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10. Multi-objective least squares

e multi-objective least squares
e regularized data fitting
e control

e estimation and inversion
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Multi-objective least squares

we have several objectives
_ 2 _ 2
J1 = |[A1x = bq]%, coes Jre = ||Agx = b

e A;is an m; X n matrix, b; is an m;-vector
e we seek one x that makes all £ objectives small

e usually there is a trade-off: no single x minimizes all objectives simultaneously

Weighted least squares formulation: find x that minimizes
Al Arx = byl + -+ Al Apx = bl

e coefficients 41, ..., Ay are positive weights
e weights A; express relative importance of different objectives

e without loss of generality, we can choose 1| =1
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Solution of weighted least squares

weighted least squares is equivalent to a standard least squares problem

minimize

VA,

[ VA1 AL ]

| VAKAL |

- VAi1by |
VA0,

| Vb

2

solution is unique if the stacked matrix has linearly independent columns

each matrix A; may have linearly dependent columns (or be a wide matrix)

it the stacked matrix has linearly independent columns, the solution is

-1
%= (/llA{Al bt AkA{Ak) (/MA{bl bt /lkAibk)
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Example with two objectives

minimize ||A;x — 191||2 + A||Arx — bzll2

Ajand Ay are 10 x5
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plot shows weighted least squares solution (1) as function of weight A
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Example with two objectives

minimize ||A;x — 191||2 + A||Arx — bzll2
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e left figure shows J; (1) = ||A1£(1) — by]|? and Jo(2) = ||A2% () — by||?

e right figure shows optimal trade-off curve of J,(A1) versus Ji(A1)
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Motivation

e consider linear-in-parameters model

f(x) =01f1(x) +--- +9pfp(x)

we assume f](x) is the constant function 1
e we fit the model 7(x) to examples (x(1), y(D) .. (x(N) (V)
e large coefficient ; makes model more sensitive to changes in f;(x)
e keeping 0>, ..., 6, small helps avoid over-fitting

e this leads to two objectives:
A, k k)\2 50
J1(0) = > (F) =y () = > 63
k=1 j=2
primary objective J;(6) is sum of squares of prediction errors

Multi-objective least squares 10.6



Weighted least squares formulation

N P
minimize J{(0) + 1J,(0) = Z(f(x(k)) -y +2 Z H?
k=1 J=2

e [ is positive reqularization parameter

e equivalent to least squares problem: minimize

d 112
Y
i o[ 5
with y4 = (y(D, .., y)),
1 DY . fp(x(l)) ] (0 1 0 0
2y ... (2)

a=| 1 RED) @) |00
L) ) 000 - 1)

e stacked matrix has linearly independent columns (for positive A1)

e value of A can be chosen by out-of-sample validation or cross-validation
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Example

eTrain
=1 e Test | |

e solid line is signal used to generate synthetic (simulated) data
e 10 blue points are used as training set; 20 red points are used as test set

e we fit a model with five parameters 6., ..., 05:

4
f(x) =01+ Z Ok 41 Sin(wrx + @) (with given wy, o)
k=1
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Result of regularized least squares fit

RMS error versus A Coefficients versus A
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e minimum test RMS error is for A around 0.08
e increasing A “shrinks” the coefficients 65, ..., 05
e dashed lines show coefficients used to generate the data

e for A near 0.08, estimated coefficients are close to these “true” values
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Control

y=Ax+b

e X is n-vector of actions or inputs
e y is m-vector of results or outputs

e relation between inputs and outputs is a known affine function

the goal is to choose inputs x to optimize different objectives on x and y
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Optimal input design

Linear dynamical system
y(t) = hou(t) + hyu(t = 1) + hou(t —2) + - - - + hu(0)

e output y(¢) and input u(z) are scalar
e we assume input u(¢) is zero fort < 0
e coefficients hg, hy, ...are the impulse response coefficients

e output is convolution of input with impulse response

Optimal input design
e optimization variable is the input sequence x = (#(0),u(1),...,u(N))

e goal is to track a desired output using a small and slowly varying input
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Input design objectives

minimize Ji(x) + AyJy(x) + Amdm(x)

e primary objective: track desired output y4es Over an interval [0, N]:

N
Ji(x) = D) = ydes(1))?
=0

e secondary objectives: use a small and slowly varying input signal:

N N-1
Jn(x) = D u(@®)?  J(x) = >t +1) —u())?
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Tracking error

N
Ji(x) = Z()’(Z)_)’des(t))z
=0
= |lAex = byll?
with
ho 0 o --- 0 O Ydes(0)
h1 ho o --- 0 O Ydes(1)
]
hn-1 hyn—a hy-3 -+ hy O Ydes(N = 1)
hv - hy-1 Ay -+ hi ho | | Vdes(V)
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Input variation and magnitude

Input variation

N-1
Jy(x) = > (u(t+1) —u()* = ||Dx|?
=0

with D the N X (N + 1) matrix

-1 1 0 --- 0 0 O]
O -1 1 --- 0 00
D: . .E . e e
0 0 0 -1 1 0
0O 0 0 0 -1 1

Input magnitude

N
In(x) = D u(®)® = |Ix||I°

=0
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Example
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Estimation

Linear measurement model
V= AXex +V

e n-vector xex contains parameters that we want to estimate
e m-vector v is unknown measurement error or noise
e m-vector y contains measurements

e m X n matrix A relates measurements and parameters

Least squares estimate: use as estimate of x¢x the solution X of

minimize ||Ax — y||2
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Regularized estimation

add other terms to ||Ax — y||? to include information about parameters

Example: Tikhonov regularization
L 2 2
minimize ||Ax — y||= + A]|x]||

e goal is to make ||Ax — y|| small with small x

e equivalent to solving
(ATA+ADx = ATy

e solution is unique (if 4 > 0) even when A has linearly dependent columns
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Signal denoising

e observed signal y is n-vector
Y =Xex TV

® Xcx IS Unknown signal

® VvV iS noise

0 500 1000

Least squares denoising: find estimate X by solving

n—1
minimize |jx - y||* + 1 Z(xm — xi)°
i=1

goal is to find slowly varying signal x, close to observed signal y
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Matrix formulation

2
minimize ! x—| 2
VaD 0
e Dis (n— 1) x n finite difference matrix
(-1 1.0 -~~~ 0 0 0
0 -1 1 : 0O 0 0
D = : : :

0O 0 0 -1 1 0
0O 00 0 -1 1

e equivalent to linear equation

(I+AD'D)x =y
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Trade-off

the two objectives ||X(1) — y|| and ||[DX(A)|| for varying 4

10
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A I£(2) = yl|
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Three solutions

A=10"1]

£(A)x
£(A)x

0 500 1000 0 500 1000
k k
1.5 A1=10°
e {(1) > yfora—0 =
= 1 |
e £(1) — avg(y)lford — oo .
e 1~ 107 is good compromise
0.5| f
0 500 1000
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Image deblurring
y — AXCX + v

® Xcx IS UNknown image, y is observed image
e A is (known) blurring matrix, v is (unknown) noise

e images are M X N, stored as M N-vectors

blurred, noisy image y deblurred image X
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Least squares deblurring

minimize || Ax — y||* + A(||Dyx[|* + || Dpx|*)

e 1stterm is “data fidelity” term: ensures AX ~ y

e 2nd term penalizes differences between values at neighboring pixels
N-1

M
|Dpx||* + | Dyx||* = >

M-1 N
(Xije1 = Xip)* + D) > (Xiw1j — Xij)°
i=1 j= i=1 j=1

if X is the M x N image stored in the M N-vector x
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Differencing operations in matrix notation

suppose x is the M x N image X, stored column-wise as M N-vector

x = (Xvm 1 Xum2s - o> Xt:m.N)

e horizontal differencing: (N — 1) X N block matrix with M x M blocks

1 I 0 -~ 0 0 0]
e I
0 0 0 - 0 -1 I

e vertical differencing: N X N block matrix with (M — 1) x M blocks

‘D 0 - 0] 11 o0 0
e I PR T A
0 0 -+ D | 0 0 0 -~ -1 1]
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Deblurred images

A1=10"*

1=10"°

10.25
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Tomography

V=AXex +V

® X.x represents values of some quantity in a region of interest of n voxels (pixels)

e Ax represents measurements of the integral along lines through the region
n
(Ax); = D Aijx;
Jj=1

A;; is the length of the intersection of the line in measurement i with voxel j

X1 | X2
X6 line for measurement ;
./'//
/
./'J/
@A//
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Tomographic reconstruction

minimize  ||Ax — y||* + A(||Dvx||* + || Dpx||%)

D, and Dy, are defined as in image deblurring example on page 10.23

3=l
4 =i
5 = |]I

Example

e left: 4000 lines (100 points, 40 lines per point)
e right: object placed in the square region at the center of the picture on the left
e region of interest is divided in 10000 pixels
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Regularized least squares reconstruction

A=1072 A=10"1 1=1
=W 3=l 3=
R | B || B ||
s=M s=HI s =i

=5 A=10 A =100
i=ll 3=l 3=
G4 || R || N |
=W = =
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