L. Vandenberghe ECE133A (Fall 2024)

7. Linear equations

e QR factorization method
e factor and solve

e LU factorization
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QR factorization and matrix inverse

QR factorization of nonsingular matrix

every nonsingular A € R has a QR factorization
A=OR

e O € R™"jis orthogonal (070 = 00! =1)

e R € R is upper triangular with positive diagonal elements

Inverse from QR factorization: the inverse A~! can be written as

A—l _ (QR)—I _ R—IQ—I _ R—IQT
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Solving linear equations by QR factorization

Algorithm: to solve Ax = b with nonsingular A € R,
1. factor A as A = OR
2. compute y = Q1b

3. solve Rx = y by back substitution

Complexity: 21> + 3n* ~ 2n° flops
e QR factorization: 2n°

e matrix—vector multiplication: 2n?

e back substitution: n?
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Multiple right-hand sides

consider k sets of linear equations with the same coefficient matrix A:
Ax; = by, Ax> = by, e Axi = by

e equivalently, solve AX = B where B is n X k matrix with columns by, ..., by
e can be solved in 21> + 3kn? flops if we reuse the factorization A = QR

e for k < n, cost is roughly equal to cost of solving one equation (2#°)

Application: to compute A~!, solve the matrix equation AX = I

e equivalent to n equations
Rx; = QTel, Rx> = QTeg, e Rx, = QTen

(x; is column i of X and Q' ¢; is transpose of ith row of Q)

3

e complexity is 2n> + n3 = 3n> (here the 2nd term n? is not negligible)
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e QR factorization method
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e LU factorization



Factor-solve approach

to solve Ax = b, first write A as a product of “simple” matrices
A=A1Ay - A
then solve (A1A;--- Ar)x = b by solving k equations

A1z1 = b, Arzo = 71, s Ak-12k-1 = Zk-2,

Examples
e QR factorization: k =2, A =0OR
e LU factorization (this lecture)

e Cholesky factorization (later)
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Apx = Zp-1

7.5



Complexity of factor—-solve method
#flops = f + s

e f is complexity of factoring A as A = A{A, - - Ay (factorization step)
e s is complexity of solving the k equations for z1, z2, ...zk—1, X (SOlve step)

e usually f > s

Example: solving linear equations using the QR factorization

f:2n3, s =3n°
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LU factorization

LU factorization without pivoting
A=LU

e [ unit lower triangular, U upper triangular

e does not always exist (even if A is nonsingular)
LU factorization (with row pivoting)
A=PLU

e P permutation matrix, L unit lower triangular, U upper triangular

e exists if and only if A is nonsingular (see later)

Complexity: 21’ if Aisnxn
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Solving linear equations by LU factorization

Algorithm: to solve Ax = b with nonsingular A of size n X n

1. factor A as A = PLU (5n° flops)
2. solve (PLU)x = b in three steps

(a) permutation: z; = P'b (0 flops)
(b) forward substitution: solve Lz, = z; (n? flops)
(c) back substitution: solve Ux = z, (n? flops)

Complexity: 21> +2n? ~ Zn flops

this is the standard method for solving Ax = b
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Multiple right-hand sides

two equations with the same matrix A (nonsingular and n X n):
Ax=b, AfX=b

e factor A once
e forward/back substitution to get x

e forward/back substitution to get x

complexity: 513 +4n? ~ %n>

Exercise: propose an efficient method for solving

Ax = b, Al =bh
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LU factorization and matrix inverse

suppose A is nonsingular and n x n, with LU factorization

A=PLU

e inverse from LU factorization

AV =Ly ' =vu~L7 P!

e gives interpretation of solve step: we evaluate
x=A"p=U""L7'PTD

in three steps
z1=P'b, 2 =L""z, x=U""z7
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Computing the inverse

solve AX = I column by column

o one LU factorization of A: $n> flops

e n solve steps: 2n° flops

o total: $n3 flops

slightly faster methods exist that exploit structure in right-hand side 1

Conclusion: do not solve Ax = b by multiplying A~ with b
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LU factorization without pivoting

Air Apn | _ 1 0 Uit Uian
Axn1 A2 Lo Lo 0 Uz
_ Ut Ui,2:n
| UniLlong  LonaUiom + Loy 2:nUin i

Recursive algorithm

e determine first row of U and first column of L

1
Uil = A1, Ui2:n = A1 20, Lyp1= A_HA2:n,1

e factor the (n — 1) X (n — 1)-matrix A.;,2:n — L2:n.1U1 2. @S

A2:n2:n = Lo, 1U12:n = Lo:n 2:nU2:n,2n
this is an LU factorization (without pivoting) of size (n — 1) X (n — 1)
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Example

LU factorization (without pivoting) of

N B OO0

~N \O

O B~ O

write as A = LU with L unit lower triangular, U upper triangular
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N &~ o0

~ O

O B~ O

[ Uy Up U |
0 Uxp Up
0 0 Us |
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Example

e first row of U, first column of L:

e second row of U, second column of L:

9 4
7 9

e thirdrowof U: U333 =9/4+11/32 =83/32

Conclusion

A=
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Not every nonsingular A can be factoredas A = LU

e first row of U, first column of L:

e second row of U, second column of L:

0 21 [ 1 0]] Un Usx
1 -1 | | Lzx» 1 0 Uss
Up=0,U3=2,L3x-0=17
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1 0 o [ 1 o0 oO|[Un Up Us|
A=10 0 2 |=|Ly 1 O 0 Uy Uy
_ 0O 1 -1 _ _ L31 Lz 1 1l 0 0 Uss |

(1 0 0 | 1 0 O0][1 0 0 |
0O O 2 1=10 1 O 0 Uy U
_01—1‘ OL321‘_O 0U33_
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LU factorization (with row pivoting)

if A is n X n and nonsingular, then it can be factored as
A=PLU
P is a permutation matrix, L is unit lower triangular, U is upper triangular

e not unique; there may be several possible choices for P, L, U
e interpretation: permute the rows of A and factor PYA as PTA = LU
e also known as Gaussian elimination with partial pivoting (GEPP)

o complexity: n> flops

we skip the details of calculating P, L, U
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AN O

the factorization is not unique; the same matrix can be factored as
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solution:

e let us solve using LU factorization for the two possible permutations:

X1

Effect of rounding error

R

A2

T 1-105 T 1-10

1 0 0 1
P‘[o 1] of P_ll o]

e we round intermediate results to four significant decimal digits
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First choice: P = I (ho pivoting)
10> 1] [ 1 o][10° 1
1 1| |10 1 0 1-10°
e [, U rounded to 4 significant decimal digits

1 0 1070 1
l"|105 1]’ L]‘I 0 —105]

e forward substitution

1 0 <1 . 1 . . 5
EH I R

e back substitution

1072 1 X1 1
B | B B B

error in x1 is 100%
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Second choice: interchange rows

1 1] 1 0 1 1
10 1|10 1 0 1-107°
e L, U rounded to 4 significant decimal digits

1 0
L‘[lo—S 1]’ U‘[

e forward substitution

1 0 z1 | |0 _ _
EREIET -

e backward substitution

I 1 X1 _ 0 — —
o[ ]E] = ee

error in xp, x, is about 107
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Conclusion: rounding error and LU factorization

e for some choices of P, small errors in the algorithm can cause very large errors
in the solution

e this is called numerical instability: for the first choice of P in the example, the
algorithm is unstable; for the second choice of P, it is stable

e from numerical analysis: there is a simple rule for selecting a good permutation

(we skip the details, since we skipped the details of the factorization)
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Sparse linear equations

if A is sparse, it is usually factored as
A=P{LUP»

Py and P, are permutation matrices

e interpretation: permute rows and columns of A and factor A = P{ AP}

A=LU

e choice of P; and P, greatly affects the sparsity of L and U: several heuristic
methods exist for selecting good permutations

e in practice: #flops <« %n3; exact value depends on n, number of nonzero

elements, sparsity pattern
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Conclusion

different levels of detail in understanding how linear equation solvers work

Highest level

o X = A\ bcosts%n3

e more efficientthanx = inv(A) * b
Intermediate level: factorization step A = PLU followed by solve step

Lowest level: details of factorization A = PLU

e for most applications, level 1 is sufficient
e in some situations (e.q., multiple right-hand sides) level 2 is useful

e level 3 is important for experts who write numerical libraries
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