3. Matrices

- notation and terminology
- matrix operations
- linear and affine functions
- complexity
Matrix

a rectangular array of numbers, for example

\[
A = \begin{bmatrix}
0 & 1 & -2.3 & 0.1 \\
1.3 & 4 & -0.1 & 0 \\
4.1 & -1 & 0 & 1.7
\end{bmatrix}
\]

- numbers in array are the elements (entries, coefficients, components)
- \(A_{ij} \) is the \(i, j \) element of \(A \); \(i \) is its row index, \(j \) the column index
- size (dimensions) of the matrix is specified as (\#rows) \(\times \) (\#columns)
 - for example, the matrix \(A \) above is a \(3 \times 4 \) matrix
- set of \(m \times n \) matrices with real elements is written \(\mathbb{R}^{m\times n} \)
- set of \(m \times n \) matrices with complex elements is written \(\mathbb{C}^{m\times n} \)
Other conventions

- Many authors use parentheses as delimiters:

\[A = \begin{pmatrix} 0 & 1 & -2.3 & 0.1 \\ 1.3 & 4 & -0.1 & 0 \\ 4.1 & -1 & 0 & 1.7 \end{pmatrix} \]

- Often \(a_{ij} \) is used to denote the \(i, j \) element of \(A \)
Matrix shapes

Scalar: we don’t distinguish between a 1×1 matrix and a scalar

Vector: we don’t distinguish between an $n \times 1$ matrix and an n-vector

Row and column vectors

- a $1 \times n$ matrix is called a row vector
- an $n \times 1$ matrix is called a column vector (or just vector)

Tall, wide, square matrices: an $m \times n$ matrix is

- tall if $m > n$
- wide if $m < n$
- square if $m = n$
A block matrix is a rectangular array of matrices.

Elements in the array are the blocks or submatrices of the block matrix.

Example:

\[A = \begin{bmatrix} B & C \\ D & E \end{bmatrix} \]

is a 2×2 block matrix; if the blocks are

\[B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 2 & 3 \\ 5 & 4 & 7 \end{bmatrix}, \quad D = \begin{bmatrix} 1 \end{bmatrix}, \quad E = \begin{bmatrix} -1 & 6 & 0 \end{bmatrix} \]

then

\[A = \begin{bmatrix} 2 & 0 & 2 & 3 \\ 1 & 5 & 4 & 7 \\ 1 & -1 & 6 & 0 \end{bmatrix} \]

Note: dimensions of the blocks must be compatible.
Rows and columns

A matrix can be viewed as a block matrix with row/column vector blocks

- $m \times n$ matrix A as $1 \times n$ block matrix

\[
A = \begin{bmatrix}
 a_1 & a_2 & \cdots & a_n \\
\end{bmatrix}
\]

Each a_j is an m-vector (the jth column of A)

- $m \times n$ matrix A as $m \times 1$ block matrix

\[
A = \begin{bmatrix}
 b_1 \\
b_2 \\
 \vdots \\
b_m
\end{bmatrix}
\]

Each b_i is a $1 \times n$ row vector (the ith row of A)
Special matrices

Zero matrix

- matrix with $A_{ij} = 0$ for all i, j
- notation: 0 (usually) or $0_{m \times n}$ (if dimension is not clear from context)

Identity matrix

- square matrix with $A_{ij} = 1$ if $i = j$ and $A_{ij} = 0$ if $i \neq j$
- notation: I (usually) or I_n (if dimension is not clear from context)
- columns of I_n are unit vectors e_1, e_2, \ldots, e_n; for example,

$$I_3 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} = [e_1 \ e_2 \ e_3]$$
Symmetric and Hermitian matrices

Symmetric matrix: square with $A_{ij} = A_{ji}$

\[
\begin{bmatrix}
4 & 3 & -2 \\
3 & -1 & 5 \\
-2 & 5 & 0
\end{bmatrix}, \quad \begin{bmatrix}
4 + 3j & 3 - 2j & 0 \\
3 - 2j & -j & -2j \\
0 & -2j & 3
\end{bmatrix}
\]

Hermitian matrix: square with $A_{ij} = \bar{A}_{ji}$ (complex conjugate of A_{ij})

\[
\begin{bmatrix}
4 & 3 - 2j & -1 + j \\
3 + 2j & -1 & 2j \\
-1 - j & -2j & 3
\end{bmatrix}
\]

note: diagonal elements are real (since $A_{ii} = \bar{A}_{ii}$)
Structured matrices

matrices with special patterns or structure arise in many applications

- diagonal matrix: square with $A_{ij} = 0$ for $i \neq j$

 \[
 \begin{bmatrix}
 -1 & 0 & 0 \\
 0 & 2 & 0 \\
 0 & 0 & -5 \\
 \end{bmatrix}, \quad \begin{bmatrix}
 -1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & -5 \\
 \end{bmatrix}
 \]

- lower triangular matrix: square with $A_{ij} = 0$ for $i < j$

 \[
 \begin{bmatrix}
 4 & 0 & 0 \\
 3 & -1 & 0 \\
 -1 & 5 & -2 \\
 \end{bmatrix}, \quad \begin{bmatrix}
 4 & 0 & 0 \\
 0 & -1 & 0 \\
 -1 & 0 & -2 \\
 \end{bmatrix}
 \]

- upper triangular matrix: square with $A_{ij} = 0$ for $i > j$
Sparse matrices

A matrix is *sparse* if most (almost all) of its elements are zero.

- Sparse matrix storage formats and algorithms exploit sparsity.
- Efficiency depends on number of nonzeros and their positions.
- Positions of nonzeros are visualized in a ‘spy plot’.

Example

- 2,987,012 rows and columns
- 26,621,983 nonzeros

(Freescale/FullChip matrix from SuiteSparse Matrix Collection)
Outline

- notation and terminology
- **matrix operations**
- linear and affine functions
- complexity
Scalar—matrix multiplication and addition

Scalar—matrix multiplication:

scalar–matrix product of \(m \times n \) matrix \(A \) with scalar \(\beta \)

\[
\beta A = \begin{bmatrix}
\beta A_{11} & \beta A_{12} & \cdots & \beta A_{1n} \\
\beta A_{21} & \beta A_{22} & \cdots & \beta A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\beta A_{m1} & \beta A_{m2} & \cdots & \beta A_{mn}
\end{bmatrix}
\]

\(A \) and \(\beta \) can be real or complex

Addition: sum of two \(m \times n \) matrices \(A \) and \(B \) (real or complex)

\[
A + B = \begin{bmatrix}
A_{11} + B_{11} & A_{12} + B_{12} & \cdots & A_{1n} + B_{1n} \\
A_{21} + B_{21} & A_{22} + B_{22} & \cdots & A_{2n} + B_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} + B_{m1} & A_{m2} + B_{m2} & \cdots & A_{mn} + B_{mn}
\end{bmatrix}
\]
the transpose of an \(m \times n \) matrix \(A \) is the \(n \times m \) matrix

\[
A^T = \begin{bmatrix}
A_{11} & A_{21} & \cdots & A_{m1} \\
A_{12} & A_{22} & \cdots & A_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1n} & A_{2n} & \cdots & A_{mn}
\end{bmatrix}
\]

- \((A^T)^T = A\)
- a symmetric matrix satisfies \(A = A^T \)
- \(A \) may be complex, but transpose of a complex matrix is rarely needed
- transpose of scalar–matrix product and matrix sum

\[
(\beta A)^T = \beta A^T, \quad (A + B)^T = A^T + B^T
\]
Conjugate transpose

the *conjugate transpose* of an \(m \times n \) matrix \(A \) is the \(n \times m \) matrix

\[
A^H = \begin{bmatrix}
\bar{A}_{11} & \bar{A}_{21} & \cdots & \bar{A}_{m1} \\
\bar{A}_{12} & \bar{A}_{22} & \cdots & \bar{A}_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{A}_{1n} & \bar{A}_{2n} & \cdots & \bar{A}_{mn}
\end{bmatrix}
\]

(\(\bar{A}_{ij} \) is complex conjugate of \(A_{ij} \))

- \(A^H = A^T \) if \(A \) is a real matrix
- a Hermitian matrix satisfies \(A = A^H \)
- conjugate transpose of scalar–matrix product and matrix sum

\[
(\beta A)^H = \bar{\beta} A^H, \quad (A + B)^H = A^H + B^H
\]
Matrix–matrix product

product of $m \times n$ matrix A and $n \times p$ matrix B (A, B are real or complex)

$$C = AB$$

is the $m \times p$ matrix with i, j element

$$C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \cdots + A_{in}B_{nj}$$

dimensions must be compatible:

$\#\text{columns in } A = \#\text{rows in } B$
Exercise: paths in directed graph

directed graph with $n = 5$ vertices

matrix representation

$$A = \begin{bmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

$A_{ij} = 1$ indicates an edge $j \rightarrow i$

Question: give a graph interpretation of $A^2 = AA$, $A^3 = AAA$, …

$$A^2 = \begin{bmatrix}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{bmatrix}, \quad A^3 = \begin{bmatrix}
1 & 1 & 0 & 1 & 2 \\
2 & 0 & 1 & 2 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}, \quad \ldots$$
Properties of matrix–matrix product

- **associative**: \((AB)C = A(BC)\) so we write \(ABC\)
- **associative with scalar–matrix multiplication**: \((\gamma A)B = \gamma(AB) = \gamma AB\)
- **distributes with sum**:
 \[
 A(B + C) = AB + AC, \quad (A + B)C = AC + BC
 \]
- **transpose and conjugate transpose of product**:
 \[
 (AB)^T = B^T A^T, \quad (AB)^H = B^H A^H
 \]
- **not commutative**: \(AB \neq BA\) in general; for example,
 \[
 \begin{pmatrix}
 -1 & 0 \\
 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 0 & 1 \\
 1 & 0
 \end{pmatrix}
 \neq
 \begin{pmatrix}
 0 & 1 \\
 1 & 0
 \end{pmatrix}
 \begin{pmatrix}
 -1 & 0 \\
 0 & 1
 \end{pmatrix}
 \]

 there are exceptions, e.g., \(AI = IA\) for square \(A\)
Notation for vector inner product

- inner product of $a, b \in \mathbb{R}^n$ (see page 1.15):

$$b^T a = b_1 a_1 + b_2 a_2 + \cdots + b_n a_n = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}^T \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

product of the transpose of the column vector b and the column vector a

- inner product of $a, b \in \mathbb{C}^n$ (see page 1.21):

$$b^H a = \bar{b}_1 a_1 + \bar{b}_2 a_2 + \cdots + \bar{b}_n a_n = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}^H \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

product of conjugate transpose of the column vector b and the column vector a
Matrix–matrix product and block matrices

block-matrices can be multiplied as regular matrices

Example: product of two 2×2 block matrices

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} W & Y \\ X & Z \end{bmatrix} = \begin{bmatrix} AW + BX & AY + BZ \\ CW + DX & CY + DZ \end{bmatrix}$$

if the dimensions of the blocks are compatible
Outline

- notation and terminology
- matrix operations
- linear and affine functions
- complexity
Matrix–vector product

product of $m \times n$ matrix A with n-vector (or $n \times 1$ matrix) x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \cdots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n \end{bmatrix}$$

- dimensions must be compatible: number of columns of A equals the size of x
- Ax is a linear combination of the columns of A:

$$Ax = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1a_1 + x_2a_2 + \cdots + x_na_n$$

each a_i is an m-vector (ith column of A)
Linear function

A function \(f : \mathbb{R}^n \to \mathbb{R}^m \) is **linear** if the superposition property

\[
f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)
\]

holds for all \(n \)-vectors \(x, y \) and all scalars \(\alpha, \beta \)

Extension: If \(f \) is linear, superposition holds for any linear combination:

\[
f(\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_p u_p) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \cdots + \alpha_p f(u_p)
\]

for all scalars, \(\alpha_1, \ldots, \alpha_p \) and all \(n \)-vectors \(u_1, \ldots, u_p \)
Matrix–vector product function

for fixed $A \in \mathbb{R}^{m \times n}$, define a function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ as

$$f(x) = Ax$$

- any function of this type is linear: $A(\alpha x + \beta y) = \alpha(Ax) + \beta(Ay)$
- every linear function can be written as a matrix–vector product function:

$$f(x) = f(x_1 e_1 + x_2 e_2 + \cdots + x_n e_n)$$

$$= x_1 f(e_1) + x_2 f(e_2) + \cdots + x_n f(e_n)$$

$$= \begin{bmatrix} f(e_1) & \cdots & f(e_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

hence, $f(x) = Ax$ with $A = \begin{bmatrix} f(e_1) & f(e_2) & \cdots & f(e_n) \end{bmatrix}$
think of a function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) in terms of its effect on \(x \)

\[
x \xrightarrow{A} y = f(x) = Ax
\]

• signal processing/control interpretation: \(n \) inputs \(x_i \), \(m \) outputs \(y_i \)

• \(f \) is linear if we can represent its action on \(x \) as a product \(f(x) = Ax \)
Examples \((f : \mathbb{R}^3 \rightarrow \mathbb{R}^3)\)

- \(f\) reverses the order of the components of \(x\)

 a linear function: \(f(x) = Ax\) with

 \[
 A = \begin{bmatrix}
 0 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 0
 \end{bmatrix}
 \]

- \(f\) sorts the components of \(x\) in decreasing order: not linear

- \(f\) scales \(x_1\) by a given number \(d_1\), \(x_2\) by \(d_2\), \(x_3\) by \(d_3\)

 a linear function: \(f(x) = Ax\) with

 \[
 A = \begin{bmatrix}
 d_1 & 0 & 0 \\
 0 & d_2 & 0 \\
 0 & 0 & d_3
 \end{bmatrix}
 \]

- \(f\) replaces each \(x_i\) by its absolute value \(|x_i|\): not linear
Operator interpretation of matrix–matrix product

explains why in general $AB \neq BA$

Example

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- $f(x) = ABx$ reverses order of elements; then changes sign of first element
- $f(x) = BAx$ changes sign of 1st element; then reverses order
Reverser and circular shift

Reverser matrix

\[
A = \begin{bmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{bmatrix}, \quad Ax = \begin{bmatrix}
x_n \\
x_{n-1} \\
\vdots \\
x_2 \\
x_1
\end{bmatrix}
\]

Circular shift matrix

\[
A = \begin{bmatrix}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{bmatrix}, \quad Ax = \begin{bmatrix}
x_n \\
x_1 \\
x_2 \\
\vdots \\
x_{n-1}
\end{bmatrix}
\]
Permutation

Permutation matrix

- a square 0-1 matrix with one element 1 per row and one element 1 per column
- equivalently, an identity matrix with columns reordered
- equivalently, an identity matrix with rows reordered

\[Ax \] is a permutation of the elements of \(x \)

Example

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}, \quad Ax = \begin{bmatrix}
x_2 \\
x_4 \\
x_1 \\
x_3 \\
\end{bmatrix}
\]
Rotation in a plane

\[A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]

\(Ax \) is \(x \) rotated counterclockwise over an angle \(\theta \)
Projection on line and reflection

- projection on line through a (see page 2.12):

$$ y = \frac{a^T x}{\|a\|^2} a = A x \quad \text{with} \quad A = \frac{1}{\|a\|^2} aa^T $$

- reflection with respect to line through a

$$ z = x + 2(y - x) = B x, \quad \text{with} \quad B = \frac{2}{\|a\|^2} aa^T - I $$
Node–arc incidence matrix

- directed graph (network) with m vertices, n arcs (directed edges)
- incidence matrix is $m \times n$ matrix A with

$$A_{ij} = \begin{cases}
1 & \text{if arc } j \text{ enters node } i \\
-1 & \text{if arc } j \text{ leaves node } i \\
0 & \text{otherwise}
\end{cases}$$

$$A = \begin{bmatrix}
-1 & -1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}$$
Kirchhoff’s current law

n-vector $x = (x_1, x_2, \ldots, x_n)$ with x_j the current through arc j

\[
(Ax)_i = \sum_{\text{arc } j \text{ enters node } i} x_j - \sum_{\text{arc } j \text{ leaves node } i} x_j
\]

= total current arriving at node i

\[
Ax = \begin{bmatrix}
-x_1 - x_2 + x_4 \\
\quad x_1 - x_3 \\
\quad x_3 - x_4 - x_5 \\
\quad x_2 + x_5
\end{bmatrix}
\]
Kirchhoff’s voltage law

\(m \)-vector \(y = (y_1, y_2, \ldots, y_m) \) with \(y_i \) the potential at node \(i \)

\[
(A^T y)_j = y_k - y_l \quad \text{if edge } j \text{ goes from node } l \text{ to } k
\]

= negative of voltage across arc \(j \)

\[
A^T y = \begin{bmatrix}
y_2 - y_1 \\
y_4 - y_1 \\
y_3 - y_2 \\
y_1 - y_3 \\
y_4 - y_3
\end{bmatrix}
\]
Convolution

the *convolution* of an n-vector a and an m-vector b is the $(n + m - 1)$-vector c

$$c_k = \sum_{\text{all } i \text{ and } j \text{ with } i + j = k + 1} a_i b_j$$

notation: $c = a \ast b$

Example: $n = 4$, $m = 3$

$$c_1 = a_1 b_1$$
$$c_2 = a_1 b_2 + a_2 b_1$$
$$c_3 = a_1 b_3 + a_2 b_2 + a_3 b_1$$
$$c_4 = a_2 b_3 + a_3 b_2 + a_4 b_1$$
$$c_5 = a_3 b_3 + a_4 b_2$$
$$c_6 = a_4 b_3$$
Properties

Interpretation: if a and b are the coefficients of polynomials

$$p(x) = a_1 + a_2x + \cdots + a_{n}x^{n-1}, \quad q(x) = b_1 + b_2x + \cdots + b_{m}x^{m-1}$$

then $c = a \ast b$ gives the coefficients of the product polynomial

$$p(x)q(x) = c_1 + c_2x + c_3x^2 + \cdots + c_{n+m-1}x^{n+m-2}$$

Properties

- symmetric: $a \ast b = b \ast a$
- associative: $(a \ast b) \ast c = a \ast (b \ast c)$
- if $a \ast b = 0$ then $a = 0$ or $b = 0$

these properties follow directly from the polynomial product interpretation
Example: moving average of a time series

- \(n \)-vector \(x \) represents a time series
- the 3-period *moving average* of the time series is the time series

\[
y_k = \frac{1}{3}(x_k + x_{k-1} + x_{k-2}), \quad k = 1, 2, \ldots, n + 2
\]

(with \(x_k \) interpreted as zero for \(k < 1 \) and \(k > n \))

- this can be expressed as a convolution \(y = a \ast x \) with \(a = (1/3, 1/3, 1/3) \)
Convolution and Toeplitz matrices

• $c = a \ast b$ is a linear function of b if we fix a

• $c = a \ast b$ is a linear function of a if we fix b

Example: convolution $c = a \ast b$ of a 4-vector a and a 3-vector b

\[
\begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3 \\
 c_4 \\
 c_5 \\
 c_6 \\
\end{bmatrix}
= \begin{bmatrix}
 a_1 & 0 & 0 \\
 a_2 & a_1 & 0 \\
 a_3 & a_2 & a_1 \\
 a_4 & a_3 & a_2 \\
 0 & a_4 & a_3 \\
 0 & 0 & a_4 \\
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4 \\
\end{bmatrix}
= \begin{bmatrix}
 b_1 & 0 & 0 & 0 \\
 b_2 & b_1 & 0 & 0 \\
 b_3 & b_2 & b_1 & 0 \\
 0 & b_3 & b_2 & b_1 \\
 0 & 0 & b_3 & b_2 \\
 0 & 0 & 0 & b_3 \\
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3 \\
 a_4 \\
\end{bmatrix}
\]

the matrices in these matrix–vector products are called Toeplitz matrices
Vandermonde matrix

- polynomial of degree \(n - 1 \) or less with coefficients \(x_1, x_2, \ldots, x_n \):

\[
p(t) = x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1}
\]

- values of \(p(t) \) at \(m \) points \(t_1, \ldots, t_m \):

\[
\begin{bmatrix}
 p(t_1) \\
p(t_2) \\
 \vdots \\
p(t_m)
\end{bmatrix} =
\begin{bmatrix}
 1 & t_1 & \cdots & t_1^{n-1} \\
 1 & t_2 & \cdots & t_2^{n-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 1 & t_m & \cdots & t_m^{n-1}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
x_2 \\
 \vdots \\
x_n
\end{bmatrix} = Ax
\]

the matrix \(A \) is called a Vandermonde matrix

- \(f(x) = Ax \) maps coefficients of polynomial to function values
Discrete Fourier transform

the DFT maps a complex n-vector (x_1, x_2, \ldots, x_n) to the complex n-vector

$$y = DFT(x) = Wx$$

where y_1, y_2, \ldots, y_n are given by

$$
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n \\
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-(2(n-1))} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)(n-1)} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n \\
\end{bmatrix}
$$

where $\omega = e^{2\pi j/n}$ (and $j = \sqrt{-1}$)

- DFT matrix $W \in \mathbb{C}^{n \times n}$ has k, l element $W_{kl} = \omega^{-(k-1)(l-1)}$
- a Vandermonde matrix with $m = n$ and

$$t_1 = 1, \quad t_2 = \omega^{-1}, \quad t_3 = \omega^{-2}, \quad \ldots, \quad t_n = \omega^{-(n-1)}$$
Affine function

A function $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is affine if it satisfies

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

for all n-vectors x, y and all scalars α, β with $\alpha + \beta = 1$

Extension: If f is affine, then

$$f(\alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_m u_m) = \alpha_1 f(u_1) + \alpha_2 f(u_2) + \cdots + \alpha_m f(u_m)$$

for all n-vectors u_1, \ldots, u_m and all scalars $\alpha_1, \ldots, \alpha_m$ with

$$\alpha_1 + \alpha_2 + \cdots + \alpha_m = 1$$
Affine functions and matrix–vector product

for fixed $A \in \mathbb{R}^{m\times n}$, $b \in \mathbb{R}^m$, define a function $f : \mathbb{R}^n \to \mathbb{R}^m$ by

$$f(x) = Ax + b$$

i.e., a matrix–vector product plus a constant

- any function of this type is affine: if $\alpha + \beta = 1$ then

$$A(\alpha x + \beta y) + b = \alpha(Ax + b) + \beta(Ay + b)$$

- every affine function can be written as $f(x) = Ax + b$ with:

$$A = \left[\begin{array}{c} f(e_1) - f(0) \\ f(e_2) - f(0) \\ \vdots \\ f(e_n) - f(0) \end{array} \right]$$

and $b = f(0)$
Affine approximation

first-order Taylor approximation of differentiable $f : \mathbb{R}^n \to \mathbb{R}^m$ around z:

$$\tilde{f}_i(x) = f_i(z) + \frac{\partial f_i}{\partial x_1}(z)(x_1 - z_1) + \cdots + \frac{\partial f_i}{\partial x_n}(z)(x_n - z_n), \quad i = 1, \ldots, m$$

in matrix–vector notation: $\tilde{f}(x) = f(z) + Df(z)(x - z)$ where

$$Df(z) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(z) & \frac{\partial f_1}{\partial x_2}(z) & \cdots & \frac{\partial f_1}{\partial x_n}(z) \\
\frac{\partial f_2}{\partial x_1}(z) & \frac{\partial f_2}{\partial x_2}(z) & \cdots & \frac{\partial f_2}{\partial x_n}(z) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1}(z) & \frac{\partial f_m}{\partial x_2}(z) & \cdots & \frac{\partial f_m}{\partial x_n}(z)
\end{bmatrix} = \begin{bmatrix}
\nabla f_1(z)^T \\
\nabla f_2(z)^T \\
\vdots \\
\nabla f_m(z)^T
\end{bmatrix}$$

- $Df(z)$ is called the derivative matrix or Jacobian matrix of f at z
- \tilde{f} is a local affine approximation of f around z
Example

\[
f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} e^{2x_1+x_2} - x_1 \\ x_1^2 - x_2 \end{bmatrix}
\]

- derivative matrix

\[
Df(x) = \begin{bmatrix} 2e^{2x_1+x_2} - 1 & e^{2x_1+x_2} \\ 2x_1 & -1 \end{bmatrix}
\]

- first order approximation of \(f \) around \(z = 0 \):

\[
\tilde{f}(x) = \begin{bmatrix} \tilde{f}_1(x) \\ \tilde{f}_2(x) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]
Outline

- notation and terminology
- matrix operations
- linear and affine functions
- complexity
Matrix–vector product

matrix–vector multiplication of \(m \times n \) matrix \(A \) and \(n \)-vector \(x \):

\[
y = Ax
\]

requires \((2n - 1)m\) flops

- \(m \) elements in \(y \); each element requires an inner product of length \(n \)
- approximately \(2mn \) for large \(n \)

Special cases: flop count is lower for structured matrices

- \(A \) diagonal: \(n \) flops
- \(A \) lower triangular: \(n^2 \) flops
- \(A \) sparse: \#flops \(\ll 2mn \)
Matrix–matrix product

product of $m \times n$ matrix A and $n \times p$ matrix B:

$$C = AB$$

requires $mp(2n - 1)$ flops

- mp elements in C; each element requires an inner product of length n
- approximately $2mnp$ for large n
Exercises

1. evaluate \(y = ABx \) two ways (\(A \) and \(B \) are \(n \times n \), \(x \) is a vector)

 - \(y = (AB)x \) (first make product \(C = AB \), then multiply \(C \) with \(x \))
 - \(y = A(Bx) \) (first make product \(y = Bx \), then multiply \(A \) with \(y \))

 both methods give the same answer, but which method is faster?

2. evaluate \(y = (I + uv^T)x \) where \(u, v, x \) are \(n \)-vectors

 - \(A = I + uv^T \) followed by \(y = Ax \)

 in MATLAB: \(y = (\text{eye}(n) + u*v') \ast x \)
 - \(w = (v^T x) u \) followed by \(y = x + w \)

 in MATLAB: \(y = x + (v' \ast x) \ast u \)