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10. Multi-objective least squares

• multi-objective least squares

• regularized data fitting

• control

• estimation and inversion
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Multi-objective least squares

we have several objectives

𝐽1 = ∥𝐴1𝑥 − 𝑏1∥2, . . . , 𝐽𝑘 = ∥𝐴𝑘𝑥 − 𝑏𝑘 ∥2

• 𝐴𝑖 is an 𝑚𝑖 × 𝑛 matrix, 𝑏𝑖 is an 𝑚𝑖-vector

• we seek one 𝑥 that makes all 𝑘 objectives small

• usually there is a trade-off: no single 𝑥 minimizes all objectives simultaneously

Weighted least squares formulation: find 𝑥 that minimizes

𝜆1∥𝐴1𝑥 − 𝑏1∥2 + · · · + 𝜆𝑘 ∥𝐴𝑘𝑥 − 𝑏𝑘 ∥2

• coefficients 𝜆1, . . . , 𝜆𝑘 are positive weights

• weights 𝜆𝑖 express relative importance of different objectives

• without loss of generality, we can choose 𝜆1 = 1
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Solution of weighted least squares

• weighted least squares is equivalent to a standard least squares problem

minimize











√
𝜆1𝐴1√
𝜆2𝐴2
...√

𝜆𝑘𝐴𝑘

 𝑥 −

√
𝜆1𝑏1√
𝜆2𝑏2
...√

𝜆𝑘𝑏𝑘


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• solution is unique if the stacked matrix has linearly independent columns

• each matrix 𝐴𝑖 may have linearly dependent columns (or be a wide matrix)

• it the stacked matrix has linearly independent columns, the solution is

𝑥 =
(
𝜆1𝐴

𝑇
1 𝐴1 + · · · + 𝜆𝑘𝐴

𝑇
𝑘 𝐴𝑘

)−1 (
𝜆1𝐴

𝑇
1𝑏1 + · · · + 𝜆𝑘𝐴

𝑇
𝑘 𝑏𝑘

)
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Example with two objectives

minimize ∥𝐴1𝑥 − 𝑏1∥2 + 𝜆∥𝐴2𝑥 − 𝑏2∥2

𝐴1 and 𝐴2 are 10 × 5
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plot shows weighted least squares solution 𝑥(𝜆) as function of weight 𝜆
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Example with two objectives

minimize ∥𝐴1𝑥 − 𝑏1∥2 + 𝜆∥𝐴2𝑥 − 𝑏2∥2
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• left figure shows 𝐽1(𝜆) = ∥𝐴1𝑥(𝜆) − 𝑏1∥2 and 𝐽2(𝜆) = ∥𝐴2𝑥(𝜆) − 𝑏2∥2

• right figure shows optimal trade-off curve of 𝐽2(𝜆) versus 𝐽1(𝜆)
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Motivation

• consider linear-in-parameters model

𝑓 (𝑥) = 𝜃1 𝑓1(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)

we assume 𝑓1(𝑥) is the constant function 1

• we fit the model 𝑓 (𝑥) to examples (𝑥 (1), 𝑦(1)), . . . , (𝑥 (𝑁), 𝑦(𝑁))
• large coefficient 𝜃𝑖 makes model more sensitive to changes in 𝑓𝑖 (𝑥)
• keeping 𝜃2, . . . , 𝜃𝑝 small helps avoid over-fitting

• this leads to two objectives:

𝐽1(𝜃) =
𝑁∑︁
𝑘=1

( 𝑓 (𝑥 (𝑘)) − 𝑦(𝑘))2, 𝐽2(𝜃) =
𝑝∑︁
𝑗=2

𝜃2
𝑗

primary objective 𝐽1(𝜃) is sum of squares of prediction errors
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Weighted least squares formulation

minimize 𝐽1(𝜃) + 𝜆𝐽2(𝜃) =
𝑁∑︁
𝑘=1

( 𝑓 (𝑥 (𝑘)) − 𝑦(𝑘))2 + 𝜆
𝑝∑︁
𝑗=2

𝜃2
𝑗

• 𝜆 is positive regularization parameter

• equivalent to least squares problem: minimize



[ 𝐴1√
𝜆𝐴2

]
𝜃 −

[
𝑦d

0

]
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with 𝑦d = (𝑦(1), . . . , 𝑦(𝑁)),

𝐴1 =


1 𝑓2(𝑥 (1)) · · · 𝑓𝑝 (𝑥 (1))
1 𝑓2(𝑥 (2)) · · · 𝑓𝑝 (𝑥 (2))
... ... ...

1 𝑓2(𝑥 (𝑁)) · · · 𝑓𝑝 (𝑥 (𝑁))

 , 𝐴2 =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1


• stacked matrix has linearly independent columns (for positive 𝜆)

• value of 𝜆 can be chosen by out-of-sample validation or cross-validation
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Example
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• solid line is signal used to generate synthetic (simulated) data

• 10 blue points are used as training set; 20 red points are used as test set

• we fit a model with five parameters 𝜃1, . . . , 𝜃5:

𝑓 (𝑥) = 𝜃1 +
4∑︁

𝑘=1
𝜃𝑘+1 sin(𝜔𝑘𝑥 + 𝜙𝑘) (with given 𝜔𝑘 , 𝜙𝑘)
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Result of regularized least squares fit
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• minimum test RMS error is for 𝜆 around 0.08

• increasing 𝜆 “shrinks” the coefficients 𝜃2, . . . , 𝜃5

• dashed lines show coefficients used to generate the data

• for 𝜆 near 0.08, estimated coefficients are close to these “true” values
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Control

𝑦 = 𝐴𝑥 + 𝑏

• 𝑥 is 𝑛-vector of actions or inputs

• 𝑦 is 𝑚-vector of results or outputs

• relation between inputs and outputs is a known affine function

the goal is to choose inputs 𝑥 to optimize different objectives on 𝑥 and 𝑦
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Optimal input design

Linear dynamical system

𝑦(𝑡) = ℎ0𝑢(𝑡) + ℎ1𝑢(𝑡 − 1) + ℎ2𝑢(𝑡 − 2) + · · · + ℎ𝑡𝑢(0)

• output 𝑦(𝑡) and input 𝑢(𝑡) are scalar

• we assume input 𝑢(𝑡) is zero for 𝑡 < 0

• coefficients ℎ0, ℎ1, . . . are the impulse response coefficients

• output is convolution of input with impulse response

Optimal input design

• optimization variable is the input sequence 𝑥 = (𝑢(0), 𝑢(1), . . . , 𝑢(𝑁))
• goal is to track a desired output using a small and slowly varying input
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Input design objectives

minimize 𝐽t(𝑥) + 𝜆v𝐽v(𝑥) + 𝜆m𝐽m(𝑥)

• primary objective: track desired output 𝑦des over an interval [0, 𝑁]:

𝐽t(𝑥) =
𝑁∑︁
𝑡=0

(𝑦(𝑡) − 𝑦des(𝑡))2

• secondary objectives: use a small and slowly varying input signal:

𝐽m(𝑥) =
𝑁∑︁
𝑡=0

𝑢(𝑡)2, 𝐽v(𝑥) =
𝑁−1∑︁
𝑡=0

(𝑢(𝑡 + 1) − 𝑢(𝑡))2
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Tracking error

𝐽t(𝑥) =
𝑁∑︁
𝑡=0

(𝑦(𝑡) − 𝑦des(𝑡))2

= ∥𝐴t𝑥 − 𝑏t∥2

with

𝐴t =



ℎ0 0 0 · · · 0 0
ℎ1 ℎ0 0 · · · 0 0
ℎ2 ℎ1 ℎ0 · · · 0 0
... ... ... . . . ... ...

ℎ𝑁−1 ℎ𝑁−2 ℎ𝑁−3 · · · ℎ0 0
ℎ𝑁 ℎ𝑁−1 ℎ𝑁−2 · · · ℎ1 ℎ0


, 𝑏t =



𝑦des(0)
𝑦des(1)
𝑦des(2)

...
𝑦des(𝑁 − 1)
𝑦des(𝑁)


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Input variation and magnitude

Input variation

𝐽v(𝑥) =
𝑁−1∑︁
𝑡=0

(𝑢(𝑡 + 1) − 𝑢(𝑡))2 = ∥𝐷𝑥∥2

with 𝐷 the 𝑁 × (𝑁 + 1) matrix

𝐷 =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


Input magnitude

𝐽m(𝑥) =
𝑁∑︁
𝑡=0

𝑢(𝑡)2 = ∥𝑥∥2
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Example

𝜆v = 0,
small 𝜆m
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Estimation

Linear measurement model
𝑦 = 𝐴𝑥ex + 𝑣

• 𝑛-vector 𝑥ex contains parameters that we want to estimate

• 𝑚-vector 𝑣 is unknown measurement error or noise

• 𝑚-vector 𝑦 contains measurements

• 𝑚 × 𝑛 matrix 𝐴 relates measurements and parameters

Least squares estimate: use as estimate of 𝑥ex the solution 𝑥 of

minimize ∥𝐴𝑥 − 𝑦∥2
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Regularized estimation

add other terms to ∥𝐴𝑥 − 𝑦∥2 to include information about parameters

Example: Tikhonov regularization

minimize ∥𝐴𝑥 − 𝑦∥2 + 𝜆∥𝑥∥2

• goal is to make ∥𝐴𝑥 − 𝑦∥ small with small 𝑥

• equivalent to solving
(𝐴𝑇𝐴 + 𝜆𝐼)𝑥 = 𝐴𝑇 𝑦

• solution is unique (if 𝜆 > 0) even when 𝐴 has linearly dependent columns
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Signal denoising

• observed signal 𝑦 is 𝑛-vector

𝑦 = 𝑥ex + 𝑣

• 𝑥ex is unknown signal

• 𝑣 is noise

0 500 1000

0.5

1

1.5

:
H
:

Least squares denoising: find estimate 𝑥 by solving

minimize ∥𝑥 − 𝑦∥2 + 𝜆
𝑛−1∑︁
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)2

goal is to find slowly varying signal 𝑥, close to observed signal 𝑦
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Matrix formulation

minimize




[ 𝐼√

𝜆𝐷

]
𝑥 −

[
𝑦
0

]
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• 𝐷 is (𝑛 − 1) × 𝑛 finite difference matrix

𝐷 =


−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1


• equivalent to linear equation

(𝐼 + 𝜆𝐷𝑇𝐷)𝑥 = 𝑦
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Trade-off

the two objectives ∥𝑥(𝜆) − 𝑦∥ and ∥𝐷𝑥(𝜆)∥ for varying 𝜆
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Three solutions
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• 𝑥(𝜆) → 𝑦 for 𝜆 → 0

• 𝑥(𝜆) → avg(𝑦)1 for 𝜆 → ∞
• 𝜆 ≈ 102 is good compromise
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Image deblurring

𝑦 = 𝐴𝑥ex + 𝑣

• 𝑥ex is unknown image, 𝑦 is observed image

• 𝐴 is (known) blurring matrix, 𝑣 is (unknown) noise

• images are 𝑀 × 𝑁 , stored as 𝑀𝑁-vectors

blurred, noisy image 𝑦 deblurred image 𝑥
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Least squares deblurring

minimize ∥𝐴𝑥 − 𝑦∥2 + 𝜆(∥𝐷v𝑥∥2 + ∥𝐷h𝑥∥2)

• 1st term is “data fidelity” term: ensures 𝐴𝑥 ≈ 𝑦

• 2nd term penalizes differences between values at neighboring pixels

∥𝐷h𝑥∥2 + ∥𝐷v𝑥∥2 =
𝑀∑︁
𝑖=1

𝑁−1∑︁
𝑗=1

(𝑋𝑖, 𝑗+1 − 𝑋𝑖 𝑗)2 +
𝑀−1∑︁
𝑖=1

𝑁∑︁
𝑗=1

(𝑋𝑖+1, 𝑗 − 𝑋𝑖 𝑗)2

if 𝑋 is the 𝑀 × 𝑁 image stored in the 𝑀𝑁-vector 𝑥
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Differencing operations in matrix notation

suppose 𝑥 is the 𝑀 × 𝑁 image 𝑋 , stored column-wise as 𝑀𝑁-vector

𝑥 =
(
𝑋1:𝑀,1, 𝑋1:𝑀,2, . . . , 𝑋1:𝑀,𝑁

)
• horizontal differencing: (𝑁 − 1) × 𝑁 block matrix with 𝑀 × 𝑀 blocks

𝐷h =


−𝐼 𝐼 0 · · · 0 0 0
0 −𝐼 𝐼 · · · 0 0 0
... ... ... ... ... ...
0 0 0 · · · 0 −𝐼 𝐼


• vertical differencing: 𝑁 × 𝑁 block matrix with (𝑀 − 1) × 𝑀 blocks

𝐷v =


𝐷 0 · · · 0
0 𝐷 · · · 0
... ... . . . ...
0 0 · · · 𝐷

 , 𝐷 =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
... ... ... ... ...
0 0 0 · · · −1 1


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Deblurred images
𝜆 = 10−6 𝜆 = 10−4

𝜆 = 10−2 𝜆 = 1
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Tomography

𝑦 = 𝐴𝑥ex + 𝑣

• 𝑥ex represents values of some quantity in a region of interest of 𝑛 voxels (pixels)

• 𝐴𝑥 represents measurements of the integral along lines through the region

(𝐴𝑥)𝑖 =
𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥 𝑗

𝐴𝑖 𝑗 is the length of the intersection of the line in measurement 𝑖 with voxel 𝑗

line for measurement i

x1 x2

x6
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Tomographic reconstruction

minimize ∥𝐴𝑥 − 𝑦∥2 + 𝜆(∥𝐷v𝑥∥2 + ∥𝐷h𝑥∥2)

𝐷v and 𝐷h are defined as in image deblurring example on page 10.23

Example

• left: 4000 lines (100 points, 40 lines per point)

• right: object placed in the square region at the center of the picture on the left

• region of interest is divided in 10000 pixels
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Regularized least squares reconstruction

𝜆 = 10−2 𝜆 = 10−1 𝜆 = 1

𝜆 = 5 𝜆 = 10 𝜆 = 100
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