

e k(A) > 1 for all A (additional property 3 on page 15.11)
e A is a well-conditioned matrix if k(A) is small (close to 1):

the relative error in x is not much larger than the relative error in b
e A is badly conditioned or ill-conditioned if k(A) is large:

the relative error in x can be much larger than the relative error in b
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Example

e A is blurring matrix, nonsingular with condition number ~ 10°

e we apply A to image xex

blurred image blurred and noisy image
V1 = AXex y2 = Axex + small noise
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Example

we solve Ax = y for the two blurred images

Ay,

e illustrates ill conditioning of A

e explains need for regularization in deblurring algorithms
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Exercises

Exercise 1

1 a—1 1
A a+1 -1

_L[ 1 ] 411
2 a

l+a 1-a

a is small and nonzero (a = 107! on page 15.7); show that x(A) > 1/|a]

Exercise 2
suppose A = UBV with U, V orthogonal, and B nonsingular; show that

k(A) = k(B)

Exercise 3
suppose A = uv! where u and v are vectors; show that ||A]l> = [|u||||v]|
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Exercises

Exercise 4 (ex. A15.3)

e let u be a vector; show that

VTI/t

ull = max ——-
luell = ma> vl

o |let A be a matrix; show that

T Ay
1Al = max —
y20,x20 x| 1]

therefore [|A[l2 = [|A" ]2

Problem condition

15.18



