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5. Orthogonal matrices

• matrices with orthonormal columns

• orthogonal matrices

• tall matrices with orthonormal columns

• complex matrices with orthonormal columns

5.1



Orthonormal vectors

a collection of real 𝑚-vectors 𝑎1, 𝑎2, . . . , 𝑎𝑛 is orthonormal if

• the vectors have unit norm: ∥𝑎𝑖∥ = 1

• they are mutually orthogonal: 𝑎𝑇𝑖 𝑎 𝑗 = 0 if 𝑖 ≠ 𝑗

Example


0
0

−1

 ,
1√
2


1
1
0

 ,
1√
2


1

−1
0



Orthogonal matrices 5.2



Matrix with orthonormal columns

𝐴 ∈ R𝑚×𝑛 has orthonormal columns if its Gram matrix is the identity matrix:

𝐴𝑇𝐴 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

]𝑇 [
𝑎1 𝑎2 · · · 𝑎𝑛

]
=


𝑎𝑇1𝑎1 𝑎𝑇1𝑎2 · · · 𝑎𝑇1𝑎𝑛

𝑎𝑇2𝑎1 𝑎𝑇2𝑎2 · · · 𝑎𝑇2𝑎𝑛
... ... . . . ...

𝑎𝑇𝑛𝑎1 𝑎𝑇𝑛𝑎2 · · · 𝑎𝑇𝑛𝑎𝑛


=


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


there is no standard short name for “matrix with orthonormal columns”
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Matrix–vector product

if 𝐴 ∈ R𝑚×𝑛 has orthonormal columns, then the linear function 𝑓 (𝑥) = 𝐴𝑥

• preserves inner products:

(𝐴𝑥)𝑇 (𝐴𝑦) = 𝑥𝑇𝐴𝑇𝐴𝑦 = 𝑥𝑇 𝑦

• preserves norms:

∥𝐴𝑥∥ =
(
(𝐴𝑥)𝑇 (𝐴𝑥)

)1/2
= (𝑥𝑇𝑥)1/2 = ∥𝑥∥

• preserves distances: ∥𝐴𝑥 − 𝐴𝑦∥ = ∥𝑥 − 𝑦∥

• preserves angles:

∠(𝐴𝑥, 𝐴𝑦) = arccos
( (𝐴𝑥)𝑇 (𝐴𝑦)
∥𝐴𝑥∥∥𝐴𝑦∥

)
= arccos

(
𝑥𝑇 𝑦

∥𝑥∥∥𝑦∥

)
= ∠(𝑥, 𝑦)
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Left-invertibility

if 𝐴 ∈ R𝑚×𝑛 has orthonormal columns, then

• 𝐴 is left-invertible with left inverse 𝐴𝑇 : by definition

𝐴𝑇𝐴 = 𝐼

• 𝐴 has linearly independent columns (from page 4.23 or page 5.2):

𝐴𝑥 = 0 =⇒ 𝐴𝑇𝐴𝑥 = 𝑥 = 0

• 𝐴 is tall or square: 𝑚 ≥ 𝑛 (see page 4.12)
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Outline

• matrices with orthonormal columns

• orthogonal matrices

• tall matrices with orthonormal columns

• complex matrices with orthonormal columns



Orthogonal matrix

Orthogonal matrix

a square real matrix with orthonormal columns is called orthogonal

Nonsingularity (from equivalences on page 4.13): if 𝐴 is orthogonal, then

• 𝐴 is invertible, with inverse 𝐴𝑇 :

𝐴𝑇𝐴 = 𝐼
𝐴 is square

}
=⇒ 𝐴𝐴𝑇 = 𝐼

• 𝐴𝑇 is also an orthogonal matrix

• rows of 𝐴 are orthonormal (have norm one and are mutually orthogonal)

Note: if 𝐴 ∈ R𝑚×𝑛 has orthonormal columns and 𝑚 > 𝑛, then 𝐴𝐴𝑇 ≠ 𝐼
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Permutation matrix

• let 𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑛) be a permutation (reordering) of (1, 2, . . . , 𝑛)
• we associate with 𝜋 the 𝑛 × 𝑛 permutation matrix 𝐴

𝐴𝑖𝜋𝑖 = 1, 𝐴𝑖 𝑗 = 0 if 𝑗 ≠ 𝜋𝑖

• 𝐴𝑥 is a permutation of the elements of 𝑥: 𝐴𝑥 = (𝑥𝜋1, 𝑥𝜋2, . . . , 𝑥𝜋𝑛)
• 𝐴 has exactly one element equal to 1 in each row and each column

Orthogonality: permutation matrices are orthogonal

• 𝐴𝑇𝐴 = 𝐼 because 𝐴 has one element equal to one in each row and column

(𝐴𝑇𝐴)𝑖 𝑗 =
𝑛∑︁

𝑘=1
𝐴𝑘𝑖𝐴𝑘 𝑗 =

{
1 𝑖 = 𝑗
0 otherwise

• 𝐴𝑇 = 𝐴−1 is the inverse permutation matrix
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Example

• permutation on {1, 2, 3, 4}

(𝜋1, 𝜋2, 𝜋3, 𝜋4) = (2, 4, 1, 3)

• corresponding permutation matrix and its inverse

𝐴 =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 , 𝐴−1 = 𝐴𝑇 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


• 𝐴𝑇 is permutation matrix associated with the permutation

(�̃�1, �̃�2, �̃�3, �̃�4) = (3, 1, 4, 2)
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Plane rotation

Rotation in a plane

𝐴 =

[
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]
x

Ax

θ

Rotation in a coordinate plane in R𝑛: for example,

𝐴 =


cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃


describes a rotation in the (𝑥1, 𝑥3) plane in R3
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Reflector

Reflector: a matrix of the form

𝐴 = 𝐼 − 2𝑎𝑎𝑇

with 𝑎 a unit-norm vector (∥𝑎∥ = 1)

Properties

• a reflector matrix is symmetric

• a reflector matrix is orthogonal

𝐴𝑇𝐴 = (𝐼 − 2𝑎𝑎𝑇) (𝐼 − 2𝑎𝑎𝑇) = 𝐼 − 4𝑎𝑎𝑇 + 4𝑎𝑎𝑇𝑎𝑎𝑇 = 𝐼

Orthogonal matrices 5.10



Geometrical interpretation of reflector

z = Ax = (I − 2aaT)x

H

line through a and origin

x

y = (I − aaT)x
0

• 𝐻 = {𝑢 | 𝑎𝑇𝑢 = 0} is the (hyper-)plane of vectors orthogonal to 𝑎

• if ∥𝑎∥ = 1, the projection of 𝑥 on 𝐻 is given by

𝑦 = 𝑥 − (𝑎𝑇𝑥)𝑎 = 𝑥 − 𝑎(𝑎𝑇𝑥) = (𝐼 − 𝑎𝑎𝑇)𝑥

(see next page)

• reflection of 𝑥 through the hyperplane is given by product with reflector:

𝑧 = 𝑦 + (𝑦 − 𝑥) = (𝐼 − 2𝑎𝑎𝑇)𝑥
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Exercise

suppose ∥𝑎∥ = 1; show that the projection of 𝑥 on 𝐻 = {𝑢 | 𝑎𝑇𝑢 = 0} is

𝑦 = 𝑥 − (𝑎𝑇𝑥)𝑎

• we verify that 𝑦 ∈ 𝐻:

𝑎𝑇 𝑦 = 𝑎𝑇 (𝑥 − 𝑎(𝑎𝑇𝑥)) = 𝑎𝑇𝑥 − (𝑎𝑇𝑎) (𝑎𝑇𝑥) = 𝑎𝑇𝑥 − 𝑎𝑇𝑥 = 0

• now consider any 𝑧 ∈ 𝐻 with 𝑧 ≠ 𝑦 and show that ∥𝑥 − 𝑧∥ > ∥𝑥 − 𝑦∥:

∥𝑥 − 𝑧∥2 = ∥𝑥 − 𝑦 + 𝑦 − 𝑧∥2

= ∥𝑥 − 𝑦∥2 + 2(𝑥 − 𝑦)𝑇 (𝑦 − 𝑧) + ∥𝑦 − 𝑧∥2

= ∥𝑥 − 𝑦∥2 + 2(𝑎𝑇𝑥)𝑎𝑇 (𝑦 − 𝑧) + ∥𝑦 − 𝑧∥2

= ∥𝑥 − 𝑦∥2 + ∥𝑦 − 𝑧∥2 (because 𝑎𝑇 𝑦 = 𝑎𝑇 𝑧 = 0)
> ∥𝑥 − 𝑦∥2
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Product of orthogonal matrices

if 𝐴1, . . . , 𝐴𝑘 are orthogonal matrices and of equal size, then the product

𝐴 = 𝐴1𝐴2 · · · 𝐴𝑘

is orthogonal:

𝐴𝑇𝐴 = (𝐴1𝐴2 · · · 𝐴𝑘)𝑇 (𝐴1𝐴2 · · · 𝐴𝑘)
= 𝐴𝑇𝑘 · · · 𝐴𝑇2 𝐴𝑇1 𝐴1𝐴2 · · · 𝐴𝑘

= 𝐼
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Linear equation with orthogonal matrix

linear equation with orthogonal coefficient matrix 𝐴 of size 𝑛 × 𝑛

𝐴𝑥 = 𝑏

solution is
𝑥 = 𝐴−1𝑏 = 𝐴𝑇𝑏

• can be computed in 2𝑛2 flops by matrix-vector multiplication

• cost is less than order 𝑛2 if 𝐴 has special properties; for example,

permutation matrix: 0 flops
reflector (given 𝑎): order 𝑛 flops
plane rotation: order 1 flops
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Tall matrix with orthonormal columns

suppose 𝐴 ∈ R𝑚×𝑛 is tall (𝑚 > 𝑛) and has orthonormal columns

• 𝐴𝑇 is a left inverse of 𝐴:
𝐴𝑇𝐴 = 𝐼

• 𝐴 has no right inverse; in particular

𝐴𝐴𝑇 ≠ 𝐼

on the next pages, we give a geometric interpretation to the matrices

𝐴𝐴𝑇 , 𝐼 − 𝐴𝐴𝑇
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Range

• the span of a collection of vectors is the set of all their linear combinations:

span(𝑎1, 𝑎2, . . . , 𝑎𝑛) = {𝑥1𝑎1 + 𝑥2𝑎2 + · · · + 𝑥𝑛𝑎𝑛 | 𝑥 ∈ R𝑛}

• the range of a matrix 𝐴 ∈ R𝑚×𝑛 is the span of its column vectors:

range(𝐴) = {𝐴𝑥 | 𝑥 ∈ R𝑛}

Example

range(


1 0
1 2
0 −1

) =



𝑥1
𝑥1 + 2𝑥2
−𝑥2

 | 𝑥1, 𝑥2 ∈ R
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Projection on range of matrix with orthonormal columns

if 𝐴 ∈ R𝑚×𝑛 has orthonormal columns 𝑎1, . . . , 𝑎𝑛, then the vector

𝐴𝐴𝑇𝑏

is the orthogonal projection of an 𝑚-vector 𝑏 on range(𝐴)

range(A)

b

AAT b

• 𝑥 = 𝐴𝑇𝑏 satisfies ∥𝐴𝑥 − 𝑏∥ < ∥𝐴𝑥 − 𝑏∥ for all 𝑥 ≠ 𝑥 (proof on next page)

• the result on page 2.12 is the special case for 𝑛 = 1 and 𝐴 = (1/∥𝑎∥)𝑎
• 𝑏 − 𝐴𝐴𝑇𝑏 = (𝐼 − 𝐴𝐴𝑇)𝑏 is the residual of 𝑏 after subtracting the projection
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Proof

the squared distance of 𝑏 to an arbitrary point 𝐴𝑥 in range(𝐴) is

∥𝐴𝑥 − 𝑏∥2 = ∥𝐴(𝑥 − 𝑥) + 𝐴𝑥 − 𝑏∥2 (where 𝑥 = 𝐴𝑇𝑏)
= ∥𝐴(𝑥 − 𝑥)∥2 + ∥𝐴𝑥 − 𝑏∥2 + 2(𝑥 − 𝑥)𝑇𝐴𝑇 (𝐴𝑥 − 𝑏)
= ∥𝐴(𝑥 − 𝑥)∥2 + ∥𝐴𝑥 − 𝑏∥2

= ∥𝑥 − 𝑥∥2 + ∥𝐴𝑥 − 𝑏∥2

≥ ∥𝐴𝑥 − 𝑏∥2

with equality only if 𝑥 = 𝑥

• line 3 follows because 𝐴𝑇 (𝐴𝑥 − 𝑏) = 𝑥 − 𝐴𝑇𝑏 = 0

• line 4 follows from 𝐴𝑇𝐴 = 𝐼
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Orthogonal decomposition

the vector 𝑏 is decomposed as a sum 𝑏 = 𝑧 + 𝑦 with

𝑧 ∈ range(𝐴), 𝑦 ⊥ range(𝐴)

range(𝐴)

𝑏

𝑧 = 𝐴𝐴𝑇𝑏

𝑦 = 𝑏 − 𝐴𝐴𝑇𝑏

such a decomposition exists and is unique for every 𝑏:

𝑏 = 𝐴𝑥 + 𝑦, 𝐴𝑇 𝑦 = 0 ⇐⇒ 𝑥 = 𝐴𝑇𝑏, 𝑦 = 𝑏 − 𝐴𝐴𝑇𝑏

(if 𝐴 has orthonormal columns)
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Exercise

1. let 𝑢, 𝑣 be two orthonormal vectors; show that

𝐼 − 𝑢𝑢𝑇 − 𝑣𝑣𝑇 = (𝐼 − 𝑢𝑢𝑇) (𝐼 − 𝑣𝑣𝑇) = (𝐼 − 𝑣𝑣𝑇) (𝐼 − 𝑢𝑢𝑇)

2. let 𝐴 be an 𝑚 × 𝑛 matrix with orthonormal colums 𝑎1, . . . , 𝑎𝑛; show that

𝐼 − 𝐴𝐴𝑇 = 𝐼 − 𝑎1𝑎
𝑇
1 − 𝑎2𝑎

𝑇
2 − · · · − 𝑎𝑛𝑎

𝑇
𝑛

= (𝐼 − 𝑎𝑛𝑎
𝑇
𝑛 ) · · · (𝐼 − 𝑎2𝑎

𝑇
2 ) (𝐼 − 𝑎1𝑎

𝑇
1 )
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Gram matrix

𝐴 ∈ C𝑚×𝑛 has orthonormal columns if its Gram matrix is the identity matrix:

𝐴𝐻𝐴 =
[
𝑎1 𝑎2 · · · 𝑎𝑛

]𝐻 [
𝑎1 𝑎2 · · · 𝑎𝑛

]
=


𝑎𝐻1 𝑎1 𝑎𝐻1 𝑎2 · · · 𝑎𝐻1 𝑎𝑛

𝑎𝐻2 𝑎1 𝑎𝐻2 𝑎2 · · · 𝑎𝐻2 𝑎𝑛
... ... ...

𝑎𝐻𝑛 𝑎1 𝑎𝐻𝑛 𝑎2 · · · 𝑎𝐻𝑛 𝑎𝑛


=


1 0 · · · 0
0 1 · · · 0
... ... . . . ...
0 0 · · · 1


• columns have unit norm: ∥𝑎𝑖∥2 = 𝑎𝐻𝑖 𝑎𝑖 = 1

• columns are mutually orthogonal: 𝑎𝐻𝑖 𝑎 𝑗 = 0 for 𝑖 ≠ 𝑗

Orthogonal matrices 5.21



Unitary matrix

Unitary matrix

a square complex matrix with orthonormal columns is called unitary

Inverse

𝐴𝐻𝐴 = 𝐼
𝐴 is square

}
=⇒ 𝐴𝐴𝐻 = 𝐼

• a unitary matrix is nonsingular with inverse 𝐴𝐻

• if 𝐴 is unitary, then 𝐴𝐻 is unitary

Orthogonal matrices 5.22



Discrete Fourier transform matrix

recall definition from page 3.37 (with 𝜔 = 𝑒2𝜋j/𝑛 and j =
√
−1)

𝑊 =


1 1 1 · · · 1
1 𝜔−1 𝜔−2 · · · 𝜔−(𝑛−1)

1 𝜔−2 𝜔−4 · · · 𝜔−2(𝑛−1)
... ... ... ...

1 𝜔−(𝑛−1) 𝜔−2(𝑛−1) · · · 𝜔−(𝑛−1) (𝑛−1)


the matrix (1/√𝑛)𝑊 is unitary (proof on next page):

1
𝑛
𝑊𝐻𝑊 =

1
𝑛
𝑊𝑊𝐻 = 𝐼

• inverse of 𝑊 is 𝑊−1 = (1/𝑛)𝑊𝐻

• inverse discrete Fourier transform of 𝑛-vector 𝑥 is 𝑊−1𝑥 = (1/𝑛)𝑊𝐻𝑥
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Gram matrix of DFT matrix

we show that 𝑊𝐻𝑊 = 𝑛𝐼

• conjugate transpose of 𝑊 is

𝑊𝐻 =


1 1 1 · · · 1
1 𝜔 𝜔2 · · · 𝜔𝑛−1

1 𝜔2 𝜔4 · · · 𝜔2(𝑛−1)
... ... ... ...

1 𝜔𝑛−1 𝜔2(𝑛−1) · · · 𝜔(𝑛−1) (𝑛−1)


• 𝑖, 𝑗 element of Gram matrix is

(𝑊𝐻𝑊)𝑖 𝑗 = 1 + 𝜔𝑖− 𝑗 + 𝜔2(𝑖− 𝑗) + · · · + 𝜔(𝑛−1) (𝑖− 𝑗)

(𝑊𝐻𝑊)𝑖𝑖 = 𝑛, (𝑊𝐻𝑊)𝑖 𝑗 = 𝜔𝑛(𝑖− 𝑗) − 1
𝜔𝑖− 𝑗 − 1

= 0 if 𝑖 ≠ 𝑗

(last step follows from 𝜔𝑛 = 1)
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