10. Multi-objective least squares

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion
Multi-objective least squares

we have several objectives

\[J_1 = \|A_1x - b_1\|^2, \ldots, J_k = \|A_kx - b_k\|^2 \]

- \(A_i \) is an \(m_i \times n \) matrix, \(b_i \) is an \(m_i \)-vector
- we seek one \(x \) that makes all \(k \) objectives small
- usually there is a trade-off: no single \(x \) minimizes all objectives simultaneously

Weighted least squares formulation: find \(x \) that minimizes

\[\lambda_1 \|A_1x - b_1\|^2 + \cdots + \lambda_k \|A_kx - b_k\|^2 \]

- coefficients \(\lambda_1, \ldots, \lambda_k \) are positive weights
- weights \(\lambda_i \) express relative importance of different objectives
- without loss of generality, we can choose \(\lambda_1 = 1 \)
Solution of weighted least squares

- weighted least squares is equivalent to a standard least squares problem

\[\minimize \left\| \begin{bmatrix} \sqrt{\lambda_1} A_1 \\ \sqrt{\lambda_2} A_2 \\ \vdots \\ \sqrt{\lambda_k} A_k \end{bmatrix} x - \begin{bmatrix} \sqrt{\lambda_1} b_1 \\ \sqrt{\lambda_2} b_2 \\ \vdots \\ \sqrt{\lambda_k} b_k \end{bmatrix} \right\|^2 \]

- solution is unique if the *stacked matrix* has linearly independent columns
- each matrix \(A_i \) may have linearly dependent columns (or be a wide matrix)
- if the stacked matrix has linearly independent columns, the solution is

\[\hat{x} = \left(\lambda_1 A_1^T A_1 + \cdots + \lambda_k A_k^T A_k \right)^{-1} \left(\lambda_1 A_1^T b_1 + \cdots + \lambda_k A_k^T b_k \right) \]
Example with two objectives

minimize \[\|A_1x - b_1\|^2 + \lambda \|A_2x - b_2\|^2 \]

\(A_1\) and \(A_2\) are 10 \(\times\) 5

plot shows weighted least squares solution \(\hat{x}(\lambda)\) as function of weight \(\lambda\)
Example with two objectives

\[
\text{minimize } \|A_1x - b_1\|^2 + \lambda \|A_2x - b_2\|^2
\]

- left figure shows $J_1(\lambda) = \|A_1\hat{x}(\lambda) - b_1\|^2$ and $J_2(\lambda) = \|A_2\hat{x}(\lambda) - b_2\|^2$
- right figure shows optimal trade-off curve of $J_2(\lambda)$ versus $J_1(\lambda)$
Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion
Motivation

• consider linear-in-parameters model

\[\hat{f}(x) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x) \]

we assume \(f_1(x) \) is the constant function 1

• we fit the model \(\hat{f}(x) \) to examples \((x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})\)

• large coefficient \(\theta_i \) makes model more sensitive to changes in \(f_i(x) \)

• keeping \(\theta_2, \ldots, \theta_p \) small helps avoid over-fitting

• this leads to two objectives:

\[
J_1(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2, \quad J_2(\theta) = \sum_{j=2}^{p} \theta_j^2
\]

primary objective \(J_1(\theta) \) is sum of squares of prediction errors
Weighted least squares formulation

\[
\text{minimize} \quad J_1(\theta) + \lambda J_2(\theta) = \sum_{k=1}^{N} (\hat{f}(x^{(k)}) - y^{(k)})^2 + \lambda \sum_{j=2}^{p} \theta_j^2
\]

1. \(\lambda \) is positive regularization parameter
2. equivalent to least squares problem: minimize

\[
\left\| \begin{bmatrix} A_1 \\ \sqrt{\lambda} A_2 \end{bmatrix} \theta - \begin{bmatrix} y^d \\ 0 \end{bmatrix} \right\|^2
\]

with \(y^d = (y^{(1)}, \ldots, y^{(N)}) \),

\[
A_1 = \begin{bmatrix}
1 & f_2(x^{(1)}) & \cdots & f_p(x^{(1)}) \\
1 & f_2(x^{(2)}) & \cdots & f_p(x^{(2)}) \\
\vdots & \vdots & \ddots & \vdots \\
1 & f_2(x^{(N)}) & \cdots & f_p(x^{(N)})
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\]

1. stacked matrix has linearly independent columns (for positive \(\lambda \))
2. value of \(\lambda \) can be chosen by out-of-sample validation or cross-validation
Example

- solid line is signal used to generate synthetic (simulated) data
- 10 blue points are used as training set; 20 red points are used as test set
- we fit a model with five parameters $\theta_1, \ldots, \theta_5$:

$$\hat{f}(x) = \theta_1 + \sum_{k=1}^{4} \theta_{k+1} \sin(\omega_k x + \phi_k) \quad \text{(with given } \omega_k, \phi_k)$$
• minimum test RMS error is for λ around 0.08
• increasing λ “shrinks” the coefficients $\theta_2, \ldots, \theta_5$
• dashed lines show coefficients used to generate the data
• for λ near 0.08, estimated coefficients are close to these “true” values
Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion
Control

\[y = Ax + b \]

- \(x \) is \(n \)-vector of actions or inputs
- \(y \) is \(m \)-vector of results or outputs
- relation between inputs and outputs is a known affine function

the goal is to choose inputs \(x \) to optimize different objectives on \(x \) and \(y \)
Optimal input design

Linear dynamical system

\[y(t) = h_0 u(t) + h_1 u(t - 1) + h_2 u(t - 2) + \cdots + h_t u(0) \]

- output \(y(t) \) and input \(u(t) \) are scalar
- we assume input \(u(t) \) is zero for \(t < 0 \)
- coefficients \(h_0, h_1, \ldots \) are the impulse response coefficients
- output is convolution of input with impulse response

Optimal input design

- optimization variable is the input sequence \(x = (u(0), u(1), \ldots, u(N)) \)
- goal is to track a desired output using a small and slowly varying input
Input design objectives

minimize \(J_t(x) + \lambda_v J_v(x) + \lambda_m J_m(x) \)

- primary objective: track desired output \(y_{\text{des}} \) over an interval \([0, N]\):
 \[
 J_t(x) = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2
 \]

- secondary objectives: use a small and slowly varying input signal:
 \[
 J_m(x) = \sum_{t=0}^{N} u(t)^2, \quad J_v(x) = \sum_{t=0}^{N-1} (u(t + 1) - u(t))^2
 \]
Tracking error

\[J_t(x) = \sum_{t=0}^{N} (y(t) - y_{\text{des}}(t))^2 = \|A_t x - b_t\|^2 \]

with

\[A_t = \begin{bmatrix}
 h_0 & 0 & 0 & \cdots & 0 & 0 \\
 h_1 & h_0 & 0 & \cdots & 0 & 0 \\
 h_2 & h_1 & h_0 & \cdots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 & 0 \\
 h_N & h_{N-1} & h_{N-2} & \cdots & h_1 & h_0
\end{bmatrix} \]

\[b_t = \begin{bmatrix}
 y_{\text{des}}(0) \\
 y_{\text{des}}(1) \\
 y_{\text{des}}(2) \\
 \vdots \\
 y_{\text{des}}(N - 1) \\
 y_{\text{des}}(N)
\end{bmatrix} \]
Input variation and magnitude

Input variation

\[
J_v(x) = \sum_{t=0}^{N-1} (u(t + 1) - u(t))^2 = \|Dx\|^2
\]

with \(D \) the \(N \times (N + 1) \) matrix

\[
D = \begin{bmatrix}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{bmatrix}
\]

Input magnitude

\[
J_m(x) = \sum_{t=0}^{N} u(t)^2 = \|x\|^2
\]
\(\lambda_v = 0 \), small \(\lambda_m \)

larger \(\lambda_v \) larger \(\lambda_m \)
Outline

- multi-objective least squares
- regularized data fitting
- control
- estimation and inversion
Estimation

Linear measurement model

\[y = A x_{\text{ex}} + v \]

- \(n \)-vector \(x_{\text{ex}} \) contains parameters that we want to estimate
- \(m \)-vector \(v \) is unknown measurement error or noise
- \(m \)-vector \(y \) contains measurements
- \(m \times n \) matrix \(A \) relates measurements and parameters

Least squares estimate: use as estimate of \(x_{\text{ex}} \) the solution \(\hat{x} \) of

\[\text{minimize} \quad \| A x - y \|^2 \]
Regularized estimation

add other terms to $\|Ax - y\|^2$ to include information about parameters

Example: Tikhonov regularization

$$\text{minimize} \quad \|Ax - y\|^2 + \lambda\|x\|^2$$

- goal is to make $\|Ax - y\|$ small with small x
- equivalent to solving
 $$(A^TA + \lambda I)x = A^Ty$$
- solution is unique (if $\lambda > 0$) even when A has linearly dependent columns
Signal denoising

- observed signal y is n-vector

 \[y = x_{ex} + v \]

- x_{ex} is unknown signal

- v is noise

Least squares denoising: find estimate \hat{x} by solving

\[
\text{minimize} \quad ||x - y||^2 + \lambda \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2
\]

goal is to find slowly varying signal \hat{x}, close to observed signal y
Matrix formulation

\[
\text{minimize } \left\| \begin{bmatrix} I \\ \sqrt{\lambda}D \end{bmatrix} x - \begin{bmatrix} y \\ 0 \end{bmatrix} \right\|^2
\]

- \(D \) is \((n - 1) \times n\) finite difference matrix

\[
D = \begin{bmatrix}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1 \\
\end{bmatrix}
\]

- equivalent to linear equation

\[
(I + \lambda D^T D)x = y
\]
Trade-off

the two objectives $||\hat{x}(\lambda) - y||$ and $||D\hat{x}(\lambda)||$ for varying λ
Three solutions

\[
\hat{x}(\lambda) \rightarrow y \text{ for } \lambda \rightarrow 0
\]

\[
\hat{x}(\lambda) \rightarrow \text{avg}(y) \mathbf{1} \text{ for } \lambda \rightarrow \infty
\]

\[
\lambda \approx 10^2 \text{ is good compromise}
\]
Image deblurring

\[y = A x_{\text{ex}} + v \]

- \(x_{\text{ex}} \) is unknown image, \(y \) is observed image
- \(A \) is (known) blurring matrix, \(v \) is (unknown) noise
- images are \(M \times N \), stored as \(MN \)-vectors

blurred, noisy image \(y \)
deburred image \(\hat{x} \)
Least squares deblurring

\[
\text{minimize } \|Ax - y\|^2 + \lambda (\|Dv x\|^2 + \|D_h x\|^2)
\]

- 1st term is "data fidelity" term: ensures \(A\hat{x} \approx y \)
- 2nd term penalizes differences between values at neighboring pixels

\[
\|D_h x\|^2 + \|D_v x\|^2 = \sum_{i=1}^{M} \sum_{j=1}^{N-1} (X_{i,j+1} - X_{ij})^2 + \sum_{i=1}^{M-1} \sum_{j=1}^{N} (X_{i+1,j} - X_{ij})^2
\]

if \(X \) is the \(M \times N \) image stored in the \(MN \)-vector \(x \)
Differencing operations in matrix notation

suppose x is the $M \times N$ image X, stored column-wise as MN-vector

$$x = (X_{1:M,1}, X_{1:M,2}, \ldots, X_{1:M,N})$$

- horizontal differencing: $(N - 1) \times N$ block matrix with $M \times M$ blocks

$$D_h = \begin{bmatrix}
-I & I & 0 & \cdots & 0 & 0 & 0 \\
0 & -I & I & \cdots & 0 & 0 & 0 \\
0 & 0 & -I & I & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & -I & I
\end{bmatrix}$$

- vertical differencing: $N \times N$ block matrix with $(M - 1) \times M$ blocks

$$D_v = \begin{bmatrix}
D & 0 & \cdots & 0 \\
0 & D & \cdots & 0 \\
0 & 0 & \cdots & D
\end{bmatrix}, \quad D = \begin{bmatrix}
-1 & 1 & 0 & \cdots & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & -1 & 1
\end{bmatrix}$$
Deblurred images

\(\lambda = 10^{-6} \)

\(\lambda = 10^{-4} \)

\(\lambda = 10^{-2} \)

\(\lambda = 1 \)
Tomography

\[y = A x_{ex} + \nu \]

- \(x_{ex} \) represents values of some quantity in a region of interest of \(n \) voxels (pixels)
- \(Ax \) represents measurements of the integral along lines through the region

\[(Ax)_i = \sum_{j=1}^{n} A_{ij} x_j \]

\(A_{ij} \) is the length of the intersection of the line in measurement \(i \) with voxel \(j \)

![Diagram showing intersection of lines with voxels]
Tomographic reconstruction

minimize $\|Ax - y\|^2 + \lambda (\|D_v x\|^2 + \|D_h x\|^2)$

D_v and D_h are defined as in image deblurring example on page 10.23

Example

- left: 4000 lines (100 points, 40 lines per point)
- right: object placed in the square region at the center of the picture on the left
- region of interest is divided in 10000 pixels
Regularized least squares reconstruction

\[\lambda = 10^{-2} \]

\[\lambda = 10^{-1} \]

\[\lambda = 1 \]

\[\lambda = 5 \]

\[\lambda = 10 \]

\[\lambda = 100 \]