L. Vandenberghe ECE133A (Fall 2024)

9. Least squares data fitting

e model fitting

e regression

e linear-in-parameters models
e time series examples

e validation

e |east squares classification

e statistics interpretation
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Model fitting

suppose x and a scalar quantity y are related as
y =~ f(x)

e x is the explanatory variable or independent variable
e y is the outcome, or response variable, or dependent variable

e we don’'t know f, but have some idea about its general form

Model fitting

e find an approximate model! f for f, based on observations

e we use the notation y for the model prediction of the outcome y:
y=fx)
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Prediction error

we have data consisting of N examples (samples, measurements, observations):

N) (1)

,...,x( , y ,...,y(N)

D
e model prediction for example i is $) = f(x()
e the prediction error or residual for example i is
A0 — y(i) _ 50 — y(i) _ ]?(x(i))

e the model f fits the data well if the N residuals ) are small

e prediction error can be quantified using the mean square error (MSE)

1 & 2
N2

i=1

the square root of the MSE is the RMS error

Least squares data fitting

9.3



model fitting

regression
linear-in-parameters models
time series examples
validation

least squares classification

statistics interpretation

Outline



Regression

we first consider the regression model (page 1.30):
f)=x"B+v

e here the independent variable x is an n-vector
e the elements of x are the regressors
e the model is parameterized by the weight vector 8 and the offset (intercept) v
e the prediction error for example i is
() y(i) _ f(x(i))
= Y- )TB-v

e the MSE is

1 N 1 N . . 2
— ()2 = _ @) _ (T g _
207 = 5 25 (7 - )
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Least squares regression

choose the model parameters v, 8 that minimize the MSE

LS v+ 675 -30)’

=1

this is a least squares problem: minimize ||A6 — y9||* with

L T

BRI _ [ v ] d

A= : : ’ 0= B |’ Y
1 (x(T
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Example: house price regression model

example of page 1.30
V= xT,B + v

e y is predicted sales price (in 1000 dollars); y is actual sales price

e two regressors: x is house area; x, is number of bedrooms

800
. 600/ o 1
) S
9 .
e data set of N = 774 house sales = 100 | O ]
D o ®
- o °
e RMS error of least squares fit is 74.8 S
© 200 * |
O a ! ! . ! . ! !
0 200 400 600 800

Actual price y
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Example: house price regression model

regression model with additional regressors
V= xT,B +v
feature vector x has 7 elements

e x is area of the house (in 1000 square feet)

e x» = max {x; — 1.5,0}, i.e., area in excess of 1.5 (in 1000 square feet)
e x3 is number of bedrooms

e x4 is one for a condo; zero otherwise

® X5, Xg, X7 Specify location (four groups of ZIP codes)

Location x5 xg X7

OO >
SO = O
S = OO
-0 O O
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Example: house price regression model

e use least squares to fit the eight model parameters v,

e RMS fitting error is 68.3

800

600 | e ]
400 |

200 |

Predicted price $ (thousand dollars)

0 200 400 600 800
Actual price y (thousand dollars)
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Linear-in-parameters model

we choose the model f(x) from a family of models

A

f(x) =01fi(x) +02f2(x) +---+6),fp(x)

e the functions f; are scalar valued basis functions (chosen by us)

e the basis functions often include a constant function (typically, fi(x) = 1)
e the coefficients 64, ..., 8, are the model parameters

e the model f(x) is linear in the parameters 6;

e if f1(x) =1, this can be interpreted as a regression model
V= ,BT)Z +v
with parameters v = 01, B = 0,., and new features X generated from x:

X1 :fZ(x)’ RN )zp:fp(x)

Least squares data fitting
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Least squares model fitting

fit linear-in-parameters model to data set (x(1, y(1), ..., (x(V) (V)

residual for data sample i is

#0) = y(i) _ f(x(i)) _ y(i) — 011 (x(i)) e prp(x(i))

least squares model fitting: choose parameters 6 by minimizing MSE

this is a least squares problem: minimize ||A6 — y4||* with

L AD)
fi(x?)

_ fl(x.(N))

Least squares data fitting

1
N

((,,(1))2 +(rH2 4y (r(N))Z)

fp(x(l)) —
fp(x(z))

o)

oy
0,

b

i y(l) i

@

(V)
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e a linear-in-parameters model with basis functions 1, x, ..., x?

Example: polynomial approximation

Fr) = 01 + 0 + 0352 4 - + 6,57

-1

e |least squares model fitting: choose parameters 6 by minimizing MSE

= (00 = FED? 4 (6 = Fa))? 4

e in matrix notation: minimize ||A6 — y4||* with

Least squares data fitting

1 XD (x(1)2
1 x@  (x2)2

L ) (xy2

(x(Dyp=1 -
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@
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Example

f(x) degree 2 (p = 3) f(x) degree 6

f( X) degree 15

data set of 100 examples

Least squares data fitting



Piecewise-affine function

e define knot points a; < ar < --- < aj on the real axis
e piecewise-affine function is continuous, and affine on each interval [ay, aj41]

e piecewise-affine function with knot points ay, ..., a; can be written as
Fx) =01+ 0x +03(x —ap)s + - + 02 (x — ap)s

where u, = max {u, 0}

(x + 1)+ (x — 1)+

30 30

20 2

1} 1}

0 0
| | | | | | | x | | | | | | | x
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Least squares data fitting 9.13



Piecewise-affine function fitting
piecewise-affine model is in linear in the parameters 8, with basis functions

fix) =1, flx)=x, frlx)=x—-ai)w ..., [fex2(x)=(x—ap)+

Example: fit piecewise-affine function with knots a; = —1, ap = 1 to 100 points

f(x)
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Time series trend

e N data samples from time series: y?) is value at time i, fori = 1,...,N
e straight-line fit ${9 = 6, + 6i is the trend line
o yd—pd=(D 5D V) _$N)yis the de-trended time series

e least squares fitting of trend line: minimize ||A6 — y9||* with

1 ] | y(l) ]

) y(2

A=|1 3|, yi=|yO®
1 N | _ y&) |
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Example: world petroleum consumption

e time series of world petroleum consumption (million barrels/day) versus year

e left figure shows data samples and trend line

e right figure shows de-trended time series

Consumption

Least squares data fitting
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Trend plus seasonal component

e model time series as a linear trend plus a periodic component with period P:

with $'™ = 6,(1,2, ..., N) and

yseas — (62’ 93’ L 0P+1’ 929 939 s ooy 9P+13 IR 023 633 IR 6P+1)

e the mean of $°“*° serves as a constant offset
e residual y¢ — $4 is the de-trended, seasonally adjusted time series

e least squares formulation: minimize ||A6 — y9||* with

_ 1 - - IP - - yilz -
2 I 2
Atna=| . |»  AiLN2P+1 = :P . Y= y:
N | Ip | -y
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the US per month

In

vehicle miles traveled i

Example

Data

100

(suoljjiw) sajiy

105 Least squares fit of linear trend and seasonal (12-month) component

i

| | |
© ¥ a o«
@\ (Q\ (Q\

(suolfjiw) sajin
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Auto-regressive (AR) time series model

Ziv1 = P12+ BMZ—M+1s t=M,M+1,...

® 71,22, ... IS aAtime series
e Z;,1 is a prediction of z;,1, made at time ¢
e prediction Z;,; is a linear function of previous M values z;, ..., Z;—pm+1

e M is the memory of the model
Least squares fitting of AR model: given oberved data zy, ..., zr, minimize

.0 .2 )
(zp1 — Zm+1)” + (22 — Zm42) "+ -+ (27 — 21)

this is a least squares problem: minimize ||A8 — y9||? with

IM IM-1 21 B IM+1

7 4 7A 22 | B2 d_ | 2m+2
A= : : : ? ’8 _ : ? y = :
-1 Ir-2 cc IT-M | | Bm T
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Example: hourly temperature at LAX

N O
SN o0 O

64

Temperature (°F)

e Dblue line shows prediction by AR model of memory M = 8
e model was fit on time series of length T = 744 (May 1-31, 2016)

e plot shows first five days
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Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

e divide data in two sets: fraining set and test (or validation) set
e use training set to fit model
e use test set to get an idea of generalization ability

e this is also called out-of-sample validation

Over-fit model

e model with low prediction error on training set, bad generalization ability

e prediction error on training set is much smaller than on test set

Least squares data fitting 9.21



Relative RMS error

0.2

Example: polynomial fitting

2 4 6 8 10 12 14 16 18 20
Degree

e training set is data set of 100 points used on page 9.11

e test set is a similar set of 100 points

e plot suggests using degree 6

Least squares data fitting
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Over-fitting

polynomial of degree 20 on training and test set

f(X) training set ]?(x) test set

over-fitting is evident at the left end of the interval
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Cross-validation

an extension of out-of-sample validation

e divide data in K sets (folds); typical values are K =5, K = 10
e fori =110 K, fit model i using fold i as test set and other data as training set

e compare parameters and train/test RMS errors for the K models

House price model (page 9.7) with 5 folds (155 or 154 examples each)

Model parameters RMS error

Fold v Bi B2 B3 B Bs Be B Train  Test

122.5 1669 -39.3 -163 -24.0 -1004 -106.7 -26.0 673 72.8
101.0 186.7 -55.8 -18.7 -14.8 -99.1 -109.6 -179 67.8 70.8
133.6 1672 -23.6 -18.7 -14.7 -109.3 -1144 -28.5 69.7 63.8
1084 171.2 -413 -154 -17.7 -942 -103.6 -29.8 65.6 78.9
114.5 1857 =527 -209 -233 -102.8 -110.5 -234 70.7 58.3

(62 B~ N OO RN AT
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Boolean (two-way) classification

e a data fitting problem where the outcome y can take two values +1, —1
e values of y represent two categories (true/false, spam/not spam, ...)

e model § = f(x) is called a Boolean classifier

Least squares classifier
e use least squares to fit model f(x) to training set (x(1), y(), ... (x(V), y(N))

e f(x) can be a regression model f(x) = x’ 8+ v or linear in parameters

~

fx)=01fi(x)+---+ epfp(x)
e take sign of f(x) to get a Boolean classifier
+1 if f(x) =0

f(x) = sign(f(x)) = { —1 i f(x) <0
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Example: handwritten digit classification

e MNIST data set used in homework
e 28 x 28 images of handwritten digits (n = 28% = 784 pixels)
e data set contains 60000 training examples; 10000 test examples

e we only use the 493 pixels that are nonzero in at least 600 training examples

e Boolean classifier distinguishes digit zero (y = 1) from other digits (y = —1)
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Classifier with basic regression model
f(x) = sign(f(x)) = sign(x’ B +v)

e x is vector of 493 pixel intensities

e figure shows distribution of f(x) = (x)T 8 + $ on training set

0.1[ ) ~ [li Positive (digit0) |
1L 3 IINegative (digits 1-9)
_ i |
9 I |
5 005 [T | .
i * il
oL Mﬁﬂ( | 1 | ‘
) -1 0 1 2
F(x)

e blue bars to the left of dashed line are false negatives (misclassified digits zero)

e red bars to the right of dashed line are false positives (misclassified non-zeros)
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Prediction error

e for each data point x, y we have four combinations of prediction and outcome

Prediction

Outcome y=+1 y=-1

y=+I true positive  false negative
y=-1 false positive  true negative

e classifier can be evaluated by counting data points for each combination

Training set

Prediction

Outcome 9y=+1 $=-1  Total

Test set

y=+1 5158 765 5923
y=-1 169 53910 54077
Al 5325 54675 60000

Prediction

Outcome y=+1 $=-1  Total

error rate (765 + 169) /60000 = 1.6%

Least squares data fitting

y = +1 864 116 980
y=-1 42 8978 9020

All 906 9094 10000

error rate (116 +42)/10000 = 1.6%
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Classifier with additional nonlinear features
. y P
f(x) =sign(f(x)) = Sign(Z 0 fi(x))
=1

e basis functions include constant, 493 elements of x, plus 5000 functions

fi(x) =max {0,r] x +s;}  with randomly generated r;, s;

e figure shows distribution of f(x()) on training set

1 i Positive (digit 0)
0.15 1M 3 INegative (digits 1-9) |

0.10| ] | -

Fraction

0.05
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Prediction error

Training set: error rate 0.21%

Test set: error rate 0.24%

Least squares data fitting

Prediction
QOutcome $=+1 $=-1  Total
y=+1 5813 110 5923
y=-1 15 54062 54077
All 5828 54172 60000
Prediction
Outcome 9y=+1 $=-1  Total
y =+1 963 17 980
y=-1 7 9013 9020
All 970 9030 10000
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Multi-class classification

e a data fitting problem where the outcome y can takes values 1, ..., K
e values of y represent K labels or categories

e multi-class classifier § = f(x) maps x to an element of {1,2, ..., K}

Least squares multi-class classifier

e fork =1,...,K, compute Boolean classifier to distinguish class k from not &
fr(x) = sign(fr(x))
e define multi-class classifier as

£ (x) = argmax fi(x)
k=1,...,.K
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Example: handwritten digit classification

e we compute a least squares Boolean classifier for each digit versus the rest
fi(x) =sign(x’ Bx +vi), k=1,....K

e table shows results for test set (error rate 13.9%)

Prediction
Digit 0 1 2 3 4 5 6 7 8 9 Total
0 944 0 1 2 2 8 13 2 7 1 980
1 0 1107 2 2 3 1 5 1 14 0 1135
2 18 54 815 26 16 0 38 22 39 4 1032
3 4 18 22 884 5 16 10 22 20 9 1010
4 0 22 6 0 883 3 9 1 12 46 982
5 24 19 3 74 24 656 24 13 38 17 892
6 17 9 10 0 22 17 876 0 7 0 958
7 5 43 14 6 25 1 1 883 1 49 1028
8 14 48 11 31 26 40 17 13 756 18 974
9 16 10 3 17 80 0 1 75 4 803 1009

All 1042 1330 887 1042 1086 742 994 1032 898 947 10000
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Example: handwritten digit classification

e ten least squares Boolean classifiers use 5000 new features (page 9.29)

e table shows results for test set (error rate 2.6%)

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 972 0 0 2 0 1 1 1 3 0 980
1 0O 1126 3 1 1 0 3 0 1 0 1135
2 6 0 998 3 2 0 4 7 11 1 1032
3 0 0 3 977 0 13 0 5 8 4 1010

4 2 1 3 0 953 O 6 3 1 13 982

5 2 0 1 5 0O 875 5 0 3 1 892

6 8 3 0 0 4 6 933 0 4 0 958
7 0 8 12 0 2 0 1 992 3 10 1028

8 3 1 3 6 4 3 2 2 946 4 974
9 4 3 1 12 11 7 1 3 3 964 1009
All 997 1142 1024 1006 977 905 956 1013 983 997 10000

Least squares data fitting
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Linear regression model

y=XB+¢€

e [ is (non-random) p-vector of unknown parameters

e X is n X p (data matrix or design matrix, i.e., result of experiment design)
e if there is an offset v, we include it in  and add a column of ones in X

e c is a random n-vector (random error or disturbance)

e y is an observable random n-vector

e this notation differs from previous sections but is common in statistics

e we discuss methods for estimating parameters S from observations of y
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Assumptions

e X istall (n > p) with linearly independent columns
e random disturbances ¢ have zero mean

Ee¢ =0 fori=1,...,n

e random disturbances have equal variances o>

Eel-zzcrz fori=1,...,n
e random disturbances are uncorrelated (have zero covariances)
E (e€j) =0 fori,j=1,...,nandi # j
last three assumptions can be combined using matrix and vector notation:
Ee=0, Eeel = 0?1
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Least squares estimator

least squares estimate 3 of parameters 3, given the observations v, is

B=X"y=xX"x)"1xTy

y=XB+¢€

range(X)

e XJ3is the orthogonal projection of y on range(X)

e residual e = y — X3 is an (observable) random variable

Least squares data fitting
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Mean and covariance of least squares estimate

B=X"(XB+e)=p+X"e

e least squares estimator is unbiased: Ef = 8

e covariance matrix of least squares estimate is
EG-BB-p" = E(XToxe
- E((XTX)_lXTeeTX(XTX)_l)
_ O_Z(XTX)—I

e covariance of B; and 3; (i # j) is

Lj

E((Bi- BBy - ) = o (XTx)7)
for i = j, this is the variance of 3;
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y=XB+¢€

e define estimate 5 of o as

06'2

Least squares data fitting

E

Estimate of o2

o

is an unbiased estimate of o2

A2

1

2 _ 2
Elle|” =0

E e||2 = no?

E|el®> = (n-p)o?

E|X(8-p)|* = po?

(proof on next page)
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Proof.

n
first expression is immediate: E |[e]|* = % E €? = no?
i=1

e to show that E || X (B3 — B)||> = po?, first note that

X(B-p) = XX'y-Xp
= XX'(XB+e¢)-XB
= XX'e

= X(X'X)'xTe

on line 3 we used XX = I (however, note that XX " # I if X is tall)

e squared norm of X(8 - f) is
IX(B=B)I> = €' (XXT)?e = €' XX e
first step uses symmetry of XX'; second step, X'X =1

Least squares data fitting
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e expected value of squared norm is
EIX(B-B)I’=E('xX"e) = > E(eep(xxhy
i,J
) n
= o Z(XX%

= 2ZZX1](XT)]Z

i=1 j=I
P
= Z (X'X);

[\.)K‘

1> =

e expression E ||e||? = (n — p)o? on page 9.38 now follows from

lell? = lle + XB = XBI% = llell> + I X (B - BII°

Least squares data fitting
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Linear estimator
linear regression model (page 9.34), with same assumptions as before (p. 9.35):

y=Xp+e€

a linear estimator of S maps observations y to the estimate
B = By

e estimator is defined by the p x n matrix B

e least squares estimator is an example with B = X
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Unbiased linear estimator
if B is a left inverse of X, then estimator 3 = By can be written as:
B=By=B(XB+¢€)=p+Be

e this shows that the linear estimator is unbiased (E8 = B) if BX = I

e covariance matrix of unbiased linear estimator is
E ((B _B)(j - ,B)T) - E (BEETBT) - o2BBT
e if ¢ is a (non-random) p-vector, then estimate ¢! 3 of ¢! 8 has variance

E('B-c"B)? =0?"BB ¢
least squares estimator is an example with B = X' and BBT = (X7 Xx)~!

Least squares data fitting
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Best linear unbiased estimator
if B is a left inverse of X then for all p-vectors c
¢'BBTc > (XTX) e
(proof on next page)
e left-hand side gives variance of ¢! 8 for linear unbiased estimator
B = By

e right-hand side gives variance of ¢! 3, for least squares estimator

Bis=XTy
e least squares estimator is the “best linear unbiased estimator” (BLUE)

this is known as the Gauss—Markov theorem

Least squares data fitting
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Proof.

e use BX = I to write BBT as

BBT = B-X'X)"'xDHB"-xxX"xX)"H +xTx)!
= B-X"HB-xHT+xx)"!

e hence,

TB-XNYB-XNc+I(XTX) e
1(B=XDTel?+c(xXTx) e
> J(XTX) e

c'BBTC

with equality if B = X"
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