L. Vandenberghe EE236A (Fall 2013-14)

Lecture 14
Barrier method

e centering problem

e Newton decrement

e local convergence of Newton method
e short-step barrier method

e global convergence of Newton method

e predictor-corrector method
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Centering problem

centering problem (with notation and assumptions of page 13-12)

minimize fi(z) = tcl'x + ¢(x)

o O(x)=—> 1" log(b; — a} x) is logarithmic barrier of Az <
e minimizer x is point x*(t) on central path
e minimizer is m/t-suboptimal solution of LP:

char(t) —p* < %

barrier method(s):

use Newton's method to (approximately) minimize f;, for a sequence of ¢

Barrier method

14-2



Properties of centering cost function

gradient and Hessian
Vfi(x) =tc+ Ald,, V2fi(z) = A" diag(d,)*A
dy = (1/(b1 —afx),...,1/(bm — al,z)) is a positive m-vector

(strict) convexity and its consequences (see pages 13—6 and 13-9)

o V2f;(x) is positive definite for all x € P°

e first order condition:

fi(y) > fu(z) + Vi(z) (v — ) for all x,y € P° with x # vy

e x minimizes f; if and only if V fi(x) = 0; if minimizer exists, it is unique
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Lower bound for centering problem

centering problem is bounded below if dual LP is strictly feasible:

fily) > —tb' 2z + Zlog zi +mlogt+m forall y € P°
i=1

here z can be any strictly dual feasible point (AY2z 4+ ¢c=10, 2 > 0)

proof: difference of left- and right-hand sides is

t(chy 4+ b'2) Zlog t(b; — al y)z) —

= t(b— Ay)lz - Z log(t(b; — al y)z;) —m

i=1
0 (since u —logu — 1 > 0)

1V
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Newton method for centering problem

Newton step for f; at x € P° = {y | Ay < b}

Azy = —V2fi(x) ' Vi)
= —V%p(x) " L(tc + Vo(x))
—  — (AT diag(d,)?A) " (tc+ ATd,)

Newton iteration: choose suitable stepsize @ and make update

T =T+ aAxpt

we will show that Newton method converges if f; is bounded below
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Newton decrement

the Newton decrement at x € P° is

1/2

Ae(x) (Ax;‘lptVqu(az)Axnt)

= || diag(d;)AAx||
= ||Azp[s

o —)\;(x)? is the directional derivative of f; at x in the direction Az ;:

() = Vii(z) Axy = %ft(x + aAzy)

a=0

e \i(z) =0 if and only if x = x*(¢)

e we will use A\¢(x) to measure proximity of x to x*(¢)
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Dual feasible points near central path

on central path (p. 13-15): strictly dual feasible point from x = x*(¢)

* * ]- .
25 (t) = —dy, Z'(t):t(b-—aTx)’ i=1,...,m

)

near central path: for z € P° with \;(z) < 1, define

1
z = -
t

(dw + diag(dx)zAAa;nt)

e Aux, is the Newton step for f; at x

e 2 is strictly dual feasible (see next page); duality gap with x is

(b— Ax)'z =

m + dL AAz < (1 N )\t(:c)> m
t vm )t
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proof:

e by definition, Newton step Ax,; at = satisfies
AT diag(dm)ZAAa:nt — —tc— Ald,

therefore z satisfies the equality constraints A”z +¢c =0

e z > 0 if and only if

1 + diag(d,)AAxy >0
a sufficient condition is \;(x) = || diag(d,) AAzy| < 1

e bound on duality gap follows from Cauchy-Schwarz inequality
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Lower bound for centering problem near central path

e substituting the dual z of p.14—7 in the lower bound of p.14—4 gives

m

fi(y) > fi(x) — Z(wz — log(1 + w;)) Yy € P°

i=1
where w; = (al Axyni)/(b; — al'x)

e this bound holds if A\;(z) < 1; a simpler bound holds if A;(x) < 0.68:

0.8
n 07y — log(1 + w)
fily) > fi(x) — Z w? 06l u?
1=1 0.5r )
— ft(a?) — )\t(ZC)Z Z:
0.2r
(since u — log(1 + u) < u® for |u| < 0.68) 0.1/
91 —015 0:5 1

'’
/
Sor
\
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Quadratic convergence of Newton’s method

theorem: if \;(x) < 1 and Ax, is Newton step of f; at x, then

vt =2+ Axy € P°, M(2T) < A(2)?

Newton method (with unit stepsize)
D = 200 _ 92 £, (071 £, (2()
o if \(2(?)) < 1/2, Newton decrement after k iterations is
M) < (1/2)
decreases very quickly: (1/2)2" =2.3-10710, (1/2)2° =5.4-10"2°, . ..

o M\ (z*)) very small after a few iterations
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proof of quadratic convergence result
feasibility of z7: follows from \;(x) = ||Azy||» and result on p.13-7

quadratic convergence: define D = diag(d,), D+ = diag(d,+)

)\t(x+)2 D, A A:U;[tHQ

DyAAzS|? + /(I — DT'D)DA Axy, + Dy AAx |
(I — D7"D)DA Ay

(I — D;'D)*1)?

(I - D:'D)1|*

DA Az |2

Ae(2)?

i IA

VAN
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e on lines 4 and 6 we used

DAAx,, = D({b—Ax —b+ Ax™)
= (I-D;'D)

e line 3 follows from

A'"D. (DiAAzf + (I — Dy'D)DA Axzy)
= A'DIAAzf — A"D*AAxy + A" DDA Ay
= —tc— ATD 1 +tc+AT"D1+ ATD, (I - D;'D)1
= 0

e line 5 follows from (ZZ yf) < (Zz 93)2

Barrier method
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Short-step barrier method

simplifying assumptions

e a central point z*(%() is given

e 1*(t) is computed exactly

algorithm: define tolerance ¢ € (0,1) and parameter

p=14

2/ m
starting at ¢ = tg, repeat until m/t < e:

e compute x*(ut) by Newton's method with unit step started at x*(t)

o set ¢ := ut
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Newton decrement after update of ¢

e gradient of f,+ at x = x*(¢) for new value t1 = put:

Vf(x) = pte+ Ald, = —(n — 1)A%d,

e Newton decrement for new value tT is

(Vi (2) TV 2(2) 1V fa ()7
(n—1)(1TB(BTB)"'BT1)"?
(k= 1)vm

1/2

At ()

(with B = diag(d,)A)

IA

line 3 follows because maximum eigenvalue of B(BYB)~ 1B is one

z*(t) is in region of quadratic convergence of Newton's method for f,;
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Iteration complexity

e Newton iterations per outer iteration: a small constant

e number of outer iterations: we reach t*) = ;/Ftq > m /e when

log(m/(eto))

k>
— logu

cumulative number of Newton iterations

o (vimes (37))
(we used log pu =log(1 +1/(2y/m)) = (log 2)/(2y/m))

e multiply by flops per Newton iteration to get polynomial complexity

e /m dependence is lowest known complexity for interior-point methods

Barrier method 14-15



Outline

centering problem

Newton decrement

local convergence of Newton method
short-step barrier method

global convergence of Newton method

predictor-corrector method



Maximum stepsize to boundary

for x € P° and arbitrary v # 0, define

0 if Av <0
0(v) = e a; v
T

, otherwise
1=1,....m bz —a; T

point x + av (a > 0) is in P if and only if ao,(v) <1

r+ av € P for

a€l0,1/0] ifo>0
a € |0,00) ifo=0
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Upper bound on centering cost function

arbitrary direction: for x € P° and arbitrary v £ 0

o fc =0,(v)>0and a€l0,1/0):

lv

2
filx + av) < fi(z) + ant(as)Tv _ 0!;1;

(ao + log(1 — o))
e if c =0,(v)=0and a € [0,0):

CVQ

filz 4+ av) < fi(x) + aVfi(z) v + 7“”“3;

on the right-hand sides, ||v||, = (vVTV2f(x)v)/?

Newton direction: for v = Az, substitute —V fi(z)1v = ||v||2 = \¢(2)?
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proof: define w; = (alv)/(b; — al'z) and note that ||w|| = ||v||.

o if o = max; w; > 0:
fi(z + av) — fi(z) — oV fy(z)"v

= Z aw; + log(1 — aw;))
=1

Z aw; + log(1 — aw;)) + Z o

w; >0 w; <0

VAN
<0

VA
|
yE
)
Q
_|_
2
—
|
o
Q
_|_

VA
|
SS
Q
S
_|_
<}
03
—
|
Q
S

e if o =0, upper bound follows from (x)
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Damped Newton iteration

1
+ A
v . —|_ 1 ‘|‘ O-x(Axnt) ot

theorem: damped Newton iteration at any x € P° decreases cost

fe(@™) < fi(z) — Ae(x) +log(1 4+ Ae(x))

e graph shows u — log(1 + u)

fe(z™) < fi(x) —0.09
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proof: apply upper bounds on page 14-17 with v = Ax;

e if 0 > 0, the value of the upper bound

B )\t(l')Q

fo(x) — ad(z)? (ao + log(1 — ao))

o

ata=1/(1+0)is

M@ log(1 4 0)) < fule) — M) + log(1 + Au(x)

fi(z) —

o

e if o =0, value of upper bound
), a7 2
fi(x) — al(x)” + 7)%(:1:)
ataa=11s

Ai()?

fi(z) — 5

< fe(x) — Ae() + log(1 + N\e(z))
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Summary: Newton algorithm for centering

centering problem

minimize  fi(z) = tc! v + ¢(x)

algorithm
given: tolerance 6 € (0,1), starting point = := 2(9) € P°
repeat:

1. compute Newton step Az, at  and Newton decrement \;(x)
2. if A¢(x) <9, return x
3. otherwise, set = := x + aAxy with

1
o = 1 —|_ O-:B(Aajnt)
a=1 if A\ () < 1/2

if Ade(x) >1/2
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Convergence

theorem: if ) < 1/2 and f;(x) is bounded below, algorithm takes at most

fi(2(%) — miny, fi(y)

009 + log, log,(1/6) iterations (1)

proof: combine theorems on pages 14-10 and 14-19

o if \(z(®)) > 1/2, iteration k decreases the function value by at least
Ae (%)) —log(1 — A (%)) > 0.09

e the first term in (1) bounds the number of iterations with A;(x) > 1/2

o if \(2(")) < 1/2, quadratic convergence yields \;(z(*)) < § after

k=14 log,log,(1/9) iterations
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Computable bound on #iterations

replace unknown min, f;(y) in (1) by the lower bound from page 14-4:

fi(x) —min fi(y) < Vi(z, 2)

Yy

where z is a strictly dual feasible point and

Vi(z,z) = fi(x)+ tbl 2 — Z log z; — mlogt —m
i=1

= t(b— Ax)'z — Z log(t(b; — al x)z;) —m

1=1

number of Newton iterations to minimize f; starting at x is bounded by

10.6 Vi(x, z) + log, log,(1/9)
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Predictor-corrector methods

short-step methods

e stay in narrow neighborhood of central path, defined by limit on \;
e make small, fixed increases tT = ut

e quite slow in practice

predictor-corrector methods

e select new t using a linear approximation to central path (‘predictor’)
e recenter with new ¢ (‘corrector’)

e can make faster and adaptive increases in t
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Tangent to central path

central path equation

derivatives: & = dz*(t)/dt, s = ds*/dt, z = dz*(t)/dt satisfy

0] [0 AT [

s | —A 0 z
N N r .
si(t)zq;—l—zz-(t)si:—t—z, i=1,...,m

tangent direction: defined as Az, = t&, Asyy = 15, Az = t2

Barrier method
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Predictor equations

with © = 2*(t), s = s*(t), z = 2*(t)

[ (1/t)diag(s)™® 0 I | [ Asy | [ —z ]
0 0 AT Az | =] 0 (1)
i —1 —A 0 1 L AZtg i i 0 |

equivalent equation (using s;z; = 1/t)

I 0 (1/t)diag(z)™2 | [ Asye | [ —s
0 0 AT Azye | =] 0 (2)
] -1 —A 0 1 L AZtg i i 0 i
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Properties of tangent direction

e from 2nd and 3rd block in (1): As{, Az, =0

e take inner product with s on both sides of first block in (1):

STAZtg + zTAstg — —sl';

e hence, gap in tangent direction is

(s + aAsie)! (2 + alzy) = (1 —a)s’ 2

e take inner product with Asy, on both sides of first block in (1):

As{, diag(s) *Asyg = —tz' Asy,
e similarly, from first block in (2): Az{, diag(z) ?Az,, = —ts" Az,
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Potential function

definition: for strictly primal, dual feasible z, z, define

U(xr,z) = mlog— — Zlog siz;) with s =b— Ax
o Y
([1; zisi)*/™
arithmetic mean of z1s1, ..., ZmSm
= mlog ,
geometric mean of z1S1, ..., S;n2m
properties

e U(x,z) is nonnegative for all strictly feasible z, z

e U(x,z) =0 onlyif x and z are centered, i.e., for some t > 0,

Zisz':l/t, ’iZl,...,m
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Potential function and proximity to central path

for any strictly feasible x, z, with s = b — Aux:

U(x,z) = ItIl>1(I)l Vi(z, 2) (see page 14-23)
_ : r, __ o)
= min (ts z ;log(tszzz) m)

minimizing t is t = m/s’ 2

U as global measure of proximity to central path

e Vi(x,z) bounds the effort to compute x*(¢), starting at = (page 14-23)

e U(x,z) bounds centering effort, without imposing a specific ¢
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Predictor-corrector method with exact centering

simplifying assumptions: exact centering, a central point z*(%() is given

algorithm: define tolerance ¢ € (0, 1), parameter 5 > 0, and initial values
t = to, x = x*(tg), z = 2"(ty), s:=b— Ax*(tp)

repeat until m/t < e:

e compute tangent direction Axty, Aste, Azig at z, s, 2

e determine a by solving ¥ (x + aAzye, 2 + aAzys) = B and take
T =T + ATy, 2= 2 + alz, s:=b— Ax
e set t :=m/(s!z) and use Newton's method to compute
x = x”(t), z = z2%(t), s:=b— Ax
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Iteration complexity

e bound on potential function in tangent direction (proof on next page):
U(x + aAig, 2 + aAzg) < —ay/m —log(1 — ay/m)
e |lower bound on predictor step length a:

ay/m >~ with 7 the solution of —y —log(1 —v) =

e reduction in duality gap after one predictor-corrector cycle:

t il

e bound on total #Newton iterations to reach t(*) > m/e:

()
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proof of bound on U: let sT = s+ aAsiy, 27 = 2 + @z,

e from definition of ¥ and (s™)1 2" = (1 — a)s’ z:

Uzt 2t) — U(z, 2) log 1) 27 Em:(lo I Z’j)
i < — T, 2 = m — - _v
: : . 2 S S
sT ~t
= mlog(l—a)— ;Zl(logs%i + log ziz)

e define a (2m)-vector w = (diag(s) ' Asy,, diag(z) "1 Azy,)

™m 2m

— ) (log(sf /i) +log( /z)) = —) log(l+ ow)

i=1 =1
< —al'w - aljw|| —log(1 — awl|)

last inequality can be proved as on page 14-18
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e from the properties on page 14-27 and s = (1/t)z:

1"w = t(sT Az + 27 Asyy)
= —tslz
= —m
Jw||? = Asz:g diag(s) ?Asgg + Aztg diag(z) Az,
= —t(z" Asgg + 5T Azyy)
= m

e substituting this in the upper bound on V¥ gives

U(xt,27) — U(x, 2)

IA

mlog(l — a) + am — ay/m — log(1 — ay/m)
—ay/m — log(1 — ay/m)

IA
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Conclusion: barrier methods

started at x* (), find e-suboptimal point after

0, (\/ﬁlog (%)) Newton iterations
et

e analysis can be modified to account for inexact centering

e end-to-end complexity analysis must include the cost of phase |

e parameters were chosen to simplify analysis, not for efficiency in practice

Barrier method
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