
L. Vandenberghe ECE133A (Fall 2024)

16. Algorithm stability

• cancellation

• numerical stability

16.1

Example

two expressions for the same function

𝑓 (𝑥) =
1 − (cos 𝑥)2

𝑥2

𝑔(𝑥) =
(sin 𝑥)2

𝑥2

−0.01 0 0.01

0.9995

1

1.0005 f
g

• results of cos 𝑥 and sin 𝑥 were rounded to 10 significant digits

• other calculations are exact

• plot shows function at 100 equally spaced points between −0.01 and 0.01

Algorithm stability 16.2

Evaluation of 𝑓

evaluate 𝑓 (𝑥) at 𝑥 = 5 · 10−5

• calculate cos 𝑥 and round result to 10 digits

cos 𝑥 = 0.99999999875000 . . .

{ 0.9999999988

• evaluate 𝑓 (𝑥) = (1 − cos(𝑥)2)/𝑥2 using rounded value of cos 𝑥

1 − (0.9999999988)2
(5 · 10−5)2 = 0.9599 . . .

has only one correct significant digit (correct value is 0.9999 . . .)

Algorithm stability 16.3

Evaluation of 𝑔

evaluate 𝑔(𝑥) at 𝑥 = 5 · 10−5

• calculate sin 𝑥 and round result to 10 digits

sin 𝑥 = 0.499999999791667 . . . · 10−5

{ 0.4999999998 · 10−5

• evaluate 𝑓 (𝑥) = sin(𝑥)2/𝑥2 using rounded value of cos 𝑥

(sin 𝑥)2
𝑥2 ≈ (0.4999999998 · 10−5)2

(5 · 10−5)2 = 0.9999 . . .

has about ten correct significant digits

Conclusion: 𝑓 and 𝑔 are equivalent mathematically, but not numerically

Algorithm stability 16.4

Cancellation

�̂� = 𝑎(1 + Δ𝑎), �̂� = 𝑏(1 + Δ𝑏)

• 𝑎, 𝑏: exact values

• �̂�, �̂�: approximations with unknown relative errors Δ𝑎, Δ𝑏

• relative error in 𝑥 = �̂� − �̂� = (𝑎 − 𝑏) + (𝑎Δ𝑎 − 𝑏Δ𝑏) is

|𝑥 − 𝑥 |
|𝑥 | =

|𝑎Δ𝑎 − 𝑏Δ𝑏 |
|𝑎 − 𝑏 |

if 𝑎 ≃ 𝑏, small Δ𝑎 and Δ𝑏 can lead to very large relative errors in 𝑥

this is called cancellation; cancellation occurs when:

• we subtract two numbers that are almost equal

• one or both numbers are subject to error

Algorithm stability 16.5

Example

cancellation occurs in the example when we evaluate the numerator of

𝑓 (𝑥) = 1 − (cos 𝑥)2
𝑥2

• 1 ≃ (cos 𝑥)2 when 𝑥 is small

• there is a rounding error in cos 𝑥

Algorithm stability 16.6

Numerical stability

refers to the accuracy of an algorithm in the presence of rounding errors

• an algorithm is unstable if rounding errors cause large errors in the result

• rigorous definition depends on what ‘accurate’ and ‘large error’ mean

• instability is often, but not always, caused by cancellation

Examples from earlier lectures

• solving linear equations by LU factorization without pivoting

• Cholesky factorization method for least squares

Algorithm stability 16.7

Roots of a quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (𝑎 ≠ 0)

Algorithm 1: use the formulas

𝑥1 =
−𝑏 +

√
𝑏2 − 4𝑎𝑐
2𝑎

, 𝑥2 =
−𝑏 −

√
𝑏2 − 4𝑎𝑐
2𝑎

unstable if 𝑏2 ≫ |4𝑎𝑐 |

• if 𝑏2 ≫ |4𝑎𝑐 | and 𝑏 ≤ 0, cancellation occurs in 𝑥2 (−𝑏 ≃
√
𝑏2 − 4𝑎𝑐)

• if 𝑏2 ≫ |4𝑎𝑐 | and 𝑏 ≥ 0, cancellation occurs in 𝑥1 (𝑏 ≃
√
𝑏2 − 4𝑎𝑐)

• in both cases 𝑏 may be exact, but the squareroot introduces small errors

Algorithm stability 16.8

Roots of a quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (𝑎 ≠ 0)

Algorithm 2: use fact that roots 𝑥1, 𝑥2 satisfy 𝑥1𝑥2 = 𝑐/𝑎

• if 𝑏 ≤ 0, calculate

𝑥1 =
−𝑏 +

√
𝑏2 − 4𝑎𝑐
2𝑎

, 𝑥2 =
𝑐

𝑎𝑥1

• if 𝑏 > 0, calculate

𝑥2 =
−𝑏 −

√
𝑏2 − 4𝑎𝑐
2𝑎

, 𝑥1 =
𝑐

𝑎𝑥2

no cancellation when 𝑏2 ≫ |4𝑎𝑐 |

Algorithm stability 16.9

Exercises

• chop(x,n) rounds 𝑥 to 𝑛 significant decimal digits

• for example chop(pi,4) returns 3.14200000000000

Exercise 1: cancellation occurs in (1 − cos 𝑥)/sin 𝑥 when 𝑥 ≈ 0

>> x = 1e-2;
>> (1 - chop(cos(x), 4)) / chop(sin(x), 4)

ans =

0

(exact value is about 0.005)

give a stable alternative method

Algorithm stability 16.10

Exercise 2: Euler proved that
∞∑
𝑘=1

𝑘−2 = 𝜋2/6 = 1.644934 · · ·

the sum of the first 3000 terms is

3000∑︁
𝑘=1

𝑘−2 = 1.6446

we compute this sum rounding all intermediate results to 4 digits:

>> sum = 0;
>> for k = 1:3000

sum = chop(sum + 1/k^2, 4);
end

>> sum
sum =
1.6240

• result has only two correct digits
• not caused by cancellation (there are no subtractions)

explain and propose a better method

Algorithm stability 16.11

Exercise 3: on page 2.11 we showed that for an 𝑛-vector 𝑥,

std(𝑥)2 =
1
𝑛
∥𝑥 − avg(𝑥)1∥2 =

1
𝑛

(
∥𝑥∥2 − (1𝑇𝑥)2

𝑛

)
we evaluate the second expression for 𝑛 = 10 and

𝑥 = (1002, 1000, 1003, 1001, 1002, 1002, 1001, 1004, 1002, 1001)

>> sum1 = 0.0; sum2 = 0.0;
>> for i = 1:n

sum1 = chop(sum1 + x(i), 6);
sum2 = chop(sum2 + x(i)^2, 6);

>> end
>> s = chop((sum2 - sum1^2 / n) / n, 6)
s =

-3.2400

a negative number! explain and suggest a better method

Algorithm stability 16.12

