13. Nonlinear least squares

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Nonlinear least squares

minimize \(\sum_{i=1}^{m} f_i(x)^2 = \| f(x) \|^2 \)

- \(f_1(x), \ldots, f_m(x) \) are differentiable functions of a vector variable \(x \)
- \(f \) is a function from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) with components \(f_i(x) \):

\[
f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_m(x) \end{bmatrix}
\]

- problem reduces to (linear) least squares if \(f(x) = Ax - b \)
Location from range measurements

- vector x_{ex} represents unknown location in 2-D or 3-D
- we estimate x_{ex} by measuring distances to known points a_1, \ldots, a_m:

$$\rho_i = \|x_{ex} - a_i\| + v_i, \quad i = 1, \ldots, m$$

- v_i is measurement error

Nonlinear least squares estimate: compute estimate \hat{x} by minimizing

$$\sum_{i=1}^{m} (\|x - a_i\| - \rho_i)^2$$

this is a nonlinear least squares problem with $f_i(x) = \|x - a_i\| - \rho_i$
Example

- correct position is $x_{\text{ex}} = (1, 1)$
- five points a_i, marked with blue dots
- red square marks nonlinear least squares estimate $\hat{x} = (1.18, 0.82)$
Location from multiple camera views

Camera model: described by parameters $A \in \mathbb{R}^{2 \times 3}$, $b \in \mathbb{R}^2$, $c \in \mathbb{R}^3$, $d \in \mathbb{R}$

- object at location $x \in \mathbb{R}^3$ creates image at location $x' \in \mathbb{R}^2$ in image plane

$$x' = \frac{1}{c^T x + d} (Ax + b)$$

$c^T x + d > 0$ if object is in front of the camera

- A, b, c, d characterize the camera, and its position and orientation

Nonlinear least squares
Location from multiple camera views

- an object at location x_{ex} is viewed by l cameras (described by A_i, b_i, c_i, d_i)
- the image of the object in the image plane of camera i is at location

$$y_i = \frac{1}{c_i^T x_{\text{ex}} + d_i} (A_i x_{\text{ex}} + b_i) + v_i$$

- v_i is measurement or quantization error
- goal is to estimate 3-D location x_{ex} from the l observations y_1, \ldots, y_l

Nonlinear least squares estimate: compute estimate \hat{x} by minimizing

$$\sum_{i=1}^{l} \left\| \frac{1}{c_i^T x + d_i} (A_i x + b_i) - y_i \right\|^2$$

this is a nonlinear least squares problem with $m = 2l$,

$$f_i(x) = \frac{(A_i x + b_i)_1}{c_i^T x + d_i} - (y_i)_1, \quad f_{l+i}(x) = \frac{(A_i x + b_i)_2}{c_i^T x + d_i} - (y_i)_2$$
Model fitting

\[
\text{minimize } \sum_{i=1}^{N} (\hat{f}(x^{(i)}, \theta) - y^{(i)})^2
\]

- model \(\hat{f}(x, \theta) \) is parameterized by parameters \(\theta_1, \ldots, \theta_p \)
- \((x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)}) \) are data points
- the minimization is over the model parameters \(\theta \)
- on page 9.9 we considered models that are linear in the parameters \(\theta \):
 \[
 \hat{f}(x, \theta) = \theta_1 f_1(x) + \cdots + \theta_p f_p(x)
 \]
 here we allow \(\hat{f}(x, \theta) \) to be a nonlinear function of \(\theta \)
Example

\[\hat{f}(x, \theta) = \theta_1 \exp(\theta_2 x) \cos(\theta_3 x + \theta_4) \]

a nonlinear least squares problem with four variables \(\theta_1, \theta_2, \theta_3, \theta_4 \):

\[
\text{minimize} \quad \sum_{i=1}^{N} \left(\theta_1 e^{\theta_2 x^{(i)}} \cos(\theta_3 x^{(i)} + \theta_4) - y^{(i)} \right)^2
\]
Orthogonal distance regression

minimize the mean square distance of data points to graph of $\hat{f}(x, \theta)$

Example: orthogonal distance regression with cubic polynomial

$$\hat{f}(x, \theta) = \theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3$$

standard least squares fit

orthogonal distance fit
Nonlinear least squares formulation

\[
\text{minimize} \quad \sum_{i=1}^{N} \left((\hat{f}(u^{(i)}, \theta) - y^{(i)})^2 + \|u^{(i)} - x^{(i)}\|^2 \right)
\]

- optimization variables are model parameters \(\theta \) and \(N \) points \(u^{(i)} \)
- \(i \)th term is squared distance of data point \((x^{(i)}, y^{(i)})\) to point \((u^{(i)}, \hat{f}(u^{(i)}, \theta))\)

\[
d_i^2 = (\hat{f}(u^{(i)}, \theta) - y^{(i)})^2 + \|u^{(i)} - x^{(i)}\|^2
\]

- minimizing \(d_i^2 \) over \(u^{(i)} \) gives squared distance of \((x^{(i)}, y^{(i)})\) to graph
- minimizing \(\sum_i d_i^2 \) over \(u^{(1)}, \ldots, u^{(N)} \) and \(\theta \) minimizes mean squared distance
Binary classification

\[
\hat{f}(x, \theta) = \text{sign} \left(\theta_1 f_1(x) + \theta_2 f_2(x) + \cdots + \theta_p f_p(x) \right)
\]

- in lecture 9 (p 9.25) we computed \(\theta \) by solving a linear least squares problem
- better results are obtained by solving a nonlinear least squares problem

\[
\text{minimize} \quad \sum_{i=1}^{N} \left(\phi(\theta_1 f_1(x^{(i)}) + \cdots + \theta_p f_p(x^{(i)})) - y^{(i)} \right)^2
\]

- \((x^{(i)}, y^{(i)})\) are data points, \(y^{(i)} \in \{-1, 1\} \)
- \(\phi(u) \) is the sigmoidal function

\[
\phi(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}
\]

a differentiable approximation of \(\text{sign}(u) \)
Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Gradient

Gradient of differentiable function \(g : \mathbb{R}^n \to \mathbb{R} \) at \(z \in \mathbb{R}^n \) is

\[
\nabla g(z) = \left(\frac{\partial g}{\partial x_1}(z), \frac{\partial g}{\partial x_2}(z), \ldots, \frac{\partial g}{\partial x_n}(z) \right)
\]

Affine approximation (linearization) of \(g \) around \(z \) is

\[
\hat{g}(x) = g(z) + \frac{\partial g}{\partial x_1}(z)(x_1 - z_1) + \cdots + \frac{\partial g}{\partial x_n}(z)(x_n - z_n)
\]

\[
= g(z) + \nabla g(z)^T (x - z)
\]

(see page 1.27)
Derivative matrix

Derivative matrix (Jacobian) of differentiable function $f : \mathbb{R}^n \to \mathbb{R}^m$ at $z \in \mathbb{R}^n$:

$$Df(z) = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1}(z) & \frac{\partial f_1}{\partial x_2}(z) & \cdots & \frac{\partial f_1}{\partial x_n}(z) \\
\frac{\partial f_2}{\partial x_1}(z) & \frac{\partial f_2}{\partial x_2}(z) & \cdots & \frac{\partial f_2}{\partial x_n}(z) \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_m}{\partial x_1}(z) & \frac{\partial f_m}{\partial x_2}(z) & \cdots & \frac{\partial f_m}{\partial x_n}(z)
\end{bmatrix} = \begin{bmatrix}
\nabla f_1(z)^T \\
\nabla f_2(z)^T \\
\vdots \\
\nabla f_m(z)^T
\end{bmatrix}$$

Affine approximation (linearization) of f around z is

$$\hat{f}(x) = f(z) + Df(z)(x - z)$$

- see page 3.40
- we also use notation $\hat{f}(x; z)$ to indicate the point z around which we linearize
Gradient of nonlinear least squares cost

\[g(x) = \|f(x)\|^2 = \sum_{i=1}^{m} f_i(x)^2 \]

- first derivative of \(g \) with respect to \(x_j \):

\[\frac{\partial g}{\partial x_j}(z) = 2 \sum_{i=1}^{m} f_i(z) \frac{\partial f_i}{\partial x_j}(z) \]

- gradient of \(g \) at \(z \):

\[\nabla g(z) = \begin{bmatrix} \frac{\partial g}{\partial x_1}(z) \\ \vdots \\ \frac{\partial g}{\partial x_n}(z) \end{bmatrix} = 2 \sum_{i=1}^{m} f_i(z) \nabla f_i(z) = 2D f(z)^T f(z) \]
Optimality condition

minimize \[g(x) = \sum_{i=1}^{m} f_i(x)^2 \]

- necessary condition for optimality: if \(x \) minimizes \(g(x) \) then it must satisfy

\[\nabla g(x) = 2Df(x)^T f(x) = 0 \]

- this generalizes the normal equations: if \(f(x) = Ax - b \), then \(Df(x) = A \) and

\[\nabla g(x) = 2A^T (Ax - b) \]

- for general \(f \), the condition \(\nabla g(x) = 0 \) is not sufficient for optimality
Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Gauss–Newton method

\[
\text{minimize} \quad g(x) = \|f(x)\|^2 = \sum_{i=1}^{m} f_i(x)^2
\]

start at some initial guess \(x^{(1)}\), and repeat for \(k = 1, 2, \ldots\):

- linearize \(f\) around \(x^{(k)}\):

\[
\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})
\]

- substitute affine approximation \(\hat{f}(x; x^{(k)})\) for \(f\) in least squares problem:

\[
\text{minimize} \quad \|\hat{f}(x; x^{(k)})\|^2
\]

- take the solution of this (linear) least squares problem as \(x^{(k+1)}\)
Gauss–Newton update

least squares problem solved in iteration k:

$$\text{minimize } \| f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)}) \|^2$$

- if $Df(x^{(k)})$ has linearly independent columns, solution is given by

$$x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) \right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

- Gauss–Newton step $\Delta x^{(k)} = x^{(k+1)} - x^{(k)}$ is

$$\Delta x^{(k)} = - \left(Df(x^{(k)})^T Df(x^{(k)}) \right)^{-1} Df(x^{(k)})^T f(x^{(k)})$$

$$= - \frac{1}{2} \left(Df(x^{(k)})^T Df(x^{(k)}) \right)^{-1} \nabla g(x^{(k)})$$

(using the expression for $\nabla g(x)$ on page 13.14)
Predicted cost reduction in iteration k

- predicted cost function at $x^{(k+1)}$, based on approximation $\hat{f}(x; x^{(k)})$:

$$
\| \hat{f}(x^{(k+1)}; x^{(k)}) \|^2 \\
= \| f(x^{(k)}) + Df(x^{(k)}) \Delta x^{(k)} \|^2 \\
= \| f(x^{(k)}) \|^2 + 2f(x^{(k)})^T Df(x^{(k)}) \Delta x^{(k)} + \| Df(x^{(k)}) \Delta x^{(k)} \|^2 \\
= \| f(x^{(k)}) \|^2 - \| Df(x^{(k)}) \Delta x^{(k)} \|^2
$$

- if columns of $Df(x^{(k)})$ are linearly independent and $\Delta x^{(k)} \neq 0$,

$$
\| \hat{f}(x^{(k+1)}; x^{(k)}) \|^2 < \| f(x^{(k)}) \|^2
$$

- however, $\hat{f}(x; x^{(k)})$ is only a local approximation of $f(x)$, so it is possible that

$$
\| f(x^{(k+1)}) \|^2 > \| f(x^{(k)}) \|^2
$$
Outline

- definition and examples
- derivatives and optimality condition
- Gauss–Newton method
- Levenberg–Marquardt method
Levenberg–Marquardt method

addresses two difficulties in Gauss–Newton method:

• how to update $x^{(k)}$ when columns of $Df(x^{(k)})$ are linearly dependent
• what to do when the Gauss–Newton update does not reduce $\|f(x)\|^2$

Levenberg–Marquardt method

compute $x^{(k+1)}$ by solving a *regularized* least squares problem

$$\text{minimize} \quad \|\hat{f}(x; x^{(k)})\|^2 + \lambda^{(k)} \|x - x^{(k)}\|^2$$

• as before, $\hat{f}(x; x^{(k)}) = f(x^{(k)}) + Df(x^{(k)})(x - x^{(k)})$
• second term forces x to be close to $x^{(k)}$ where $\hat{f}(x; x^{(k)}) \approx f(x)$
• with $\lambda^{(k)} > 0$, always has a unique solution (no condition on $Df(x^{(k)})$)
Levenberg–Marquardt update

regularized least squares problem solved in iteration \(k \)

\[
\text{minimize} \quad \| f(x^{(k)}) + Df(x^{(k)}) (x - x^{(k)}) \|^2 + \lambda^{(k)} \| x - x^{(k)} \|^2
\]

- solution is given by

\[
x^{(k+1)} = x^{(k)} - \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I \right)^{-1} Df(x^{(k)})^T f(x^{(k)})
\]

- Levenberg–Marquardt step \(\Delta x^{(k)} = x^{(k+1)} - x^{(k)} \) is

\[
\Delta x^{(k)} = -\left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I \right)^{-1} Df(x^{(k)})^T f(x^{(k)})
\]

\[
= -\frac{1}{2} \left(Df(x^{(k)})^T Df(x^{(k)}) + \lambda^{(k)} I \right)^{-1} \nabla g(x^{(k)})
\]

- for \(\lambda^{(k)} = 0 \) this is the Gauss–Newton step (if defined); for large \(\lambda^{(k)} \),

\[
\Delta x^{(k)} \approx -\frac{1}{2\lambda^{(k)}} \nabla g(x^{(k)})
\]
Regularization parameter

several strategies for adapting $\lambda^{(k)}$ are possible; for example:

- at iteration k, compute the solution \hat{x} of

\[
\text{minimize} \quad \|\hat{f}(x; x^{(k)})\|^2 + \lambda^{(k)}\|x - x^{(k)}\|^2
\]

- if $\|f(\hat{x})\|^2 < \|f(x^{(k)})\|^2$, take $x^{(k+1)} = \hat{x}$ and decrease λ

- otherwise, do not update x (take $x^{(k+1)} = x^{(k)}$), but increase λ

Some variations

- compare actual cost reduction with predicted cost reduction

- solve a least squares problem with “trust region”

\[
\text{minimize} \quad \|\hat{f}(x; x^{(k)})\|^2 \\
\text{subject to} \quad \|x - x^{(k)}\|^2 \leq \gamma
\]
Summary: Levenberg–Marquardt method

choose $x^{(1)}$ and $\lambda^{(1)}$ and repeat for $k = 1, 2, \ldots$:

1. evaluate $f(x^{(k)})$ and $A = Df(x^{(k)})$

2. compute solution of regularized least squares problem:

$$\hat{x} = x^{(k)} - (A^TA + \lambda^{(k)}I)^{-1}A^Tf(x^{(k)})$$

3. define $x^{(k+1)}$ and $\lambda^{(k+1)}$ as follows:

$$\begin{cases} x^{(k+1)} = \hat{x} \text{ and } \lambda^{(k+1)} = \beta_1\lambda^{(k)} & \text{if } \| f(\hat{x}) \|^2 < \| f(x^{(k)}) \|^2 \\ x^{(k+1)} = x^{(k)} \text{ and } \lambda^{(k+1)} = \beta_2\lambda^{(k)} & \text{otherwise} \end{cases}$$

- β_1, β_2 are constants with $0 < \beta_1 < 1 < \beta_2$
- in step 2, \hat{x} can be computed using a QR factorization
- terminate if $\nabla g(x^{(k)}) = 2A^Tf(x^{(k)})$ is sufficiently small
Location from range measurements

- iterates from three starting points, with $\lambda^{(1)} = 0.1, \beta_1 = 0.8, \beta_2 = 2$
- algorithm started at $(1.8, 3.5)$ and $(3.0, 1.5)$ finds minimum $(1.18, 0.82)$
- started at $(2.2, 3.5)$ converges to non-optimal point
Cost function and regularization parameter

cost function and $\lambda^{(k)}$ for the three starting points on previous page