L. Vandenberghe ECE236C (Spring 2020)

7. Accelerated proximal gradient methods

e Nesterov’'s method
e analysis with fixed step size

e line search

7.1



Proximal gradient method

Results from lecture 4

e each proximal gradient iteration is a descent step (page 4.15 and 4.17):

2 2
fxre1) < fxp), [xke1 — X515 < ¢ llxg — x™|I5

withc=1-m/L

e suboptimality after k iterations is O(1/k) (page 4.16):

L 2
flxp)— f* < ﬁllxo - x*|3

Accelerated proximal gradient methods

e to improve convergence, we add a momentum term
e we relax the descent properties

e originated in work by Nesterov in the 1980s
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Assumptions

we consider the same problem and make the same assumptions as in lecture 4:
minimize f(x) = g(x) + h(x)

e /1 is closed and convex (so that prox,,, is well defined)

e g is differentiable with dom g = R”

e there exist constants m > 0 and L > 0 such that the functions

L
g(x) — ﬂxTx, "yl - g(x)

2 2
are convex

e the optimal value f* is finite and attained at x* (not necessarily unique)
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Nesterov’s method

choose xg = vg and 8y € (0, 1], and repeat the following steps for k = 0,1, . ..

e if kK > 1, define 8} as the positive root of the quadratic equation

82 62

k _ _ k-1
— = (1 — Hk))/k + mo, where y, = —
Ik k-1

e update x; and v, as follows:

Ok vk

y = xi+ (vk — xi) (y =xpif k =0)
Vi + m0y,
Xk+1 = Prox, (v — % Vg(y))
1
Vk+1 = Xk + H_(xk+1 — Xk)
k

stepsize ¢y, is fixed (1, = 1/L) or obtained from line search
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Momentum interpretation

e the first iteration (k = 0) is a proximal gradient step at y = xg

e next iterations are proximal gradient steps at extrapolated points y:

Ok vk
y = Xi + (v — xk) = xp + Br(xk — xk—1)
Yi + m@k
where
By = Ok Yk ( 1 1) _ k11 — k1)
Vi + ml; \Or_1 t—10) + tkg%—l

Xk+1 = Prox, ,(y — % Vg(y))

Xp1 tx'k y = xg + Br(xx — xr-1)
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Parameters 6, and ;. (for fixed stepsize 1, = 1/L = 1)
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Parameter 6,

e for k > 1, 0y is the positive root of the quadratic equation

62 62
* =1 -0 +me,
Tk k-1

e if m > 0and 0y = \mty, then 0, = \/mt; for all k
o O <lifmt, <1

e for constant 7, sequence 6}, is completely determined by 6
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FISTA

if we take m = 0 on page 7.4, the expression for y simplifies:

y = Xxi+0i(vk — xk)
Xk+1 = ProxXg, (v — % Vg(y))
1
Vk+1 = Xk + Q—(Xk+1 — Xk)
k

eliminating the variables p(k) gives the equivalent iteration

1 .
y = X+ Hk(m - D(xk —xk=1) (y=xpif k =0)

Xk+l = Prox, ,(y — 4 Vg(y))

this is known as FISTA (Fast Iterative Shrinkage-Thresholding Algorithm)
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e two randomly generated problems with p = 2000, n = 1000

e same fixed step size used for gradient method and FISTA

Example

p
minimize log X exp(aj x + b;)
i=1

o figures show (f(x®)) — f*)/f*

— gradient

— FISTA ||

1076 ———————
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A simplification for strongly convex problems

e if m > 0 and we choose 0y = /mty, then

Yk = m, O, = Vmty, forall k > 1

e the algorithm on page 7.4 and page 7.5 simplifies:

Vi 1 —~mtr_q _
= Xt Xf — Xk— =x0ifk=0
Xp+l = Prox, ,(y — 4 Vg(y))

e with constant stepsize t;, = 1/L, the expression for y reduces to

1 —+m/L _
y = Xxi + (X —xk=1) (Y =x0ifk =0)
1 ++/m/L

Accelerated proximal gradient methods

7.10



Outline

e Nesterov’'s method
e analysis with fixed step size

e line search



Overview

e we show that if t; = 1/L, the following inequality holds at iteration i:

Yi+l
Fi) = >+ 2 o = x5
Yi+1 — mb;
< (1=0)(f(x) = f*) + = lloi = x*3

(=00 (FO0) = £+ Sloi = x* 1) ifi> 1

e combining the inequalities fromi = 0toi = k — 1 shows that

fo) - f* < & ((1 - B0)(F(x0) — ) + L0y - x*||§)

% )
< A ((1 —00)(f(x0) — f*) + z—m”xo - X*Hz)

where 2 = 1 and A, = [T¥'(1 - 6;) for k > 1

(here we assume xg € dom f)
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Notation for one iteration

quantities in iteration i of the algorithm on page 7.4

o definet =1;, 0 =0;, vyt =v;y = 0%/t
e ifi > 1, define y = y; and note that y* — mé@ = (1 — 6)y

o define x = x;, x™ = xj41, v =v;, and v = vj41:

1
y = y+m9(y+x+9yv) (y=x=vifi =0)
xt o= y—tG(y)
1
+ 4 (xT —
v X H(X X)

e 0", v,and y are related as
Yy ot =y"T0 +mb(y —v) - 6G(y)
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Proof (last identity):

e combine v and x updates and use y* = 62 /t:

= x (= 1Gi) )
= (= (1-00) - 56
Y

e fori = 0, the equation (1) follows because y = x = v

e fori > 1, multiply with y* =y + mé — 0vy:

vt = - (1-00 - 0G)

= 0+ moyy )+ my — 6G ()

= (1-=0)yv+0my—0G(y)
= (y" —mB)yv + 0my — 6G(y)
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Bound on objective function

recall the results on the proximal gradient update (page 4.13):

e if0 <t <1/Ltheng(x") = g(y—1tGs(y))is bounded by
8(*) < 800 - (Vg Gi() + 51GI3 )

e if the inequality (2) holds, then mt < 1 and, for all z,

1@ 2 f() + SIGOIE + G (2 = y) + 2z = yI3

e add (1 — ) times the inequality for z = x and 6 times the inequality for z = x™*:

fEH - < A-0Fx) - -G ((1-60)x+6x*-y)

! 2) mo * 2)
- SNGIE - 1 = y13
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Bound on distance to optimum

e it follows from (1) that

+ +
0% v" —m6 mo
ot =%y = Tl = I+ 06 () (¢ -0 = T2 —0))
mO(y* — mb) , , ml )
— Iy = ol + NGO + T =yl
y* —mb

IA

mo
7o =31y +6G() (3 0 =2y ~0))

t mo
+SIGOIB + 115" = 13

e y* and y are chosen so that 8(y™ — m8)(y —v) = y*(1 — 6)(x — y); hence
- -

— mb

7_||v+ _ x*ll% < Yy —mv

> < . lo = x*|13 + G(»)" (6x* + (1 - O)x — y)

t mo
+S1GIE + = llx* =yl
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Progress in one iteration

e combining the bounds on page 7.14 and 7.15 gives

+_*7’_++_*2
FE) =1+ o™ - 21

< (=00 -+ 20 -2

2
this is the first inequality on page 7.11

o ifi > 1, weusey" —mb = (1 - 0)y to write this as

+ *7++ * 112
F) = £+ Lot - 213

< (-0 (@) =1+ 2 - 2*1B)
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Analysis for fixed step size
the product A; = Hfz‘ll(l — 0,) determines the rate of convergence (page 7.11)

e the sequence A satisfies the following bound (proof on next page)

4 419
A < = (3)

- k—1 k—1
Q+V7T Z VB (2vig+60 5 VB

e for constant step size and 6y = 1, we obtain

A < 4
k_(k+1)2

e with 7y = 1/L, the inequality on page 7.11 shows a 1/k? convergence rate

2
1x0 — ™|l

. 2L
fOx) = f7 < TERE
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Proof.

e recall that for k > 1,
Yir1 = (1 =0 )yr + Oem, v = H%_l/tk—l

e we first note that A; < yi/v1; this follows from

dir = (1= 0)1; = Yi+1 lmﬂi < yHl/li

Vi Vi

e the inequality (3) follows by combining fromi = 1toi = k — 1 the inequalities

L A=A

Ait1 \/71 2/11' V/li+1
0;
2V 41
0;
2\vis1/71

1
= Vi
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Strongly convex functions

the following bound on Ay, is useful for strongly convex functions (m > 0)

o if 69 > /mty, then 8, > /mt; for all k and
k—1
A < l—[(l — \/mt,;)
i=1

(proof on next page)

e for constant step size ¢, = 1/L, we obtain
k—1
A < (1 — \/m/L)

e combined with the inequality on page 7.11, this shows linear convergence

* m o * 9(% *112
Jxp) = 7 < 1—\/% (1—90)(f(XO)—f)+2—tOIIXO—x 15
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Proof.

o if0r_1 > \mt;_1,then 8, > \mty:

62 62
I €y L= A
Ik Tk—1

> (1 —=6r)m+ mby

= m
o if 89 > /mty, then 6, > /mt; for all k and

k-1 k-1
=] ]0-6) <] ] -vmy)
i=1 i=1
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Outline

e Nesterov’s method
e analysis with fixed step size

e line search



Line search

e the analysis for fixed step size starts with the inequality (2):

80x = 1G,(y) < g0) = 198V Gy(3) + SIGiVI3

this inequality is known to hold forO <t < 1/L

e if L is not known, we can satisfy (2) by a backtracking line search:

start at some ¢ := 7 > 0 and backtrack (7 := £t) until (2) holds
e step size selected by the line search satisfies r > tnin = min {7, B/L}
e for each tentative 7, we need to recompute 6y, v, xi41 in the algorithm on p. 7.4

e requires evaluations of Vg, prox,,, and g (twice) per line search iteration
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Analysis with line search

e frompage 7.17, if 6y = 1:

k=l 7 (k+ 1)
yio+ 2 VB)
1=

e from page 7.19, if 8y > /mty:

k-1
A < 1_[(1 - \/m_tl) < (1 - le‘min)k_1
i=1

e therefore the results for fixed step size hold with 1/t substituted for L
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