L. Vandenberghe ECE236C (Spring 2022)

7. Accelerated proximal gradient methods

e Nesterov's method
e analysis with fixed step size

e line search
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Proximal gradient method

Results from lecture 4

e each proximal gradient iteration is a descent step (page 4.14 and 4.16):

2 2
S (Xre1) < fxg), k41 — 2115 < ¢ llxg —x*13

withc=1-m/L

e suboptimality after k iterations is O(1/k) (page 4.15):

£ = F* < i — x|

Accelerated proximal gradient methods

e to improve convergence, we add a momentum term
e we relax the descent properties

e originated in work by Nesterov in the 1980s
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Assumptions

we consider the same problem and make the same assumptions as in lecture 4:
minimize f(x) = g(x) + h(x)

e /1 is closed and convex (so that prox,,, is well defined)

e ¢ is differentiable with dom g = R"

e there exist constants m > 0 and L > O such that the functions

m L 7

g -2, SaTx - g(x)
are convex

e the optimal value f* is finite and attained at x* (not necessarily unique)
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Nesterov’s method

choose xg = vg and 6y € (0, 1], and repeat the following steps for k = 0,1, ...

e if kK > 1, define 6} as the positive root of the quadratic equation

62 62
k= (1 —0r)yr + mOy, where y; = k=l
Tk Tk—1

e update x; and vy as follows:

OrYk .
y = Xxp+ (vk — xk) (y =xoif k =0)
Yk + mHk
Xkl = Pprox u(y — 1xVg(y))
1
Vk+l = Xp+ 9_(xk+1 — Xk)
k

stepsize ¢ is fixed (t; = 1/L) or obtained from line search
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Momentum interpretation

e the first iteration (k = 0) is a proximal gradient step at y = x

e next iterations are proximal gradient steps at extrapolated points y:

Ok Yk
y =Xxg + (vk — xXk) = X + Br(xf — xXk-1)
Vi + mby
where
8y = Ok Yk ( 1 1) _ 1ifk-1 (1 — k1)
Vi +mOy \Or_1 ti—10 + tk@%—l

X+l = Prox, ,(y — 16 Vg(y))

Xi-1 ;'k Y =xg + Br(xx — xp-1)
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Parameters 6, and ;. (for fixed stepsizer, = 1/L = 1)

0.6
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Parameter 0;

e for k > 1, 6 is the positive root of the quadratic equation

02 02
_k = (1 — Qk)ﬂ +m9k
Ik lk-1

e if m > 0 and 0y = \/mtgy, then 0; = \Vmt; for all k
o O < lifmr; <1

e for constant 7, sequence 6 is completely determined by 6
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FISTA

if we take m = 0 on page 7.4, the expression for y simplifies:

y = xg+0r(vrp —xp)
Xp+l = Prox, ,(y — 1xVg(y))
1
Vk+1 = Xg+ H_(Xk+1 — Xk)
k

eliminating the variables p(k) gives the equivalent iteration

1

y = Xk+9k(m—1)(Xk—Xk—1) (y =xoif £ =0)

X+l = Pprox, ,(y — 1 Vg(y))

this is known as FISTA (Fast lterative Shrinkage-Thresholding Algorithm)
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Example
N L T
minimize log X exp(a; x + b;)
i=1

e two randomly generated problems with p = 2000, n = 1000
e same fixed step size used for gradient method and FISTA

o figures show (f(x(K)) — %)/ f*

10— 10—
g — gradient || g — gradient ||
10_1; — FISTA || 10_1: — FISTA ||
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A simplification for strongly convex problems

e if m > 0 and we choose 6y = \/mtp, then

Yk = m, 0, = Vmty, forall k > 1

e the algorithm on page 7.4 and page 7.5 simplifies:

y = xp+ Vie 1- mtk_l(Xk—Xk 1) (y=xifk=0)
Vir—1 1+ mit; -
Xp+1 = Prox, ,(y — 1xVg(y))

e with constant stepsize ¢, = 1/L, the expression for y reduces to

1 —+m/L _
y =Xk + (xk —xk-1) (Y =x0ifk =0)
1 ++m/L
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Outline

e Nesterov’'s method
e analysis with fixed step size

e line search



Overview

e we show that if t; = 1/L, the following inequality holds at iteration i:

Yi+1
2

2
i1 = x* (5

f(xip1) = [+
Yi+l — mb;

< (1=0)(f(xi)— f™)+ 5

(=0 () =+ Do =x*13)  ifi> 1

2
loi = x* 1l

e combining the inequalities fromi = 0toi = kK — 1 shows that

fa) -1 < A ((1 ~ 00)(f (x0) ~ ) + L2 g - x*||§)

62
< A ((1 —00)(f(x0) — f™) + 2—::)”)60 — X*llg)
where 41 =1 and 4; = Hl’.‘:‘ll(l —0;) fork > 1

(here we assume xp € dom f)
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Notation for one iteration

quantities in iteration i of the algorithm on page 7.4

o definet=1t;, 0 =0;,y" =7y =0/t
e ifi > 1, define vy = y; and note that y* — mf = (1 — )y

e define x = x;, x* = x;41, v =v;, and v = v;41:

1
y = 7/_I_mé)()/er+9*yv) (y=x=vifi =0)
XU o= y—1G(y)
1
+  _ o (xt =
v X H(X X)

e 0", v,and y are related as
YT =yTv+ml(y —v) - 0G(y)
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Proof (last identity):

e combine v and x updates and use y*© = 6% /t:

vt = H%(y—tGr(y)—x)
= (- (1-00) - 2G,()
Y

e fori =0, the equation (1) follows because y =x =v
e fori > 1, multiply with y*™ = v + m6 — 0y:

+

Yt = Ty = (1-0)0) - 6G(y)
(1-0)

= — ((y + m@)y —y*x) + Omy — 6G(y)

= (1-=0)yv+0my—0G;(y)
= (y"—mb)yv+0my —0G(y)
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Bound on objective function

recall the results on the proximal gradient update (page 4.12):

e if0 <t <1/Ltheng(x¥)=g(y—1tG:(y)) is bounded by
8" < 80 = 19800 Gy + 51613 )

e if the inequality (2) holds, then mtr < 1 and, for all z,

1) 2 £ + 2GR + G0 (2 = )+ 2llz = yIB

e add (1 — ) times the inequality for z = x and 8 times the inequality for z = x*:

FEH = < -0 @) - -G ((1-0)x+6x* -y)

t mo
= 51GW; = - ll* =yl
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Bound on distance to optimum

e it follows from (1) that

+ +
04 04 — mo mo
T ="y = Tl =2ty + G (0) (F 0 = 22y —v)
mO(y" — mo) t mo
ai e M SRy [EAC R S el
y* —mo mo
< T||v—x*||§+9Gt(y)T(X*—U—F()’—U))

t mo
+31G Iy + 1™ = i3

e y*and y are chosen so that (y" — m8)(y —v) = y*(1 — 0)(x — y); hence
+ +
Y k2 Yy —mb
LA — < £
et -1 < TS

t mo
+31G I + I = 13

lo = x*13 + G (y)" (6x* + (1 — 6)x — y)
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Progress in one iteration

e combining the bounds on page 7.14 and 7.15 gives

£ — £+ Lot — 2|2
2 2
¥yt —mo

< (1-0)(f0 - fH+I5—

this is the first inequality on page 7.11

o ifi > 1,weusey™ —mbO = (1-0)y to write this as

+

Y 2
O =+ S =51

< (-0 (F@ -+ 2o -2*1B)
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Analysis for fixed step size
the product A; = Hl’.‘:‘ll(l — 0;) determines the rate of convergence (page 7.11)

e the sequence A satisfies the following bound (proof on next page)

4 4t
A < = (3)

- k—1 k—1
2+y71 3 V2 (VI + 6o 3 VG

e for constant step size and 6y = 1, we obtain

1< —2
K=k 1)2

e with 7o = 1/L, the inequality on page 7.11 shows a 1/k2 convergence rate

2
Ixo — x*113

. 2L
flxp) = f7 < i+ 12
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Proof.

e recall that for k > 1,
Yiel = (1= 0 )ye +6km,  yi =67 [th_

e we first note that 4, < y;/y1; this follows from

/lH.] — (1 . gl)/ll — yl+1 lmﬂl < yl+1
Yi Yi

A

e the inequality (3) follows by combining fromi = 1 to i = k — 1 the inequalities

Aiv1 VA 24V Aiz1
0;
2 VAi+1

0,

2Yis1/71

1
= SVna

IV
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Strongly convex functions

the following bound on Ay is useful for strongly convex functions (m > 0)

o if 0y > \/mty, then 6, > y/mt; for all k and
k—1
A < l_[(l — \mt,;)
i=1

(proof on next page)

e for constant step size r; = 1/L, we obtain
k-1
A < (1 — \/m/L)

e combined with the inequality on page 7.11, this shows linear convergence

k-1
92
flxg) — f* < (1 - \/%) ((1 —00) (f (x0) — ™) + z—t(z)IIXO —x*I
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Proof.

o if 01 > \mty_1,then 0 > \/mty:

02 02
L (1 — Qk)ﬁ + moy
Lk Tk—1

> (1-6)m+mby

= m
o if 09 > \/mty, then 0, > /mt; for all k and

k—1 k—1
=] J(1-6) <] ]A-vmp)
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Outline

e Nesterov’s method
e analysis with fixed step size

e line search



Line search

e the analysis for fixed step size starts with the inequality (2):

g0 = 1G(¥)) < 8(3) ~ V8T G:(») + 511G () I}

this inequality is known to hold for 0 < ¢ < 1/L

e if L is not known, we can satisfy (2) by a backtracking line search:

start at some ¢ := 7 > 0 and backtrack (¢ := Bt) until (2) holds
e step size selected by the line search satisfies ¢ > tnin = min {7, 8/L}
e for each tentative 7, we need to recompute 6y, y, xr41 in the algorithm on p. 7.4

e requires evaluations of Vg, prox,,, and g (twice) per line search iteration
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Analysis with line search

e from page 7.17, if g = 1:

Sl 7 (k4 1)2
v+ % Vi)
=

e from page 7.19, if 8y > mty:

k—1
i=1

e therefore the results for fixed step size hold with 1 /1, substituted for L
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