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Vector

• a vector is an ordered finite list of numbers

• we use two styles of notation:


−1.1

0.0
3.6
7.2

 = (−1.1, 0.0, 3.6, 7.2)

• numbers in the list are the elements (entries, coefficients, components)

• number of elements is the size (length, dimension) of the vector

• a vector of size 𝑛 is called an 𝑛-vector

• set of 𝑛-vectors with real elements is denoted R𝑛
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Conventions

• we usually denote vectors by lowercase letters

𝑎 =


𝑎1
𝑎2
...
𝑎𝑛

 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)

• 𝑖th element of vector 𝑎 is denoted 𝑎𝑖

• 𝑖 is the index of the 𝑖th element 𝑎𝑖

Note

• several other conventions exist

• we make exceptions, e.g., 𝑎𝑖 can refer to 𝑖th vector in a collection of vectors
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Block vectors, subvectors

Stacking

• vectors can be stacked (concatenated) to create larger vectors

• example: stacking vectors 𝑏, 𝑐, 𝑑 of size 𝑚, 𝑛, 𝑝 gives an (𝑚 + 𝑛 + 𝑝)-vector

𝑎 =


𝑏
𝑐
𝑑

 =
(
𝑏1, . . . , 𝑏𝑚, 𝑐1, . . . , 𝑐𝑛, 𝑑1, . . . , 𝑑𝑝

)
• other notation: 𝑎 = (𝑏, 𝑐, 𝑑)

Subvectors

• colon notation can be used to define subvectors (slices) of a vector

• example: if 𝑎 = (1,−1, 2, 0, 3), then 𝑎2:4 = (−1, 2, 0)
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Special vectors

Zero vector and ones vector

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1)

size follows from context (if not, we add a subscript and write 0𝑛, 1𝑛)

Unit vectors

• there are 𝑛 unit vectors of size 𝑛, written 𝑒1, 𝑒2, . . . , 𝑒𝑛

• 𝑖th unit vector is zero except its 𝑖th element which is 1; for 𝑛 = 3,

𝑒1 =


1
0
0

 , 𝑒2 =


0
1
0

 , 𝑒3 =


0
0
1


• size of 𝑒𝑖 follows from context (or should be specified explicitly)
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Location and displacement

Location: coordinates of a point in a plane or three-dimensional space

𝑥1

𝑥2
𝑥

0

Displacement: shown as arrow in plane or 3-D space

𝑥1

𝑥2 𝑥

other quantities that have direction and magnitude, e.g., force vector
Vectors 1.6



Signal or time series

elements of 𝑛-vector are values of some quantity at 𝑛 different times

• hourly temperature over period of 𝑛 hours

0 10 20 30 40 50
65

70

75

80

85

90

𝑖

𝑥 𝑖
(◦

F)

• daily return of a stock for period of 𝑛 trading days

• cash flow: payments to an entity over 𝑛 periods (e.g., quarters)
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Images, video

Monochrome (black and white) image

grayscale values of 𝑀 × 𝑁 pixels stored as 𝑀𝑁-vector (e.g., row-wise)

0.
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00
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00
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90

𝑥 =



𝑥1
𝑥2
𝑥3
...
𝑥62
𝑥63
𝑥64


=



0.65
0.05
0.20
...

0.28
0.00
0.90


Color image: 3𝑀𝑁-vectors with R, G, B values of the 𝑀𝑁 pixels

Video: vector of size 𝐾𝑀𝑁 represents 𝐾 monochrome images of 𝑀 × 𝑁 pixels
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Portfolio vector, resource vector

Portfolio

• 𝑛-vector represents stock portfolio or investment in 𝑛 assets

• 𝑖th element is amount invested in asset 𝑖

• elements can be no. of shares, dollar values, fractions of total dollar amount

Resource vector

• elements of 𝑛-vector represent quantities of 𝑛 resources or commodities

• sign indicates whether quantity is held or owed, produced or consumed, . . .

• example: bill of materials gives quantities needed to create a product
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Word count vectors

• vector represents a document

• size of vector is number of words in a dictionary

• word count vector: element 𝑖 is number of times word 𝑖 occurs in document

• word histogram: element 𝑖 is frequency of word 𝑖 in the document

Example

Word count vectors are used in computer based document
analysis. Each entry of the word count vector is the number of
times the associated dictionary word appears in the document.

word
in
number
horse
document


3
2
1
0
2


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Feature vectors

contain values of variables or attributes that describe members of a set

Examples

• age, weight, blood pressure, gender, . . . , of patients

• square footage, #bedrooms, list price, . . . , of houses in an inventory

Note

• vector elements can represent very different quantities, in different units

• can contain categorical features (e.g., 1/0 for house/condo)

• ordering has no particular meaning

Vectors 1.11



Outline

• notation

• examples

• vector operations

• linear functions

• complex vectors

• complexity of vector computations



Addition and subtraction

𝑎 + 𝑏 =


𝑎1 + 𝑏1
𝑎2 + 𝑏2
...

𝑎𝑛 + 𝑏𝑛

 , 𝑎 − 𝑏 =


𝑎1 − 𝑏1
𝑎2 − 𝑏2

...
𝑎𝑛 − 𝑏𝑛


• commutative

𝑎 + 𝑏 = 𝑏 + 𝑎

• associative

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

𝑎

𝑎 + 𝑏 𝑏
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Scalar–vector and componentwise multiplication

Scalar–vector multiplication: for scalar 𝛽 and 𝑛-vector 𝑎,

𝛽


𝑎1
𝑎2
...
𝑎𝑛

 =

𝛽𝑎1
𝛽𝑎2
...
𝛽𝑎𝑛


Component-wise multiplication: for 𝑛-vectors 𝑎, 𝑏

𝑎 ◦ 𝑏 =


𝑎1𝑏1
𝑎2𝑏2
...

𝑎𝑛𝑏𝑛


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Linear combination

a linear combination of vectors 𝑎1, . . . , 𝑎𝑚 is a sum of scalar–vector products

𝛽1𝑎1 + 𝛽2𝑎2 + · · · + 𝛽𝑚𝑎𝑚

the scalars 𝛽1, . . . , 𝛽𝑚 are the coefficients of the linear combination

𝑎1

𝑎2

0.75𝑎1

1.5𝑎2

𝑏 = 0.75𝑎1 + 1.5𝑎2
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Inner product

the inner product of two 𝑛-vectors 𝑎, 𝑏 is defined as

𝑎𝑇𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + · · · + 𝑎𝑛𝑏𝑛

• a scalar

• meaning of superscript 𝑇 will be explained when we discuss matrices

• other notation: ⟨𝑎, 𝑏⟩, (𝑎 | 𝑏), . . .
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Properties

for vectors 𝑎, 𝑏, 𝑐 of equal length, scalar 𝛾

• 𝑎𝑇𝑎 = 𝑎2
1 + 𝑎2

2 + · · · + 𝑎2
𝑛 ≥ 0

• 𝑎𝑇𝑎 = 0 only if 𝑎 = 0

• commutative:
𝑎𝑇𝑏 = 𝑏𝑇𝑎

• associative with scalar multiplication:

(𝛾𝑎)𝑇𝑏 = 𝛾(𝑎𝑇𝑏)

• distributive with vector addition:

(𝑎 + 𝑏)𝑇𝑐 = 𝑎𝑇𝑐 + 𝑏𝑇𝑐
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Simple examples

Inner product with unit vector

𝑒𝑇𝑖 𝑎 = 𝑎𝑖

Differencing

(𝑒𝑖 − 𝑒 𝑗)𝑇𝑎 = 𝑎𝑖 − 𝑎 𝑗

Sum and average

1𝑇𝑎 = 𝑎1 + 𝑎2 + · · · + 𝑎𝑛

(1
𝑛

1)𝑇𝑎 =
𝑎1 + 𝑎2 + · · · + 𝑎𝑛

𝑛
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Examples

Weighted sum

• 𝑓 is vector of features

• 𝑤 is vector of weights

• inner product 𝑤𝑇 𝑓 = 𝑤1 𝑓1 + 𝑤2 𝑓2 + · · · + 𝑤𝑛 𝑓𝑛 is total score

Cost

• 𝑝 is vector of prices of 𝑛 goods

• 𝑞 is vector of quantities purchased

• inner product 𝑝𝑇𝑞 = 𝑝1𝑞1 + 𝑝2𝑞2 + · · · + 𝑝𝑛𝑞𝑛 is total cost
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Examples

Portfolio return

• ℎ is portfolio vector, with ℎ𝑖 the dollar value of asset 𝑖 held

• 𝑟 is vector of fractional returns over the investment period:

𝑟𝑖 =
𝑝final
𝑖 − 𝑝init

𝑖

𝑝init
𝑖

, 𝑖 = 1, . . . , 𝑛

𝑝init
𝑖 and 𝑝final

𝑖 are the prices of asset 𝑖 at the beginning and end of the period

• 𝑟𝑇ℎ = 𝑟1ℎ1 + · · · + 𝑟𝑛ℎ𝑛 is the total return, in dollars, over the period

Vectors 1.19



Outline

• notation

• examples

• vector operations

• linear functions

• complex vectors

• complexity of vector computations



Linear function

a function 𝑓 : R𝑛 → R is linear if the superposition property

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦) (1)

holds for all 𝑛-vectors 𝑥, 𝑦 and all scalars 𝛼, 𝛽

Extension: if 𝑓 is linear, superposition holds for any linear combination:

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + · · · + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + · · · + 𝛼𝑚 𝑓 (𝑢𝑚)

for all scalars 𝛼1, . . . , 𝛼𝑚 and all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚

(this follows by applying (1) repeatedly)
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Inner product function

for fixed 𝑎 ∈ R𝑛, define a function 𝑓 : R𝑛 → R as

𝑓 (𝑥) = 𝑎𝑇𝑥 = 𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑛𝑥𝑛

• any function of this type is linear:

𝑎𝑇 (𝛼𝑥 + 𝛽𝑦) = 𝛼(𝑎𝑇𝑥) + 𝛽(𝑎𝑇 𝑦)

holds for all scalars 𝛼, 𝛽 and all 𝑛-vectors 𝑥, 𝑦

• every linear function can be written as an inner-product function:

𝑓 (𝑥) = 𝑓 (𝑥1𝑒1 + 𝑥2𝑒2 + · · · + 𝑥𝑛𝑒𝑛)
= 𝑥1 𝑓 (𝑒1) + 𝑥2 𝑓 (𝑒2) + · · · + 𝑥𝑛 𝑓 (𝑒𝑛)

line 2 follows from superposition
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Examples in R3

• 𝑓 (𝑥) = 1
3 (𝑥1 + 𝑥2 + 𝑥3) is linear: 𝑓 (𝑥) = 𝑎𝑇𝑥 with 𝑎 = (1

3,
1
3,

1
3)

• 𝑓 (𝑥) = −𝑥1 is linear: 𝑓 (𝑥) = 𝑎𝑇𝑥 with 𝑎 = (−1, 0, 0)

• 𝑓 (𝑥) = max{𝑥1, 𝑥2, 𝑥3} is not linear: superposition does not hold for

𝑥 =


1
0
0

 , 𝑦 =


0
0
0

 , 𝛼 = −1, 𝛽 = 1

we have 𝑓 (𝑥) = 1, 𝑓 (𝑦) = 0,

𝑓 (𝛼𝑥 + 𝛽𝑦) = 0 ≠ 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦) = −1
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Exercise

𝐹 (𝑡)

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑥7

𝑥8

𝑥9

𝑥10

𝑡

𝐹 (𝑡)

0 1 2 3 4 5 6 7 8 9 10

• unit mass with zero initial position and velocity

• apply piecewise-constant force 𝐹 (𝑡) during interval [0, 10):

𝐹 (𝑡) = 𝑥 𝑗 for 𝑡 ∈ [ 𝑗 − 1, 𝑗), 𝑗 = 1, . . . , 10

• define 𝑓 (𝑥) as position at 𝑡 = 10, 𝑔(𝑥) as velocity at 𝑡 = 10

are 𝑓 and 𝑔 linear functions of 𝑥?
Vectors 1.23



Solution

• from Newton’s law 𝑠′′(𝑡) = 𝐹 (𝑡) where 𝑠(𝑡) is the position at time 𝑡

• integrate twice to get final velocity and position

𝑠′(10) =
∫ 10

0
𝐹 (𝑡) 𝑑𝑡

= 𝑥1 + 𝑥2 + · · · + 𝑥10

𝑠(10) =
∫ 10

0
𝑠′(𝑡) 𝑑𝑡

=
19
2
𝑥1 +

17
2
𝑥2 +

15
2
𝑥3 + · · · + 1

2
𝑥10

the two functions are linear: 𝑓 (𝑥) = 𝑎𝑇𝑥 and 𝑔(𝑥) = 𝑏𝑇𝑥 with

𝑎 = (19
2
,

17
2
, . . . ,

3
2
,

1
2
), 𝑏 = (1, 1, . . . , 1)
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Affine function

a function 𝑓 : R𝑛 → R is affine if it satisfies

𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦)

for all 𝑛-vectors 𝑥, 𝑦 and all scalars 𝛼, 𝛽 with 𝛼 + 𝛽 = 1

Extension: if 𝑓 is affine, then

𝑓 (𝛼1𝑢1 + 𝛼2𝑢2 + · · · + 𝛼𝑚𝑢𝑚) = 𝛼1 𝑓 (𝑢1) + 𝛼2 𝑓 (𝑢2) + · · · + 𝛼𝑚 𝑓 (𝑢𝑚)

for all 𝑛-vectors 𝑢1, . . . , 𝑢𝑚 and all scalars 𝛼1, . . . , 𝛼𝑚 with

𝛼1 + 𝛼2 + · · · + 𝛼𝑚 = 1
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Affine functions and inner products

for fixed 𝑎 ∈ R𝑛, 𝑏 ∈ R, define a function 𝑓 : R𝑛 → R by

𝑓 (𝑥) = 𝑎𝑇𝑥 + 𝑏 = 𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑛𝑥𝑛 + 𝑏

i.e., an inner-product function plus a constant (offset)

• any function of this type is affine: if 𝛼 + 𝛽 = 1 then

𝑎𝑇 (𝛼𝑥 + 𝛽𝑦) + 𝑏 = 𝛼(𝑎𝑇𝑥 + 𝑏) + 𝛽(𝑎𝑇 𝑦 + 𝑏)

• every affine function can be written as 𝑓 (𝑥) = 𝑎𝑇𝑥 + 𝑏 with:

𝑎 = ( 𝑓 (𝑒1) − 𝑓 (0), 𝑓 (𝑒2) − 𝑓 (0), . . . , 𝑓 (𝑒𝑛) − 𝑓 (0))
𝑏 = 𝑓 (0)
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Affine approximation

first-order Taylor approximation of differentiable 𝑓 : R𝑛 → R around 𝑧:

𝑓 (𝑥) = 𝑓 (𝑧) + 𝜕 𝑓

𝜕𝑥1
(𝑧) (𝑥1 − 𝑧1) + · · · + 𝜕 𝑓

𝜕𝑥𝑛
(𝑧) (𝑥𝑛 − 𝑧𝑛)

• generalizes first-order Taylor approximation of function of one variable

𝑓 (𝑥) = 𝑓 (𝑧) + 𝑓 ′(𝑧) (𝑥 − 𝑧)

• 𝑓 is a local affine approximation of 𝑓 around 𝑧

• in vector notation: 𝑓 (𝑥) = 𝑓 (𝑧) + ∇ 𝑓 (𝑧)𝑇 (𝑥 − 𝑧) where

∇ 𝑓 (𝑧) =
(
𝜕 𝑓

𝜕𝑥1
(𝑧), 𝜕 𝑓

𝜕𝑥2
(𝑧), . . . , 𝜕 𝑓

𝜕𝑥𝑛
(𝑧)

)
the 𝑛-vector ∇ 𝑓 (𝑧) is called the gradient of 𝑓 at 𝑧
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Example with one variable

𝑧

𝑓 (𝑥)

𝑓 (𝑥)

𝑓 (𝑥) = 𝑓 (𝑧) + 𝑓 ′(𝑧) (𝑥 − 𝑧)
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Example with two variables

𝑓 (𝑥1, 𝑥2) = 𝑥1 − 3𝑥2 + 𝑒2𝑥1+𝑥2−1

Gradient

∇ 𝑓 (𝑥) =
[

1 + 2𝑒2𝑥1+𝑥2−1

−3 + 𝑒2𝑥1+𝑥2−1

]

First-order Taylor approximation around 𝑧 = 0

𝑓 (𝑥) = 𝑓 (0) + ∇ 𝑓 (0)𝑇 (𝑥 − 0)
= 𝑒−1 + (1 + 2𝑒−1)𝑥1 + (−3 + 𝑒−1)𝑥2
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Regression model

𝑦̂ = 𝑥𝑇 𝛽 + 𝑣 = 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 + 𝑣

• 𝑥 is feature vector

• elements 𝑥𝑖 are regressors, independent variables, or inputs

• 𝛽 = (𝛽1, . . . , 𝛽𝑝) is vector of weights or coefficients

• 𝑣 is offset or intercept

• coefficients 𝛽1, . . . , 𝛽𝑝, 𝑣 are the parameters of the regression model

• 𝑦̂ is prediction (or outcome, dependent variable)

• regression model expresses 𝑦̂ as an affine function of 𝑥
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Example: house price regression model

𝑦̂ = 54.4 + 148.73𝑥1 − 18.85𝑥2

• 𝑦̂ is predicted selling price in thousands of dollars

• 𝑥1 is area (1000 square feet); 𝑥2 is number of bedrooms

House 𝑥1 (area) 𝑥2 (beds) 𝑦 (price) 𝑦̂ (prediction)

1 0.846 1 115.00 161.37
2 1.324 2 234.50 213.61
3 1.150 3 198.00 168.88
4 3.037 4 528.00 430.67
5 3.984 5 572.50 552.66
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Example
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scatter plot shows sale prices for 774 houses in Sacramento
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Complex numbers

Complex number: 𝑥 = 𝛼 + j𝛽 with 𝛼, 𝛽 real scalars

• j =
√
−1 (more common notation is 𝑖 or 𝑗 )

• 𝛼 is the real part of 𝑥, denoted Re 𝑥

• 𝛽 is the imaginary part, denoted Im 𝑥

set of complex numbers is denoted C

Modulus and conjugate

• modulus (absolute value, magnitude): |𝑥 | =
√︃
(Re 𝑥)2 + (Im 𝑥)2

• conjugate: 𝑥 = Re 𝑥 − j Im 𝑥

• useful formulas:

Re 𝑥 =
𝑥 + 𝑥

2
, Im 𝑥 =

𝑥 − 𝑥
2j

, |𝑥 |2 = 𝑥𝑥
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Polar representation

nonzero complex number 𝑥 = Re 𝑥 + j Im 𝑥 can be written as

𝑥 = |𝑥 | (cos 𝜃 + j sin 𝜃) = |𝑥 |𝑒j𝜃

• 𝜃 ∈ [0, 2𝜋) is the argument (phase angle) of 𝑥 (notation: arg 𝑥)

• 𝑒j𝜃 is complex exponential: 𝑒j𝜃 = cos 𝜃 + j sin 𝜃

real axis

imaginary axis

|𝑥 |

Re 𝑥

Im 𝑥

arg 𝑥

𝑥
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Complex vector

• vector with complex elements: 𝑎 = 𝛼 + j𝛽 with 𝛼, 𝛽 real vectors

• real and imaginary part, conjugate are defined componentwise:

Re 𝑎 = (Re 𝑎1,Re 𝑎2, . . . ,Re 𝑎𝑛)
Im 𝑎 = (Im 𝑎1, Im 𝑎2, . . . , Im 𝑎𝑛)
𝑎̄ = Re 𝑎 − j Im 𝑎

• set of complex 𝑛-vectors is denoted C𝑛

• addition, scalar/componentwise multiplication defined as in R𝑛:

𝑎 + 𝑏 =


𝑎1 + 𝑏1
𝑎2 + 𝑏2
...

𝑎𝑛 + 𝑏𝑛

 , 𝛾𝑎 =


𝛾𝑎1
𝛾𝑎2
...
𝛾𝑎𝑛

 , 𝑎 ◦ 𝑏 =


𝑎1𝑏1
𝑎2𝑏2
...

𝑎𝑛𝑏𝑛


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Complex inner product

the inner product of complex 𝑛-vectors 𝑎, 𝑏 is defined as

𝑏𝐻𝑎 = 𝑏̄1𝑎1 + 𝑏̄2𝑎2 + · · · + 𝑏̄𝑛𝑎𝑛

• a complex scalar

• meaning of superscript 𝐻 will be explained when we discuss matrices

• other notation: ⟨𝑎, 𝑏⟩, (𝑎 | 𝑏), . . .

• for real vectors, reduces to real inner product 𝑏𝑇𝑎
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Properties

for complex 𝑛-vectors 𝑎, 𝑏, 𝑐 and complex scalars 𝛾

• 𝑎𝐻𝑎 ≥ 0: follows from

𝑎𝐻𝑎 = 𝑎̄1𝑎1 + 𝑎̄2𝑎2 + · · · + 𝑎̄𝑛𝑎𝑛
= |𝑎1 |2 + |𝑎2 |2 + · · · + |𝑎𝑛 |2

• 𝑎𝐻𝑎 = 0 only if 𝑎 = 0

• 𝑏𝐻𝑎 = 𝑎𝐻𝑏

• 𝑏𝐻 (𝛾𝑎) = 𝛾(𝑏𝐻𝑎)
• (𝛾𝑏)𝐻𝑎 = 𝛾̄(𝑏𝐻𝑎)
• (𝑏 + 𝑐)𝐻𝑎 = 𝑏𝐻𝑎 + 𝑐𝐻𝑎
• 𝑏𝐻 (𝑎 + 𝑐) = 𝑏𝐻𝑎 + 𝑏𝐻𝑐
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Floating point operation

Floating point operation (flop)

• the unit of complexity when comparing vector and matrix algorithms

• 1 flop = one basic arithmetic operation (+, −, ∗, /, √, . . . ) in R or C

Comments: this is a very simplified model of complexity of algorithms

• doesn’t distinguish between the different types of arithmetic operations

• doesn’t distinguish between real and complex arithmetic

• ignores integer operations (indexing, loop counters, . . . )

• ignores cost of memory access (the main limiting factor for performance)

• ignores speedup from parallel hardware

Vectors 1.38



Complexity

Operation count (flop count)

• total number of operations in an algorithm

• in linear algebra, typically a polynomial of the dimensions in the problem

• a crude predictor of run time of the algorithm:

run time ≈ number of operations (flops)
computer speed (flops per second)

Dominant term: the highest-order term in the flop count

1
3
𝑛3 + 100𝑛2 + 10𝑛 + 5 ∼ 1

3
𝑛3

Order: the power in the dominant term

1
3
𝑛3 + 10𝑛2 + 100 = order 𝑛3
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Examples

complexity of vector operations in this lecture (for vectors of size 𝑛)

• addition, subtraction: 𝑛 flops

• scalar multiplication: 𝑛 flops

• componentwise multiplication: 𝑛 flops

• inner product: 2𝑛 − 1 ∼ 2𝑛 flops

these operations are all order 𝑛
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