14. Nonlinear equations

- Newton method for nonlinear equations
- Damped Newton method for unconstrained minimization
- Newton method for nonlinear least squares
Set of nonlinear equations

n nonlinear equations in n variables x_1, x_2, \ldots, x_n:

\[
\begin{align*}
 f_1(x_1, \ldots, x_n) & = 0 \\
 f_2(x_1, \ldots, x_n) & = 0 \\
 \vdots \\
 f_n(x_1, \ldots, x_n) & = 0
\end{align*}
\]

in vector notation: $f(x) = 0$ with

\[
x = \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}, \quad f(x) = \begin{bmatrix}
 f_1(x_1, \ldots, x_n) \\
 f_2(x_1, \ldots, x_n) \\
 \vdots \\
 f_n(x_1, \ldots, x_n)
\end{bmatrix}
\]
Example: nonlinear resistive circuit

\[g(x) - \frac{E - x}{R} = 0 \]

a nonlinear equation in the variable \(x \), with three solutions
Newton method

assume $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is differentiable

Algorithm: choose $x^{(1)}$ and repeat for $k = 1, 2, \ldots$

$$x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1} f(x^{(k)})$$

- $Df(x^{(k)})$ is the derivative matrix of f at $x^{(k)}$ (see page 3.40)
- each iteration requires one evaluation of $f(x)$ and $Df(x)$
- each iteration requires factorization of the $n \times n$ matrix $Df(x)$
- we assume $Df(x)$ is nonsingular
Interpretation

\[x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)}) \]

- linearize \(f \) (i.e., make affine approximation) around current iterate \(x^{(k)} \)

\[\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)}) \]

- solve the linearized equation \(\hat{f}(x; x^{(k)}) = 0 \); the solution is

\[x = x^{(k)} - Df(x^{(k)})^{-1}f(x^{(k)}) \]

- take the solution \(x \) of the linearized equation as the next iterate \(x^{(k+1)} \)
One variable

\[\hat{f}(x; x^{(k)}) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) \]

- affine approximation of \(f \) around \(x^{(k)} \) is

\[\hat{f}(x; x^{(k)}) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) \]

- solve the linearized equation \(\hat{f}(x; x^{(k)}) = 0 \) and take the solution as \(x^{(k+1)} \):

\[x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})} \]
Relation to Gauss–Newton method

recall Gauss–Newton method for nonlinear least squares problem

\[
\text{minimize} \quad \| f(x) \|^2
\]

where \(f \) is a differentiable function from \(\mathbb{R}^n \) to \(\mathbb{R}^m \)

- Gauss–Newton update

\[
x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) \right)^{-1} Df(x^{(k)})^T f(x^{(k)})
\]

- if \(m = n \), then \(Df(x) \) is square and this is the Newton update

\[
x^{(k+1)} = x^{(k)} - Df(x^{(k)})^{-1} f(x^{(k)})
\]
Example 1

Newton method applied to

\[f(x) = e^x - e^{-x}, \quad x^{(1)} = 10 \]
Example 2

\[f(x) = e^x - e^{-x} - 3x \]

- starting point \(x^{(1)} = -1 \): converges to \(x^* = -1.62 \)
- starting point \(x^{(1)} = -0.8 \): converges to \(x^* = 1.62 \)
- starting point \(x^{(1)} = -0.7 \): converges to \(x^* = 0 \)
Example 3

\[f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \]

- starting point \(x^{(1)} = 0.9 \): converges very rapidly to \(x^* = 0 \)
- starting point \(x^{(1)} = 1.1 \): does not converge
Example 4

\[f_1(x_1, x_2) = \log(x_1^2 + 2x_2^2 + 1) - 0.5 = 0 \]
\[f_2(x_1, x_2) = x_2 - x_1^2 + 0.2 = 0 \]

two equations in two variables; two solutions \((0.70, 0.29), (-0.70, 0.29)\)
Example 4

Newton iteration

• evaluate \(g = f(x) \) and

\[
H = Df(x) = \begin{bmatrix}
2x_1/(x_1^2 + 2x_2^2 + 1) & 4x_2/(x_1^2 + 2x_2^2 + 1) \\
-2x_1 & 1
\end{bmatrix}
\]

• solve \(Hv = -g \) (two linear equations in two variables)

• update \(x := x + v \)

Results

• \(x^{(1)} = (1, 1) \): converges to \(x^* = (0.70, 0.29) \) in about 4 iterations

• \(x^{(1)} = (-1, 1) \): converges to \(x^* = (-0.70, 0.29) \) in about 4 iterations

• \(x^{(1)} = (1, -1) \) or \(x^{(0)} = (-1, -1) \): does not converge
Observations

- Newton’s method works very well if started near a solution
- may not work otherwise
- can converge to different solutions depending on the starting point
- does not necessarily find the solution closest to the starting point
Convergence of Newton’s method

if $f(x^*) = 0$ and $Df(x^*)$ is nonsingular, and $x^{(1)}$ is sufficiently close to x^*, then

$$x^{(k)} \to x^*, \quad \|x^{(k+1)} - x^*\| \leq c \|x^{(k)} - x^*\|^2$$

for some $c > 0$

- this is called quadratic convergence
- explains fast convergence when started near solution
Outline

- Newton’s method for sets of nonlinear equations
- damped Newton for unconstrained minimization
- Newton method for nonlinear least squares
Unconstrained minimization problem

\[
\text{minimize } g(x_1, x_2, \ldots, x_n)
\]

\(g\) is a function from \(\mathbb{R}^n\) to \(\mathbb{R}\)

- \(x = (x_1, x_2, \ldots, x_n)\) is an \(n\)-vector of optimization \textit{variables}
- \(g(x)\) is the \textit{cost function} or \textit{objective function}
- to solve a maximization problem (i.e., maximize \(g(x)\)), minimize \(-g(x)\)
- we will assume that \(g\) is twice differentiable
Local and global optimum

• x^* is an optimal point (or a minimum) if

$$g(x^*) \leq g(x) \quad \text{for all } x$$

also called globally optimal

• x^* is a locally optimal point (local minimum) if for some $R > 0$

$$g(x^*) \leq g(x) \quad \text{for all } x \text{ with } \|x - x^*\| \leq R$$

Example

y is locally optimal

z is (globally) optimal
Gradient

Gradient: the gradient of $g : \mathbb{R}^n \to \mathbb{R}$ at $z \in \mathbb{R}^n$ is the n-vector

$$\nabla g(z) = \left(\frac{\partial g}{\partial x_1}(z), \frac{\partial g}{\partial x_2}(z), \ldots, \frac{\partial g}{\partial x_n}(z) \right)$$

Directional derivative

- for given z and nonzero v, define $h(t) = g(z + tv)$

- derivative of h at $t = 0$

$$h'(0) = \frac{\partial g}{\partial x_1}(z) v_1 + \frac{\partial g}{\partial x_2}(z) v_2 + \cdots + \frac{\partial g}{\partial x_n}(z) v_n$$

$$= \nabla g(z)^T v$$

- this is called the *directional derivative* of g (at z, in the direction v)

- v is a *descent direction* of g at z if $\nabla g(z)^T v < 0$
Hessian

Hessian of g at z: a symmetric $n \times n$ matrix $\nabla^2 g(z)$ with elements

$$\nabla^2 g(z)_{ij} = \frac{\partial^2 g}{\partial x_i \partial x_j}(z)$$

this is also the derivative matrix $Df(z)$ of $f(x) = \nabla g(x)$ at z

Quadratic (second order) approximation of g around z:

$$g_q(x) = g(z) + \nabla g(z)^T (x - z) + \frac{1}{2} (x - z)^T \nabla^2 g(z) (x - z)$$

for $n = 1$ this reduces to

$$g_q(x) = g(z) + g'(z)(x - z) + \frac{1}{2}g''(z)(x - z)^2$$
Examples

Affine function: \(g(x) = a^T x + b \)

\[\nabla g(x) = a, \quad \nabla^2 g(x) = 0 \]

Quadratic function: \(g(x) = x^T P x + q^T x + r \) with \(P \) symmetric

\[\nabla g(x) = 2P x + q, \quad \nabla^2 g(x) = 2P \]

Least squares cost: \(g(x) = \|Ax - b\|^2 = x^T A^T A x - 2b^T A x + b^T b \)

\[\nabla g(x) = 2A^T A x - 2A^T b, \quad \nabla^2 g(x) = 2A^T A \]
Properties

Linear combination: if $g(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x)$, then

\[
\nabla g(x) = \alpha_1 \nabla g_1(x) + \alpha_2 \nabla g_2(x)
\]

\[
\nabla^2 g(x) = \alpha_1 \nabla^2 g_1(x) + \alpha_2 \nabla^2 g_2(x)
\]

Composition with affine mapping: if $g(x) = h(Cx + d)$, then

\[
\nabla g(x) = C^T \nabla h(Cx + d)
\]

\[
\nabla^2 g(x) = C^T \nabla^2 h(Cx + d)C
\]
Example

\[g(x_1, x_2) = e^{x_1+x_2-1} + e^{x_1-x_2-1} + e^{-x_1-1} \]

Gradient

\[\nabla g(x) = \begin{bmatrix} e^{x_1+x_2-1} + e^{x_1-x_2-1} - e^{-x_1-1} \\ e^{x_1+x_2-1} - e^{x_1-x_2-1} \end{bmatrix} \]

Hessian

\[\nabla^2 g(x) = \begin{bmatrix} e^{x_1+x_2-1} + e^{x_1-x_2-1} + e^{-x_1-1} & e^{x_1+x_2-1} - e^{x_1-x_2-1} \\ e^{x_1+x_2-1} - e^{x_1-x_2-1} & e^{x_1+x_2-1} + e^{x_1-x_2-1} \end{bmatrix} \]
Gradient and Hessian via composition property

express \(g \) as \(g(x) = h(Cx + d) \) with \(h(y_1, y_2, y_3) = e^{y_1} + e^{y_2} + e^{y_3} \) and

\[
C = \begin{bmatrix}
1 & 1 \\
1 & -1 \\
-1 & 0
\end{bmatrix}, \quad d = \begin{bmatrix}
-1 \\
-1 \\
-1
\end{bmatrix}
\]

Gradient: \(\nabla g(x) = C^T \nabla h(Cx + d) \)

\[
\nabla g(x) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} \\ e^{x_1 - x_2 - 1} \\ e^{-x_1 - 1} \end{bmatrix}
\]

Hessian: \(\nabla^2 g(x) = C^T \nabla^2 h(Cx + d) C \)

\[
\nabla^2 g(x) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1 + x_2 - 1} & 0 & 0 \\ 0 & e^{x_1 - x_2 - 1} & 0 \\ 0 & 0 & e^{-x_1 - 1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & -1 \\ -1 & 0 \end{bmatrix}
\]
Optimality conditions for twice differentiable g

Necessary condition: if x^* is locally optimal, then

$$\nabla g(x^*) = 0 \quad \text{and} \quad \nabla^2 g(x^*) \text{ is positive semidefinite}$$

Sufficient condition: if x^* satisfies

$$\nabla g(x^*) = 0 \quad \text{and} \quad \nabla^2 g(x^*) \text{ is positive definite}$$

then x^* is locally optimal

Necessary and sufficient condition for convex functions

- g is called *convex* if $\nabla^2 g(x)$ is positive semidefinite everywhere
- if g is convex then x^* is optimal if and only if $\nabla g(x^*) = 0$
Examples \((n = 1)\)

- \(g(x) = \log(e^x + e^{-x})\)

 \[
 g'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad g''(x) = \frac{4}{(e^x + e^{-x})^2}
 \]

 \(g''(x) \geq 0\) everywhere; \(x^* = 0\) is the unique optimal point

- \(g(x) = x^4\)

 \[
 g'(x) = 4x^3, \quad g''(x) = 12x^2
 \]

 \(g''(x) \geq 0\) everywhere; \(x^* = 0\) is the unique optimal point

- \(g(x) = x^3\)

 \[
 g'(x) = 3x^2, \quad g''(x) = 6x
 \]

 \(g'(0) = 0, \ g''(0) = 0\) but \(x = 0\) is not locally optimal

Examples

- $g(x) = x^T P x + q^T x + r$ (P is symmetric positive definite)

 $$\nabla g(x) = 2Px + q, \quad \nabla^2 g(x) = 2P$$

 $\nabla^2 g(x)$ is positive definite everywhere, hence the unique optimal point is

 $$x^* = -(1/2)P^{-1}q$$

- $g(x) = \|Ax - b\|^2$ (A is a matrix with linearly independent columns)

 $$\nabla g(x) = 2A^T Ax - 2A^T b, \quad \nabla^2 g(x) = 2A^T A$$

 $\nabla^2 g(x)$ is positive definite everywhere, hence the unique optimal point is

 $$x^* = (A^T A)^{-1}A^T b$$
Examples

example of page 14.21: we can express $\nabla^2 g(x)$ as

$$\nabla^2 g(x) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} e^{x_1+x_2-1} & 0 & 0 \\ 0 & e^{x_1-x_2-1} & 0 \\ 0 & 0 & e^{-x_1-1} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$

this shows that $\nabla^2 g(x)$ is positive definite for all x

therefore x^* is optimal if and only if

$$\nabla g(x^*) = \begin{bmatrix} e^{x_1^*+x_2^*-1} + e^{x_1^*-x_2^*-1} - e^{-x_1-1} \\ e^{x_1^*+x_2^*-1} - e^{x_1^*-x_2^*-1} \end{bmatrix} = 0$$

two nonlinear equations in two variables
Newton’s method for minimizing a convex function

if $\nabla^2 g(x)$ is positive definite everywhere, we can minimize $g(x)$ by solving

$$\nabla g(x) = 0$$

Algorithm: choose $x^{(1)}$ and repeat for $k = 1, 2, \ldots$

$$x^{(k+1)} = x^{(k)} - \nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$$

- $v = -\nabla^2 g(x)^{-1} \nabla g(x)$ is called the *Newton step* at x
- converges if started sufficiently close to the solution
- Newton step is computed by a Cholesky factorization of the Hessian
- for $n = 1$, the iteration can be written as

$$x^{(k+1)} = x^{(k)} - \frac{g'(x^{(k)})}{g''(x^{(k)})}$$
Interpretations of Newton step

Affine approximation of gradient

- affine approximation of $f(x) = \nabla g(x)$ around $x^{(k)}$ is
 \[
 \hat{f}(x; x^{(k)}) = \nabla g(x^{(k)}) + \nabla^2 g(x^{(k)}) (x - x^{(k)})
 \]
- Newton update $x^{(k+1)}$ is solution of linear equation $\hat{f}(x; x^{(k)}) = 0$

Quadratic approximation of function

- quadratic approximation of $g(x)$ around $x^{(k)}$ is
 \[
 g_q(x; x^{(k)}) = g(x^{(k)}) + \nabla g(x^{(k)})^T (x - x^{(k)}) + \frac{1}{2} (x - x^{(k)})^T \nabla^2 g(x^{(k)}) (x - x^{(k)})
 \]
- Newton update $x^{(k+1)}$ satisfies $\nabla g_q(x; x^{(k)}) = 0$
Example \((n = 1)\)

\[g_q(x; x^{(k)}) = g(x) + g'(x^{(k)})(x - x^{(k)}) + \frac{g''(x^{(k)})}{2}(x - x^{(k)})^2 \]
Example

\[g(x) = \log(e^x + e^{-x}), \quad g'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad g''(x) = \frac{4}{(e^x + e^{-x})^2} \]

does not converge when started at \(x^{(1)} = 1.15 \)
Damped Newton method

Algorithm: choose $x^{(1)}$ and repeat for $k = 1, 2, \ldots$

1. compute Newton step $v = -\nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)})$

2. find largest t in $\{1, 0.5, 0.5^2, 0.5^3, \ldots\}$ that satisfies

$$g(x^{(k)} + tv) < g(x^{(k)})$$

and take $x^{(k+1)} = x^{(k)} + tv$

- positive scalar t is called the step size
- step 2 in algorithm is called line search
Interpretation of line search

to determine a suitable step size, consider the function \(h : \mathbb{R} \to \mathbb{R} \)

\[
h(t) = g(x^{(k)} + tv)
\]

- \(h'(0) = \nabla g(x^{(k)})^T v \) is the directional derivative at \(x^{(k)} \) in the direction \(v \)
- line search terminates with positive \(t \) if \(h'(0) < 0 \) (\(v \) is a descent direction)
- if \(\nabla^2 g(x^{(k)}) \) is positive definite, the Newton step is a descent direction

\[
h'(0) = \nabla g(x^{(k)})^T v = -v^T \nabla^2 g(x^{(k)}) v < 0
\]
Example

\[g(x) = \log(e^x + e^{-x}), \quad x^{(1)} = 4 \]

close to the solution: very fast convergence, no backtracking steps
Example

example of page 14.21

\[g(x_1, x_2) = e^{x_1+x_2-1} + e^{x_1-x_2-1} + e^{-x_1-1} \]

damped Newton method started at \(x = (-2, 2) \)
Newton method for nonconvex functions

if $\nabla^2 g(x^{(k)})$ is not positive definite, it is possible that Newton step v satisfies

$$\nabla g(x^{(k)})^T v = -\nabla g(x^{(k)})^T \nabla^2 g(x^{(k)})^{-1} \nabla g(x^{(k)}) > 0$$

- if Newton step is not descent direction, replace it with descent direction
- simplest choice is $v = -\nabla g(x^{(k)})$; practical methods make other choices
Outline

- Newton’s method for sets of nonlinear equations
- damped Newton for unconstrained minimization
- **Newton method for nonlinear least squares**
Hessian of nonlinear least squares cost

\[g(x) = \| f(x) \|^2 = \sum_{i=1}^{m} f_i(x)^2 \]

- gradient (from page 13.14):

\[\nabla g(x) = 2 \sum_{i=1}^{m} f_i(x) \nabla f_i(x) = 2 D f(x)^T f(x) \]

- second derivatives:

\[\frac{\partial^2 g}{\partial x_j \partial x_k}(x) = 2 \sum_{i=1}^{m} \left(\frac{\partial f_i}{\partial x_j}(x) \frac{\partial f_i}{\partial x_k}(x) + f_i(x) \frac{\partial^2 f_i}{\partial x_j \partial x_k}(x) \right) \]

- Hessian

\[\nabla^2 g(x) = 2 D f(x)^T D f(x) + 2 \sum_{i=1}^{m} f_i(x) \nabla^2 f_i(x) \]
Newton and Gauss–Newton steps

(Undamped) Newton step at $x = x^{(k)}$:

$$v_{nt} = -\nabla^2 g(x)^{-1} \nabla g(x)$$

$$= - \left(Df(x)^T Df(x) + \sum_{i=1}^{m} f_i(x) \nabla^2 f_i(x) \right)^{-1} Df(x)^T f(x)$$

Gauss–Newton step at $x = x^{(k)}$ (from page 13.17):

$$v_{gn} = - \left(Df(x)^T Df(x) \right)^{-1} Df(x)^T f(x)$$

• can be written as $v_{gn} = -H_{gn}^{-1} \nabla g(x)$ where $H_{gn} = 2Df(x)^T Df(x)$

• H_{gn} is the Hessian without the term $\sum_i f_i(x) \nabla^2 f_i(x)$
Comparison

Newton step

• requires second derivatives of f
• not always a descent direction ($\nabla^2 g(x)$ is not necessarily positive definite)
• fast convergence near local minimum

Gauss–Newton step

• does not require second derivatives
• a descent direction (if columns of $Df(x)$ are linearly independent):

$$\nabla g(x)^T v_{gn} = -2v_{gn}^T Df(x)^T Df(x) v_{gn} < 0 \quad \text{if } v_{gn} \neq 0$$

• local convergence to x^\star is similar to Newton method if

$$\sum_{i=1}^{m} f_i(x^\star) \nabla^2 f_i(x^\star)$$

is small (for each i, $f_i(x^\star)$ is small or f_i is nearly affine around x^\star)