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9.1



Model fitting

suppose 𝑥 and a scalar quantity 𝑦 are related as

𝑦 ≈ 𝑓 (𝑥)

• 𝑥 is the explanatory variable or independent variable

• 𝑦 is the outcome, or response variable, or dependent variable

• we don’t know 𝑓 , but have some idea about its general form

Model fitting

• find an approximate model 𝑓 for 𝑓 , based on observations

• we use the notation 𝑦̂ for the model prediction of the outcome 𝑦:

𝑦̂ = 𝑓 (𝑥)
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Prediction error

we have data consisting of 𝑁 examples (samples, measurements, observations):

𝑥 (1), . . . , 𝑥 (𝑁), 𝑦(1), . . . , 𝑦(𝑁)

• model prediction for example 𝑖 is 𝑦̂(𝑖) = 𝑓 (𝑥 (𝑖))
• the prediction error or residual for example 𝑖 is

𝑟 (𝑖) = 𝑦(𝑖) − 𝑦̂(𝑖) = 𝑦(𝑖) − 𝑓 (𝑥 (𝑖))

• the model 𝑓 fits the data well if the 𝑁 residuals 𝑟 (𝑖) are small

• prediction error can be quantified using the mean square error (MSE)

1
𝑁

𝑁∑︁
𝑖=1

(𝑟 (𝑖))2

the square root of the MSE is the RMS error
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Regression

we first consider the regression model (page 1.30):

𝑓 (𝑥) = 𝑥𝑇 𝛽 + 𝑣

• here the independent variable 𝑥 is an 𝑛-vector

• the elements of 𝑥 are the regressors

• the model is parameterized by the weight vector 𝛽 and the offset (intercept) 𝑣

• the prediction error for example 𝑖 is

𝑟 (𝑖) = 𝑦(𝑖) − 𝑓 (𝑥 (𝑖))
= 𝑦(𝑖) − (𝑥 (𝑖))𝑇 𝛽 − 𝑣

• the MSE is
1
𝑁

𝑁∑︁
𝑖=1

(𝑟 (𝑖))2 =
1
𝑁

𝑁∑︁
𝑖=1

(
𝑦(𝑖) − (𝑥 (𝑖))𝑇 𝛽 − 𝑣

)2
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Least squares regression

choose the model parameters 𝑣, 𝛽 that minimize the MSE

1
𝑁

𝑁∑︁
𝑖=1

(
𝑣 + (𝑥 (𝑖))𝑇 𝛽 − 𝑦(𝑖)

)2

this is a least squares problem: minimize ∥𝐴𝜃 − 𝑦d∥2 with

𝐴 =


1 (𝑥 (1))𝑇
1 (𝑥 (2))𝑇
... ...

1 (𝑥 (𝑁))𝑇

 , 𝜃 =

[
𝑣
𝛽

]
, 𝑦d =


𝑦(1)

𝑦(2)
...

𝑦(𝑁)


we write the solution as 𝜃 = (𝑣̂, 𝛽)
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Example: house price regression model

example of page 1.30
𝑦̂ = 𝑥𝑇 𝛽 + 𝑣

• 𝑦̂ is predicted sales price (in 1000 dollars); 𝑦 is actual sales price

• two regressors: 𝑥1 is house area; 𝑥2 is number of bedrooms

• data set of 𝑁 = 774 house sales

• RMS error of least squares fit is 74.8
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Example: house price regression model

regression model with additional regressors

𝑦̂ = 𝑥𝑇 𝛽 + 𝑣

feature vector 𝑥 has 7 elements

• 𝑥1 is area of the house (in 1000 square feet)

• 𝑥2 = max {𝑥1 − 1.5, 0}, i.e., area in excess of 1.5 (in 1000 square feet)

• 𝑥3 is number of bedrooms

• 𝑥4 is one for a condo; zero otherwise

• 𝑥5, 𝑥6, 𝑥7 specify location (four groups of ZIP codes)

Location 𝑥5 𝑥6 𝑥7

A 0 0 0
B 1 0 0
C 0 1 0
D 0 0 1
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Example: house price regression model

• use least squares to fit the eight model parameters 𝑣, 𝛽

• RMS fitting error is 68.3
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Linear-in-parameters model

we choose the model 𝑓 (𝑥) from a family of models

𝑓 (𝑥) = 𝜃1 𝑓1(𝑥) + 𝜃2 𝑓2(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)

• the functions 𝑓𝑖 are scalar valued basis functions (chosen by us)

• the basis functions often include a constant function (typically, 𝑓1(𝑥) = 1)

• the coefficients 𝜃1, . . . , 𝜃𝑝 are the model parameters

• the model 𝑓 (𝑥) is linear in the parameters 𝜃𝑖
• if 𝑓1(𝑥) = 1, this can be interpreted as a regression model

𝑦̂ = 𝛽𝑇𝑥 + 𝑣

with parameters 𝑣 = 𝜃1, 𝛽 = 𝜃2:𝑝 and new features 𝑥 generated from 𝑥:

𝑥1 = 𝑓2(𝑥), . . . , 𝑥𝑝 = 𝑓𝑝 (𝑥)
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Least squares model fitting

• fit linear-in-parameters model to data set (𝑥 (1), 𝑦(1)), . . . , (𝑥 (𝑁), 𝑦(𝑁))
• residual for data sample 𝑖 is

𝑟 (𝑖) = 𝑦(𝑖) − 𝑓 (𝑥 (𝑖)) = 𝑦(𝑖) − 𝜃1 𝑓1(𝑥 (𝑖)) − · · · − 𝜃𝑝 𝑓𝑝 (𝑥 (𝑖))

• least squares model fitting: choose parameters 𝜃 by minimizing MSE

1
𝑁

(
(𝑟 (1))2 + (𝑟 (2))2 + · · · + (𝑟 (𝑁))2

)
• this is a least squares problem: minimize ∥𝐴𝜃 − 𝑦d∥2 with

𝐴 =


𝑓1(𝑥 (1)) · · · 𝑓𝑝 (𝑥 (1))
𝑓1(𝑥 (2)) · · · 𝑓𝑝 (𝑥 (2))
... ...

𝑓1(𝑥 (𝑁)) · · · 𝑓𝑝 (𝑥 (𝑁))

 , 𝜃 =


𝜃1
𝜃2
...
𝜃𝑝

 , 𝑦d =


𝑦(1)

𝑦(2)
...

𝑦(𝑁)


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Example: polynomial approximation

𝑓 (𝑥) = 𝜃1 + 𝜃2𝑥 + 𝜃3𝑥
2 + · · · + 𝜃𝑝𝑥𝑝−1

• a linear-in-parameters model with basis functions 1, 𝑥, . . . , 𝑥𝑝−1

• least squares model fitting: choose parameters 𝜃 by minimizing MSE

1
𝑁

(
(𝑦(1) − 𝑓 (𝑥 (1)))2 + (𝑦(2) − 𝑓 (𝑥 (2)))2 + · · · + (𝑦(𝑁) − 𝑓 (𝑥 (𝑁)))2

)
• in matrix notation: minimize ∥𝐴𝜃 − 𝑦d∥2 with

𝐴 =


1 𝑥 (1) (𝑥 (1))2 · · · (𝑥 (1))𝑝−1

1 𝑥 (2) (𝑥 (2))2 · · · (𝑥 (2))𝑝−1
... ... ... ...

1 𝑥 (𝑁) (𝑥 (𝑁))2 · · · (𝑥 (𝑁))𝑝−1

 , 𝑦d =


𝑦(1)

𝑦(2)
...

𝑦(𝑁)


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Example

x

f̂ (x) degree 2 (p = 3)

x

f̂ (x) degree 6

x

f̂ (x) degree 10

x

f̂ (x) degree 15

data set of 100 examples
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Piecewise-affine function

• define knot points 𝑎1 < 𝑎2 < · · · < 𝑎𝑘 on the real axis

• piecewise-affine function is continuous, and affine on each interval [𝑎𝑘 , 𝑎𝑘+1]
• piecewise-affine function with knot points 𝑎1, . . . , 𝑎𝑘 can be written as

𝑓 (𝑥) = 𝜃1 + 𝜃2𝑥 + 𝜃3(𝑥 − 𝑎1)+ + · · · + 𝜃2+𝑘 (𝑥 − 𝑎𝑘)+

where 𝑢+ = max {𝑢, 0}
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Piecewise-affine function fitting

piecewise-affine model is in linear in the parameters 𝜃, with basis functions

𝑓1(𝑥) = 1, 𝑓2(𝑥) = 𝑥, 𝑓3(𝑥) = (𝑥 − 𝑎1)+, . . . , 𝑓𝑘+2(𝑥) = (𝑥 − 𝑎𝑘)+

Example: fit piecewise-affine function with knots 𝑎1 = −1, 𝑎2 = 1 to 100 points

−2 −1 0 1 2
x

f̂ (x)
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Time series trend

• 𝑁 data samples from time series: 𝑦(𝑖) is value at time 𝑖, for 𝑖 = 1, . . . , 𝑁

• straight-line fit 𝑦̂(𝑖) = 𝜃1 + 𝜃2𝑖 is the trend line

• 𝑦d − 𝑦̂d = (𝑦(1) − 𝑦̂(1), . . . , 𝑦(𝑁) − 𝑦̂(𝑁)) is the de-trended time series

• least squares fitting of trend line: minimize ∥𝐴𝜃 − 𝑦d∥2 with

𝐴 =


1 1
1 2
1 3
... ...
1 𝑁


, 𝑦d =



𝑦(1)

𝑦(2)

𝑦(3)
...

𝑦(𝑁)


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Example: world petroleum consumption

• time series of world petroleum consumption (million barrels/day) versus year

• left figure shows data samples and trend line

• right figure shows de-trended time series
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Trend plus seasonal component

• model time series as a linear trend plus a periodic component with period 𝑃:

𝑦̂d = 𝑦̂lin + 𝑦̂seas

with 𝑦̂lin = 𝜃1(1, 2, . . . , 𝑁) and

𝑦̂seas = (𝜃2, 𝜃3, . . . , 𝜃𝑃+1, 𝜃2, 𝜃3, . . . , 𝜃𝑃+1, . . . , 𝜃2, 𝜃3, . . . , 𝜃𝑃+1)

• the mean of 𝑦̂seas serves as a constant offset

• residual 𝑦d − 𝑦̂d is the de-trended, seasonally adjusted time series

• least squares formulation: minimize ∥𝐴𝜃 − 𝑦d∥2 with

𝐴1:𝑁,1 =


1
2
...
𝑁

 , 𝐴1:𝑁,2:𝑃+1 =


𝐼𝑃
𝐼𝑃
...
𝐼𝑃

 , 𝑦d =


𝑦(1)

𝑦(2)
...

𝑦(𝑁)


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Example: vehicle miles traveled in the US per month
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Least squares fit of linear trend and seasonal (12-month) component
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Auto-regressive (AR) time series model

𝑧𝑡+1 = 𝛽1𝑧𝑡 + · · · + 𝛽𝑀𝑧𝑡−𝑀+1, 𝑡 = 𝑀, 𝑀 + 1, . . .

• 𝑧1, 𝑧2, . . . is a time series

• 𝑧𝑡+1 is a prediction of 𝑧𝑡+1, made at time 𝑡

• prediction 𝑧𝑡+1 is a linear function of previous 𝑀 values 𝑧𝑡, . . . , 𝑧𝑡−𝑀+1

• 𝑀 is the memory of the model

Least squares fitting of AR model: given oberved data 𝑧1, . . . , 𝑧𝑇 , minimize

(𝑧𝑀+1 − 𝑧𝑀+1)2 + (𝑧𝑀+2 − 𝑧𝑀+2)2 + · · · + (𝑧𝑇 − 𝑧𝑇)2

this is a least squares problem: minimize ∥𝐴𝛽 − 𝑦d∥2 with

𝐴 =


𝑧𝑀 𝑧𝑀−1 · · · 𝑧1
𝑧𝑀+1 𝑧𝑀 · · · 𝑧2
... ... ...

𝑧𝑇−1 𝑧𝑇−2 · · · 𝑧𝑇−𝑀

 , 𝛽 =


𝛽1
𝛽2
...
𝛽𝑀

 , 𝑦d =


𝑧𝑀+1
𝑧𝑀+2
...
𝑧𝑇


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Example: hourly temperature at LAX
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• blue line shows prediction by AR model of memory 𝑀 = 8

• model was fit on time series of length 𝑇 = 744 (May 1–31, 2016)

• plot shows first five days
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Generalization and validation

Generalization ability: ability of model to predict outcomes for new, unseen data

Model validation: to assess generalization ability,

• divide data in two sets: training set and test (or validation) set

• use training set to fit model

• use test set to get an idea of generalization ability

• this is also called out-of-sample validation

Over-fit model

• model with low prediction error on training set, bad generalization ability

• prediction error on training set is much smaller than on test set
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Example: polynomial fitting
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• training set is data set of 100 points used on page 9.11

• test set is a similar set of 100 points

• plot suggests using degree 6
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Over-fitting

polynomial of degree 20 on training and test set

x

f̂ (x) training set

x

f̂ (x) test set

over-fitting is evident at the left end of the interval
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Cross-validation

an extension of out-of-sample validation

• divide data in 𝐾 sets (folds); typical values are 𝐾 = 5, 𝐾 = 10

• for 𝑖 = 1 to 𝐾, fit model 𝑖 using fold 𝑖 as test set and other data as training set

• compare parameters and train/test RMS errors for the 𝐾 models

House price model (page 9.7) with 5 folds (155 or 154 examples each)

Model parameters RMS error

Fold 𝑣 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 Train Test

1 122.5 166.9 −39.3 −16.3 −24.0 −100.4 −106.7 −26.0 67.3 72.8
2 101.0 186.7 −55.8 −18.7 −14.8 −99.1 −109.6 −17.9 67.8 70.8
3 133.6 167.2 −23.6 −18.7 −14.7 −109.3 −114.4 −28.5 69.7 63.8
4 108.4 171.2 −41.3 −15.4 −17.7 −94.2 −103.6 −29.8 65.6 78.9
5 114.5 185.7 −52.7 −20.9 −23.3 −102.8 −110.5 −23.4 70.7 58.3
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Boolean (two-way) classification

• a data fitting problem where the outcome 𝑦 can take two values +1, −1

• values of 𝑦 represent two categories (true/false, spam/not spam, . . . )

• model 𝑦̂ = 𝑓 (𝑥) is called a Boolean classifier

Least squares classifier

• use least squares to fit model 𝑓 (𝑥) to training set (𝑥 (1), 𝑦(1)), . . . , (𝑥 (𝑁), 𝑦(𝑁))
• 𝑓 (𝑥) can be a regression model 𝑓 (𝑥) = 𝑥𝑇 𝛽 + 𝑣 or linear in parameters

𝑓 (𝑥) = 𝜃1 𝑓1(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)

• take sign of 𝑓 (𝑥) to get a Boolean classifier

𝑓 (𝑥) = sign( 𝑓 (𝑥)) =
{ +1 if 𝑓 (𝑥) ≥ 0
−1 if 𝑓 (𝑥) < 0
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Example: handwritten digit classification

• MNIST data set used in homework

• 28 × 28 images of handwritten digits (𝑛 = 282 = 784 pixels)

• data set contains 60000 training examples; 10000 test examples

• we only use the 493 pixels that are nonzero in at least 600 training examples

• Boolean classifier distinguishes digit zero (𝑦 = 1) from other digits (𝑦 = −1)
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Classifier with basic regression model

𝑓 (𝑥) = sign( 𝑓 (𝑥)) = sign(𝑥𝑇 𝛽 + 𝑣)

• 𝑥 is vector of 493 pixel intensities

• figure shows distribution of 𝑓 (𝑥 (𝑖)) = (𝑥 (𝑖))𝑇 𝛽 + 𝑣̂ on training set
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• blue bars to the left of dashed line are false negatives (misclassified digits zero)

• red bars to the right of dashed line are false positives (misclassified non-zeros)
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Prediction error

• for each data point 𝑥, 𝑦 we have four combinations of prediction and outcome

Prediction

Outcome 𝑦̂ = +1 𝑦̂ = −1

𝑦 = +1 true positive false negative
𝑦 = −1 false positive true negative

• classifier can be evaluated by counting data points for each combination

Training set Test set

Prediction

Outcome 𝑦̂ = +1 𝑦̂ = −1 Total

𝑦 = +1 5158 765 5923
𝑦 = −1 169 53910 54077

All 5325 54675 60000

Prediction

Outcome 𝑦̂ = +1 𝑦̂ = −1 Total

𝑦 = +1 864 116 980
𝑦 = −1 42 8978 9020

All 906 9094 10000

error rate (765 + 169)/60000 = 1.6% error rate (116 + 42)/10000 = 1.6%
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Classifier with additional nonlinear features

𝑓 (𝑥) = sign( 𝑓 (𝑥)) = sign(
𝑝∑︁
𝑖=1

𝜃𝑖 𝑓𝑖 (𝑥))

• basis functions include constant, 493 elements of 𝑥, plus 5000 functions

𝑓𝑖 (𝑥) = max {0, 𝑟𝑇𝑖 𝑥 + 𝑠𝑖} with randomly generated 𝑟𝑖, 𝑠𝑖

• figure shows distribution of 𝑓 (𝑥 (𝑖)) on training set
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Prediction error

Training set: error rate 0.21%

Prediction

Outcome 𝑦̂ = +1 𝑦̂ = −1 Total

𝑦 = +1 5813 110 5923
𝑦 = −1 15 54062 54077

All 5828 54172 60000

Test set: error rate 0.24%

Prediction

Outcome 𝑦̂ = +1 𝑦̂ = −1 Total

𝑦 = +1 963 17 980
𝑦 = −1 7 9013 9020

All 970 9030 10000
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Multi-class classification

• a data fitting problem where the outcome 𝑦 can takes values 1, . . . , 𝐾

• values of 𝑦 represent 𝐾 labels or categories

• multi-class classifier 𝑦̂ = 𝑓 (𝑥) maps 𝑥 to an element of {1, 2, . . . , 𝐾}

Least squares multi-class classifier

• for 𝑘 = 1, . . . , 𝐾, compute Boolean classifier to distinguish class 𝑘 from not 𝑘

𝑓𝑘 (𝑥) = sign( 𝑓𝑘 (𝑥))

• define multi-class classifier as

𝑓 (𝑥) = argmax
𝑘=1,...,𝐾

𝑓𝑘 (𝑥)
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Example: handwritten digit classification

• we compute a least squares Boolean classifier for each digit versus the rest

𝑓𝑘 (𝑥) = sign(𝑥𝑇 𝛽𝑘 + 𝑣𝑘), 𝑘 = 1, . . . , 𝐾

• table shows results for test set (error rate 13.9%)

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 944 0 1 2 2 8 13 2 7 1 980
1 0 1107 2 2 3 1 5 1 14 0 1135
2 18 54 815 26 16 0 38 22 39 4 1032
3 4 18 22 884 5 16 10 22 20 9 1010
4 0 22 6 0 883 3 9 1 12 46 982
5 24 19 3 74 24 656 24 13 38 17 892
6 17 9 10 0 22 17 876 0 7 0 958
7 5 43 14 6 25 1 1 883 1 49 1028
8 14 48 11 31 26 40 17 13 756 18 974
9 16 10 3 17 80 0 1 75 4 803 1009
All 1042 1330 887 1042 1086 742 994 1032 898 947 10000

Least squares data fitting 9.32



Example: handwritten digit classification

• ten least squares Boolean classifiers use 5000 new features (page 9.29)

• table shows results for test set (error rate 2.6%)

Prediction

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 972 0 0 2 0 1 1 1 3 0 980
1 0 1126 3 1 1 0 3 0 1 0 1135
2 6 0 998 3 2 0 4 7 11 1 1032
3 0 0 3 977 0 13 0 5 8 4 1010
4 2 1 3 0 953 0 6 3 1 13 982
5 2 0 1 5 0 875 5 0 3 1 892
6 8 3 0 0 4 6 933 0 4 0 958
7 0 8 12 0 2 0 1 992 3 10 1028
8 3 1 3 6 4 3 2 2 946 4 974
9 4 3 1 12 11 7 1 3 3 964 1009
All 997 1142 1024 1006 977 905 956 1013 983 997 10000
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Linear regression model

𝑦 = 𝑋𝛽 + 𝜖

• 𝛽 is (non-random) 𝑝-vector of unknown parameters

• 𝑋 is 𝑛 × 𝑝 (data matrix or design matrix, i.e., result of experiment design)

• if there is an offset 𝑣, we include it in 𝛽 and add a column of ones in 𝑋

• 𝜖 is a random 𝑛-vector (random error or disturbance)

• 𝑦 is an observable random 𝑛-vector

• this notation differs from previous sections but is common in statistics

• we discuss methods for estimating parameters 𝛽 from observations of 𝑦
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Assumptions

• 𝑋 is tall (𝑛 > 𝑝) with linearly independent columns

• random disturbances 𝜖𝑖 have zero mean

E 𝜖𝑖 = 0 for 𝑖 = 1, . . . , 𝑛

• random disturbances have equal variances 𝜎2

E 𝜖2
𝑖 = 𝜎2 for 𝑖 = 1, . . . , 𝑛

• random disturbances are uncorrelated (have zero covariances)

E (𝜖𝑖𝜖 𝑗) = 0 for 𝑖, 𝑗 = 1, . . . , 𝑛 and 𝑖 ≠ 𝑗

last three assumptions can be combined using matrix and vector notation:

E 𝜖 = 0, E 𝜖𝜖𝑇 = 𝜎2𝐼
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Least squares estimator

least squares estimate 𝛽 of parameters 𝛽, given the observations 𝑦, is

𝛽 = 𝑋†𝑦 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦

range(X)
Xβ

ε

X β̂

e = y − X β̂

y = Xβ + ε

• 𝑋𝛽 is the orthogonal projection of 𝑦 on range(𝑋)
• residual 𝑒 = 𝑦 − 𝑋𝛽 is an (observable) random variable
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Mean and covariance of least squares estimate

𝛽 = 𝑋†(𝑋𝛽 + 𝜖) = 𝛽 + 𝑋†𝜖

• least squares estimator is unbiased: E 𝛽 = 𝛽

• covariance matrix of least squares estimate is

E (𝛽 − 𝛽) (𝛽 − 𝛽)𝑇 = E
(
(𝑋†𝜖) (𝑋†𝜖)𝑇

)
= E

(
(𝑋𝑇𝑋)−1𝑋𝑇𝜖𝜖𝑇𝑋 (𝑋𝑇𝑋)−1

)
= 𝜎2(𝑋𝑇𝑋)−1

• covariance of 𝛽𝑖 and 𝛽 𝑗 (𝑖 ≠ 𝑗) is

E
((𝛽𝑖 − 𝛽𝑖) (𝛽 𝑗 − 𝛽 𝑗)) = 𝜎2

(
(𝑋𝑇𝑋)−1

)
𝑖 𝑗

for 𝑖 = 𝑗 , this is the variance of 𝛽𝑖
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Estimate of 𝜎2

Xβ

ε

X β̂

e = y − X β̂

y = Xβ + ε

E ∥𝜖 ∥2 = 𝑛𝜎2

E ∥𝑒∥2 = (𝑛 − 𝑝)𝜎2

E ∥𝑋 (𝛽 − 𝛽)∥2 = 𝑝𝜎2

(proof on next page)

• define estimate 𝜎̂ of 𝜎 as
𝜎̂ =

∥𝑒∥√
𝑛 − 𝑝

• 𝜎̂2 is an unbiased estimate of 𝜎2:

E 𝜎̂2 =
1

𝑛 − 𝑝 E ∥𝑒∥2 = 𝜎2
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Proof.

first expression is immediate: E ∥𝜖 ∥2 =
𝑛∑
𝑖=1

E 𝜖2
𝑖 = 𝑛𝜎2

• to show that E ∥𝑋 (𝛽 − 𝛽)∥2 = 𝑝𝜎2, first note that

𝑋 (𝛽 − 𝛽) = 𝑋𝑋†𝑦 − 𝑋𝛽
= 𝑋𝑋†(𝑋𝛽 + 𝜖) − 𝑋𝛽
= 𝑋𝑋†𝜖

= 𝑋 (𝑋𝑇𝑋)−1𝑋𝑇𝜖

on line 3 we used 𝑋†𝑋 = 𝐼 (however, note that 𝑋𝑋† ≠ 𝐼 if 𝑋 is tall)

• squared norm of 𝑋 (𝛽 − 𝛽) is

∥𝑋 (𝛽 − 𝛽)∥2 = 𝜖𝑇 (𝑋𝑋†)2𝜖 = 𝜖𝑇𝑋𝑋†𝜖

first step uses symmetry of 𝑋𝑋†; second step, 𝑋†𝑋 = 𝐼

Least squares data fitting 9.39



• expected value of squared norm is

E ∥𝑋 (𝛽 − 𝛽)∥2 = E
(
𝜖𝑇𝑋𝑋†𝜖

)
=

∑︁
𝑖, 𝑗

E(𝜖𝑖𝜖 𝑗) (𝑋𝑋†)𝑖 𝑗

= 𝜎2
𝑛∑︁
𝑖=1

(𝑋𝑋†)𝑖𝑖

= 𝜎2
𝑛∑︁
𝑖=1

𝑝∑︁
𝑗=1

𝑋𝑖 𝑗 (𝑋†) 𝑗𝑖

= 𝜎2
𝑝∑︁
𝑗=1

(𝑋†𝑋) 𝑗 𝑗

= 𝑝𝜎2

• expression E ∥𝑒∥2 = (𝑛 − 𝑝)𝜎2 on page 9.38 now follows from

∥𝜖 ∥2 = ∥𝑒 + 𝑋𝛽 − 𝑋𝛽∥2 = ∥𝑒∥2 + ∥𝑋 (𝛽 − 𝛽)∥2
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Linear estimator

linear regression model (page 9.34), with same assumptions as before (p. 9.35):

𝑦 = 𝑋𝛽 + 𝜖

a linear estimator of 𝛽 maps observations 𝑦 to the estimate

𝛽 = 𝐵𝑦

• estimator is defined by the 𝑝 × 𝑛 matrix 𝐵

• least squares estimator is an example with 𝐵 = 𝑋†
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Unbiased linear estimator

if 𝐵 is a left inverse of 𝑋 , then estimator 𝛽 = 𝐵𝑦 can be written as:

𝛽 = 𝐵𝑦 = 𝐵(𝑋𝛽 + 𝜖) = 𝛽 + 𝐵𝜖

• this shows that the linear estimator is unbiased (E 𝛽 = 𝛽) if 𝐵𝑋 = 𝐼

• covariance matrix of unbiased linear estimator is

E
(
(𝛽 − 𝛽) (𝛽 − 𝛽)𝑇

)
= E

(
𝐵𝜖𝜖𝑇𝐵𝑇

)
= 𝜎2𝐵𝐵𝑇

• if 𝑐 is a (non-random) 𝑝-vector, then estimate 𝑐𝑇 𝛽 of 𝑐𝑇 𝛽 has variance

E (𝑐𝑇 𝛽 − 𝑐𝑇 𝛽)2 = 𝜎2𝑐𝑇𝐵𝐵𝑇𝑐

least squares estimator is an example with 𝐵 = 𝑋† and 𝐵𝐵𝑇 = (𝑋𝑇𝑋)−1
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Best linear unbiased estimator

if 𝐵 is a left inverse of 𝑋 then for all 𝑝-vectors 𝑐

𝑐𝑇𝐵𝐵𝑇𝑐 ≥ 𝑐𝑇 (𝑋𝑇𝑋)−1𝑐

(proof on next page)

• left-hand side gives variance of 𝑐𝑇 𝛽 for linear unbiased estimator

𝛽 = 𝐵𝑦

• right-hand side gives variance of 𝑐𝑇 𝛽ls for least squares estimator

𝛽ls = 𝑋
†𝑦

• least squares estimator is the “best linear unbiased estimator” (BLUE)

this is known as the Gauss–Markov theorem
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Proof.

• use 𝐵𝑋 = 𝐼 to write 𝐵𝐵𝑇 as

𝐵𝐵𝑇 = (𝐵 − (𝑋𝑇𝑋)−1𝑋𝑇) (𝐵𝑇 − 𝑋 (𝑋𝑇𝑋)−1) + (𝑋𝑇𝑋)−1

= (𝐵 − 𝑋†) (𝐵 − 𝑋†)𝑇 + (𝑋𝑇𝑋)−1

• hence,

𝑐𝑇𝐵𝐵𝑇𝐶 = 𝑐𝑇 (𝐵 − 𝑋†) (𝐵 − 𝑋†)𝑇𝑐 + 𝑐𝑇 (𝑋𝑇𝑋)−1𝑐

= ∥(𝐵 − 𝑋†)𝑇𝑐∥2 + 𝑐𝑇 (𝑋𝑇𝑋)−1𝑐

≥ 𝑐𝑇 (𝑋𝑇𝑋)−1𝑐

with equality if 𝐵 = 𝑋†
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