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Semidefinite program (SDP)

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

variable X is n× n symmetric matrix; X � 0 means X is positive semidefinite

• matrix inequalities arise naturally in many areas (e.g., control, statistics)

• used in convex modeling systems (CVX, YALMIP, CVXPY, . . . )

• relaxations of nonconvex quadratic and polynomial optimization

• in many applications the coefficients Ai, C are sparse

• optimal X is typically dense, even for sparse Ai, C
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Power flow optimization

an optimization problem with non-convex quadratic constraints

Variables

• complex voltages vi at each node (bus) of the network

• complex power flow sij entering the link (line) from node i to node j

Non-convex constraints

• (lower) bounds on voltage magnitudes

vmin ≤ |vi| ≤ vmax

• flow balance equations:

bus i

sij
g

sji

bus j
sij + sji = ḡij|vi − vj|2

gij is admittance of line from node i to j
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Semidefinite relaxation of optimal power flow problem

• introduce matrix variable X = Re(vvH), i.e., with elements Xij = Re (viv̄j)

• voltage bounds and flow balance equations are convex in X :

vmin ≤ |vi| ≤ vmax −→ v2min ≤ Xii ≤ v2max

sij + sji = ḡij|vi − vj|2 −→ sij + sji = ḡij(Xii +Xjj − 2Xij)

• replace constraint X = Re(vvH) with weaker constraint X � 0

• relaxation is exact if optimal X happens to have rank two

Sparsity in relaxation:

off-diagonalXij appears in constraints only if there is a line between buses i and j

(Jabr 2006, Bai et al. 2008, Lavaei and Low 2012, . . . )
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Modeling software

Convex modeling systems (CVX, YALMIP, CVXPY, . . . )

• convert problems stated in standard mathematical notation to conic LPs

• choice of cones is limited by available algorithms and solvers

General-purpose solvers (SDPT3, Sedumi, SDPA, CSDP, DSDP, . . . )

• handle three symmetric cones (linear, quadratic, semidefinite)

• sufficiently general for most convex problems encountered in practice

• reformulation often leads to large, sparse SDPs

• large differences in (linear algebra) complexity between three cones
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SDP with band structure

cost of solving SDP with banded matrices (half bandwidth w = 5, 100 constraints)
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• for w = 0 (linear program), cost/iteration is linear in n

• for w > 0, cost grows as n2 or faster

(from Andersen, Dahl, Vandenberghe 2010)
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Matrix norm minimization

minimize ‖F0 + x1F1 + · · ·+ xmFm‖2 + cTx
subject to 0 ≤ x ≤ 1
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matrices Fi of size
p× q

• q = 1: solved as second-order cone program

• q > 1: semidefinite program with (p+ q)× (p+ q) ‘block-arrow’ sparsity
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Trace norm minimization

minimize ‖Y ‖∗
subject to convex constraints on Y

• ‖Y ‖∗ is sum of singular values (trace norm or nuclear norm)

• popular as a convex optimization method for finding low rank solutions

SDP formulation

minimize (trU + trV )/2

subject to
[

U Y
Y T V

]
� 0

convex constraints on Y

• for larger Y , expensive to solve using general-purpose SDP solvers

• except for matrix inequality, only diagonal entries of U , V are needed
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Exploiting sparsity

1. Symmetric primal-dual interior-point methods

exploit sparsity when forming ‘Schur complement’ equations

2. Non-symmetric interior-point methods (matrix completion methods)

(Fukuda et al. 2000, Burer 2003, Srijuntongsiri et al. 2004, Andersen et al. 2010)

3. Decomposition (combined with interior-point or first-order methods)

(Fukuda et al. 2000, Nakata et al. 2003, Kim et al. 2011, Sun et al. 2014, . . . )

we will discuss approaches 2 and 3
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Chordal graphs

chordal graphs have been studied in many disciplines since the 1960s

• linear algebra (sparse factorization, matrix completion problems)

• combinatorial optimization (a class of ‘perfect’ graphs)

• machine learning (graphical models, Euclidean distance matrices)

• nonlinear optimization (partial separability)

• computer science (database theory)

first used in semidefinite optimization by Fujisawa, Kojima, Nakata (1997)
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Outline

I. Graph theory

• chordal graphs

• tree representations

• graph elimination

II. Sparse matrices

• sparse positive semidefinite matrices

• positive semidefinite completion

• Euclidean distance matrices

III. Optimization

• partial separability

• decomposition

• sparse semidefinite optimization
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Undirected graph

G = (V,E)

• V is a finite set of vertices

• E ⊆ {{v, w} | v, w ∈ V } is the set of edges

• vertices v and w are adjacent if {v, w} ∈ E

• the neighborhood adj(v) of vertex v is the set of vertices adjacent to v

a b

c d

e

• vertices: V = {a, b, c, d, e}

• edges: E = {{a, b}, {a, c}, {a, e}, . . .}

• neighborhood of a: adj(a) = {b, c, e}
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Subgraphs and cliques

the subgraph (induced by)W ⊂ V is

G(W ) = (W,E(W )), E(W ) = {{v, w} ∈ E | v, w ∈W}

• a subgraphW is complete if E(W ) = {{v, w} | v, w ∈W}

• we will use the term clique to mean maximal complete subgraph

a b

c d

e

• subgraph (induced by)W = {a, b, c, d}:

E(W ) = {{a, b}, {b, d}, {c, d}, {a, c}}

• W = {a, b, e} is a clique

• W = {a, b} is complete but not a clique
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Rooted tree

connected, acyclic graph with one vertex designated as root

• parent of vertex v is denoted p(v)

• ancestors are denoted pk(v): p1(v) = p(v), p2(v) = p(p(v)), . . .

• topological ordering: parent follows its children

• postordering: topological, descendants of each vertex numbered consecutively

a

b c d

e f g

h i j

rooted tree

a 10

b 9 c 4 d 8

e 6 f 5 g 7

h 3 i 2 j 1

a topological ordering

a 10

b 4 c 5 d 9

e 1 f 3 g 8

h 2 i 6 j 7

a postordering
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Symmetric sparsity pattern

undirected graphs will be used to represent symmetric sparsity patterns

• n× n pattern is represented by graph G = (V,E) with V = {1, 2, . . . , n}

• symmetric matrix A of order n has the sparsity pattern E if

i 6= j, {i, j} 6∈ E =⇒ Aij = Aji = 0

entries Aij with i = j or {i, j} ∈ E may or may not be zero

• E is not unique (unless all off-diagonal entries of A are nonzero)

• cliques of G correspond to maximal ‘dense’ principal submatrices

A =


A11 A12 A13 0 A15

A21 A22 0 A24 0
A31 0 A33 0 A35

0 A42 0 A44 A45

A51 0 A53 A54 A55


1 2

3 4

5

Chordal graphs 15



I. Chordal graphs

• undirected graphs

• origins

• definition

• clique trees

• perfect elimination

• elimination trees

• supernodes

• graph elimination



Combinatorial properties of graphs

Clique number ω(G): size of largest clique

Clique cover number χ̄(G): minimum number of cliques needed to cover V

Stable set number α(G)

• a subsetW ⊆ V is a stable (independent) set if no vertices inW are adjacent

• stable sets of G are complete subgraphs of the complementary graph

• stable set number α(G) is the size of the largest stable set

• upper bounded by clique cover number: α(G) ≤ χ̄(G)

Coloring number χ(G)

• a vertex coloring is a partitioning of V in stable sets

• coloring number χ(G): minimum number of stable sets in a vertex coloring

• lower bounded by clique number: χ(G) ≥ ω(G)

Chordal graphs 16



Shannon zero-error capacity of a communication channel

• interpret vertices of G = (V,E) as symbols

• edges E connect symbols that can be confused during transmission

• define graph Gk = (V k, Ek): vertices are words of k symbols from V

• edges Ek connect words that can be confused:

{v1v2 · · · vk, w1w2 · · ·wk} ∈ Ek ⇐⇒ ∀i : vi = wi or {vi, wi} ∈ E

• a stable set of Gk is a set of words of length k that cannot be confused

Zero-error capacity (Shannon 1956)

Θ(G) = sup
k
α(Gk)1/k

α(Gk) is stable set number of Gk

Chordal graphs 17



Shannon capacity and chordal graphs

Bounds on Shannon capacity:

α(G) ≤ Θ(G) ≤ χ̄(G)

Perfect graphs (Berge 1963, Lovász 1972)

• graph and all subgraphs satisfy α(G) = χ̄(G) (as well as ω(G) = χ(G))

• definition was inspired by Shannon’s paper

Chordal graphs

• an important class of perfect graphs

• simple greedy algorithms compute α(G), χ̄(G), ω(G), χ(G) (Gavril 1972)

• for general graphs, computing any of these quantities is NP-complete
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Shannon capacity and semidefinite optimization

Lovász bound on Shannon capacity (Lovász 1979)

minimize λmax(S)

subject to Sii = 1, i = 1, . . . , n

Sij = Sji = 1, {i, j} 6∈ E

• optimal value is upper bound on Θ(G)

• an early application of semidefinite relaxation

• can be expressed as a sparse SDP:

minimize 1 + (1/n) trX

subject to X11 = X22 = · · · = Xnn

Xij = Xji = −1, {i, j} 6∈ E
X � 0
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Chorded paths and cycles

a chord is an edge between non-consecutive vertices in a path or cycle

• a one-edge ‘shortcut’ in a path or cycle

• all shortest paths are chordless

a b

c d

e

chorded path

a b

c d

e

chordless path

a b

c d

e

chorded cycle

a b

c d

e

chordless cycle
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Chordal graph

Chordal graph: every cycle of length greater than three has a chord

e

bf

a

d

c

not chordal

e

bf

a

d

c

chordal

• using chords to take ‘shortcuts’, all cycles can be reduced to triangles

• subgraphs of chordal graphs are chordal

also known as rigid circuit graphs, triangulated graphs, decomposable graphs, . . .
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Examples

Trivial: complete graphs, trees, cactus graphs (no cycles of length > 3)

k-trees: constructed recursively

• k-tree with k vertices is complete graph

• to construct k-tree with n+ 1 vertices from k-tree with n vertices:

make new vertex adjacent to a complete subgraph of k vertices

a b

c d

e

f

g a

b

c

d

e

f

two 2-trees
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Minimal vertex separator

Definition: S ⊂ V is a minimal vw-separator if

• v and w are in different connected components of G(V \ S)

• no strict subset of S is a vw-separator

a b

x y z

c d

• {x, y} is a minimal ac-separator

• {y} is a minimal ad-separator

Chordal graphs (Dirac 1961, Buneman 1974)

• a graph is chordal if and only if all minimal vertex separators are complete

• every minimal vertex separator is a subset of at least two cliques
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Example

a chordal graph and all its minimal vertex separators

b

d h

c

e

g

a

f

i

a

b

c

d

e

f

i

h

g

a

b

d hf

c

i

g

e

a

b

c

h

g

f

i

d

e

a

b

d h

g

f

i

c

e

d h

g

a

f

i

b

c

e

Chordal graphs 24



Simplicial vertices

Definition: a vertex v is simplicial if adj(v) is complete

• closed neighborhood {v} ∪ adj(v) is a clique

• {v} ∪ adj(v) is the only clique that contains v

b

d h

c

e

g

a

f

i three simplicial vertices

Chordal graphs (Dirac 1961)

a non-complete chordal graph has at least two non-adjacent simplicial vertices
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Clique tree

Definition: clique tree with the induced subtree property for G = (V,E)

• vertices of clique tree are the cliques of G

• for every v ∈ V , the cliques that contain v form a subtree of the clique tree

a

f

i

b

d h

c

e

g
a, b, c, e

b, c, d, e

f, d, e

c, e, g

h, e, g i, h, g

Chordal graphs (Buneman 1974, Gavril 1974)

G is chordal if and only it has a clique tree with induced subtree property
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Clique separators and residuals

• choose any clique as root of the clique tree; denote parent function as pc(W )

• clique separator and residual of non-root cliqueW are defined as

sep(W ) = W ∩ pc(W ), res(W ) = W \ sep(W )

for the root clique, sep(W ) = ∅ and res(W ) = W

a, b, c, e

b, c, d, e

f, d, e

c, e, g

h, e, g

i, h, g b, c, e

a

c, e

b, d

d, e

f

c, e, g

e, g

h

h, g

i

W = {b, c, d, e}, res(W ) = {b, d}, sep(W ) = {c, e}
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Graph structure from rooted clique tree

• every vertex v belongs to exactly one clique residual res(W )

• if v ∈ res(W ) thenW is the root of the subtree of cliques that contain v

• the clique separators sep(W ) are the minimal vertex separators of the graph

• a vertex is simplicial if it does not belong to any clique separator

b, c, e

a

c, e

b, d

d, e

f

c, e, g

e, g

h

h, g

i

a

f

i

b

d h

c

e

g

a chordal graph has at most n = |V | cliques, n− 1 minimal vertex separators
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Tree intersection graphs

Definition: given a family of subtrees {Rv | v ∈ V } of a tree T

• tree intersection graph G = (V,E) has vertex set V

• {v, w} ∈ E if and only if Rv and Rw intersect

Chordality (Gavril 1974, Buneman 1974)

• a tree intersection graph is chordal

• every chordal graph can be represented as a tree intersection graph

(for example, T is the clique tree, Rv subtree of cliques that contain v)
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Example

tree T

a

b c d

e f g

h i j

tree intersection graph

R1 R2

R3

R4

R5

five subtrees of T

a

R1

b c d

b

R2

e f

h

a

R3

c d

g

d

R4

g

i j

g

R5

i j
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Representing chordal graphs as tree intersection graph

Clique trees

• vertices of T are (maximal) cliques

• Rv is subtree of cliques that contain v

Junction tree (join tree)

• used in machine learning and artificial intelligence

• vertices of T are complete subgraphs (not necessarily maximal)

Elimination tree

• used in sparse matrix algorithms

• discussed later
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Ordered undirected graphs

Gσ = (V,E, σ)

• σ is a bijection from {1, 2, . . . , |V |} to V

• ordering notation: v ≺ w means σ−1(v) < σ−1(w)

a1 b 4

c2 d 3

e 5

a

c

d

b

e

can be represented as annotated graph or triangular array
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Monotone neighborhoods

• higher and lower (monotone) neighborhoods

adj+(v) = adj(v) ∩ {w | w � v}, adj−(v) = adj(v) ∩ {w | w ≺ v}

• the sizes of these sets are called higher and lower degrees:

deg+(v) = |adj+(v)|, deg−(v) = |adj−(v)|

• closed higher and lower neighborhoods

col(v) = {v} ∪ adj+(v), row(v) = {v} ∪ adj−(v)

a

c

d

b

e

adj+(c) = {d, e}, adj−(c) = {a}

deg+(c) = 2, deg−(c) = 1

col(c) = {c, d, e}, row(c) = {c, a}
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Example: ordered symmetric sparsity pattern

• ordered sparsity pattern (V,E, σ) of order 5 with σ = (1, 3, 4, 2, 5)

11 2 4

32 4 3

5 5

1

2

3

4

5

• represents symmetric reordering (Pσ is permutation matrix defined by σ)

PσAP
T
σ =


A11 A31 0 A21 A51

A31 A33 0 0 A53

0 0 A44 A42 A54

A21 0 A42 A22 0
A51 A53 A54 0 A55
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Filled graph

an ordered undirected graph is filled or monotone transitive if

w, z ∈ adj+(v) =⇒ {w, z} ∈ E

the higher neighborhood of every vertex is complete

a1

b2

f

3

i 4

d

5

h

6

c

7

e 8

g

9

a

b

f

i

d

h

c

e

g
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Perfect elimination ordering

σ is a perfect elimination ordering for (V,E) if (V,E, σ) is filled

Chordal graphs (Fulkerson and Gross 1965)

a graph is chordal if and only if it has a perfect elimination ordering

Simplicial elimination: to construct a perfect elimination,

• find a simplicial vertex v and take σ(1) = v

• choose for σ(2), . . . , σ(n) a perfect elimination ordering of G(V \ {v})

Practical algorithms

• algorithms exist that find perfect elimination ordering in O(|V |+ |E|) time

• best known algorithm is Maximum Cardinality Search (Tarjan and Yannakakis 1984)

• can be used to test chordality
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Elimination tree for filled graph

Elimination tree (etree) of filled graph G = (V,E, σ)

• vertices of elimination tree are V

• parent p(v) of vertex v in elimination tree is first vertex in adj+(v)

a

b

f

i

d

h

c

e

g

f

id

h

g

a

b

c

e

• complete pattern cannot be determined from elimination tree

• some useful information, for example, elements of adj+(v) are ancestors of v
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Expanded elimination tree

a

b

f

i

d

h
c

e

g
b, c, e

a

d, c, e

b

d, e

f

h, g

i

c, e

d

e, g

h

e, g

c

g

e

g

• bottom row in each block is a vertex v, top row is adj+(v)

• monotone transitivity means that each set col(v) = {v} ∪ adj+(v) is complete

• therefore adj+(v) ⊆ col(p(v)) for every (non-root) v
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Induced subtree property

vertices in row(v) = {w | v ∈ col(w)} form a subtree of elimination tree

a

b

f

i

d

h
c

g

e
b, c, e

a

d, e

f

d, c, e

b

c, e

d

e, g

h

e, g

c

g

e

h, g

i

g

row(e) = {a, b, f, d, h, c, e}

gives another representation of chordal graph as tree intersection graph
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Higher degrees

since adj+(v) ⊆ col(p(v)), the higher degrees satisfy

deg+(v) ≤ deg+(p(v)) + 1

with equality if adj+(v) = col(p(v))

a

b
f

i

d
h

c
e
g

b, c, e

a
(deg+(a) = 3)

d, e

f
(2)

d, c, e

b
(3)

c, e

d
(2)

e, g

h
(2)

e, g

c
(2)

g

e

(1)

h, g

i
(2)

g
(0)
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Cliques from elimination tree and higher degrees

a
b

e
f
g

j

l

o

c
d

h
i

k

m
n

p
q

c (3)

d (2)

h (2)

i (2)

k (3)

m (3)

n (2)

p (1)

q (0)

a (4) b (2)

e (3) f (2)

g (3) j (4)

l (4)

o (2)

• col(v) is a clique if deg+(w) < deg+(v) + 1 for all children w of v

• if col(v) is a clique, we call v the representative vertex of the clique
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Cliques from elimination tree and higher degrees

c
d

f

h

k

m
n

q

a
b

g

j

l

e

i

o
p

c (3)

d (2)

h (2)

i (2)

k (3)

m (3)

n (2)

p (1)

q (0)

a (4) b (2)

f (2)

g (3) j (4)

l (4)

o (2)

e (3)

• test only needs elimination tree and higher degrees, not the entire graph

• implies that a chordal graph has at most n cliques
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Maximal supernode partition

partition V in maximal supernodes: sets of the form

snd(v) = {v, p(v), p2(v), . . . , pnv(v)}

• first vertex v is a clique representative vertex (col(v) is a clique)

• deg+(pk(v)) = deg+(pk−1(v))− 1 for k = 1, . . . , nv

c (3)

d (2)

h (2)

i (2)

k (3)

m (3)

n (2)

p (1)

q (0)

a (4) b (2)

e (3) f (2)

g (3) j (4)

l (4)

o (2)
snd(a) = {a, c, d}
snd(b) = {b}
snd(e) = {e, i}
snd(f) = {f}
snd(g) = {g, h}
snd(j) = {j, k}
snd(l) = {l,m, n, p, q}
snd(o) = {o}

(Lewis, Peyton, Pothen 1998, Pothen and Sun 1990)
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Nonuniqueness of maximal supernode partition

c (3)

d (2)

h (2)

i (2)

k (3)

m (3)

n (2)

p (1)

q (0)

a (4) b (2)

e (3) f (2)

g (3) j (4)

l (4)

o (2)

snd(o) = {o}
snd(l) = {l,m, n, p, q}

c (3)

d (2)

h (2)

i (2)

k (3)

m (3)

n (2)

p (1)

q (0)

a (4) b (2)

e (3) f (2)

g (3) j (4)

l (4)

o (2)

snd(o) = {o, p, q}
snd(l) = {l,m, n}
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Supernodal elimination tree

elimination tree supernodal elimination tree

c

d

h

i

k

m

n

p

q

a b

e f

g j

l

o

b

a, c, d f g, h

e, i

j, ko

l,m, n, p, q

• vertices are maximal supernodes

• parent of snd(v): supernode that
contains parent (in etree) of last
element of snd(v)
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Clique tree and maximal supernode partition

supernodal elimination tree clique tree

b

a, c, d f g, h

e, i

j, ko

l,m, n, p, q

a
b

e
f
g

j

l

o

c
d

h
i

k

m
n

p
q

c, d

b

e, o

a, c, d

i, p

f

i, o

g, h

o, p

e, i

m, n, q

j, k

p, q

o

l,m, n, p, q

• snd(v) is residual of clique col(v)

• clique separator is col(v) \ snd(v)
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Postordering

c 6

d 7

h 2

i 9

k 12

m 14

n 15

p 16

q 17

a 5 b 4

e 8 f 3

g 1 j 11

l 13

o 10
a

b

c
d
e

f

g
h

i

j
k
l
m
n

o

p
q

based on a supernode partition we can define a new perfect elimination ordering

• elements of each supernode snd(v) are numbered consecutively, starting at v

• if snd(w) is the parent of snd(v) in supernodal elim. tree, then w � v

• hence, vertices in col(v) \ snd(v) follow those in snd(v)

this can be achieved by a postordering of the elimination tree (without changing it)
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Example

c 6

d 7

h 2

i 9

k 12

m 14

n 15

p 16

q 17

a 5 b 4

e 8 f 3

g 1 j 11

l 13

o 10 a
b

c
d
e

f

g
h

i

j
k
l
m
n

o

p
q

col(a) snd(a) col(a) \ snd(a)

vertices v a, c, d, e, o a, c, d e, o
numbers σ−1(v) 5, 6, 7, 8, 9 5, 6, 7 8, 10

Chordal graphs 48



I. Chordal graphs

• undirected graphs

• origins

• definition

• clique trees

• perfect elimination

• elimination trees

• supernodes

• graph elimination



Elimination graph

a filled graph G∗σ = (V,E∗σ, σ) constructed from Gσ = (V,E, σ) as follows:

• start with E∗σ = E, enumerate vertices v = σ(i) for i = 1, 2, . . . , |V |

• in step i, add edges to make higher neighborhood adj+(v) complete

a1

b4 c 3

d 2

e 5f6

a1

b4 c 3

d 2

e 5f6

a1

b4 c 3

d 2

e 5f6

a

d
c

b
e

f

a

d
c

b
e

f

a

d
c

b
e

f
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Chordal extension

• the graph (V,E∗σ) is chordal by construction, with perfect elimination ordering σ

• (V,E∗σ) is called a chordal extension or triangulation of (V,E)

• the added edges E∗σ \ E during graph elimination are called fill-in or fill

a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q

: edges of non-chordal graph

: filled entries
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Cholesky factorization of positive definite matrix

A = LDLT L unit lower-triangular, D positive diagonal

Recursive (‘outer product’) algorithm

• write A as

A =

[
d1 bT

b C

]
=

[
1 0

(1/d1)b I

] [
d1 0
0 C − (1/d1)bb

T

] [
1 (1/d1)b

T

0 I

]
= L1D1L

T
1

• Cholesky factorization of C − (1/d1)bb
T = L̃2D2L̃

T
2 :

A = L1

[
1 0

0 L̃2

] [
d1 0
0 D2

] [
1 0

0 L̃T2

]
LT1

= LDLT
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Sparsity pattern during factorization

suppose A has sparsity pattern E, and define σ = (1, 2, . . . , n)

1

2

3

4

5

6

• sparsity pattern after each step of the recursion

1

2

3

4

5

6

L1 +D1 + LT1

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

• final sparsity pattern is E∗σ
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Choosing an elimination ordering

Minimum ordering

• minimizes the number of edges in the elimination graph

• finding a minimum ordering is is NP-complete (Yannakakis 1981)

Minimize clique number

• minimize the size of the largest clique in the elimination graph

• smallest clique number over all possible orderings is called the treewidth

• finding this ordering is also NP-complete

Minimal ordering: there exists no ordering σ′ with E∗σ′ ⊂ E
∗
σ

• if the graph is chordal, any minimal ordering is a perfect elimination ordering

• several algorithms for finding a minimal ordering with complexity O(|V | · |E|))

Non-minimal heuristics: faster than minimal ordering; may give smaller fill-in
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Analysis of elimination graph

algorithms exist for analyzing chordal extension (V,E∗σ) before constructing it:

• constructing elimination tree

• calculating monotone (higher and lower) degrees

• calculating number of filled edges

• finding clique representatives

• finding supernodes, supernodal elimination tree

complexity is linear or nearly linear in |V |+ |E| (the size of original graph)

(Liu 1990, Gilbert, Ng, Peyton 1994, Davis 2006)

Chordal graphs 54



Applications of graph elimination

Elimination algorithms: common in many applications, for example

• linear equations: Gauss elimination

• linear inequalities: Fourier-Motzkin elimination

• optimization: dynamic programming

• probability: computing marginal distributions

Graph elimination

• describes complexity of many types of elimination algorithms

• we discuss two examples with discrete variables
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Interaction graph

• n discrete variables x1, . . . , xn;

• xi takes values in finite set Xi of size si = |Xi|

• l index sets (ordered subsets of {1, 2, . . . , n}) β1, . . . , βl
• l functions (tables) fk(xβk), i.e., fk depends only on variables xi with i ∈ βk
• the interaction graph (co-occurrence graph) is defined as

V = {1, . . . , n}, {i, j} ∈ E ⇐⇒ i, j ∈ βk for some k

Example: five variables, four functions

f1(x1, x4, x5), f2(x1, x3), f3(x2, x3), f4(x2, x4)

1

2

3

4 5
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Discrete dynamic programming

minimize f(x) =
l∑

k=1

fk(xβk)

subject to x ∈ X = X1 × · · · ×Xn

• brute-force enumeration requires enumerating
∏
i si values of x

• solution by elimination computes minimum as

min f(x) = min
xσ(n)
· · ·min

xσ(2)
min
xσ(1)

f(x1, . . . , xn)

complexity depends on interaction graph and elimination order

• we explain this for the example

f(x) = f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4)

for simplicity we assume s1 = · · · = s5 = s
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Example

consider the elimination order σ = (1, 2, 3, 4, 5)

Minimize over x1

min
x1

f(x) = min
x1

(f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4))

• requires enumerating s4 possible values of (x1, x3, x4, x5) to find

u1(x3, x4, x5) = min
x1

(f(x1, x4, x5) + f2(x1, x3))

• interaction graph of u1(x3, x4, x5) + f3(x2, x3) + f4(x2, x4) is

2

3

4 5

1
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Example

Minimize over x2

min
x2,x1

f(x) = min
x2

(u1(x3, x4, x5) + f3(x2, x3) + f4(x2, x4))

• requires enumerating s3 possible values of (x2, x3, x4) to find

u2(x3, x4) = min
x2

(f3(x2, x3) + f4(x2, x4))

• interaction graph of u1(x3, x4, x5) + u2(x3, x4) is

3

4 52

1
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Example

Minimize over x3

min
x3,x2,x1

f(x) = min
x3

(u1(x3, x4, x5) + u2(x3, x4))

• requires enumerating s3 possible values of (x3, x4, x5) to find

u3(x4, x5) = min
x3

(u1(x3, x4, x5) + u2(x3, x4))

• interaction graph of u3(x4, x5) is

4 5

3

2

1
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Example

Minimize over x4: enumerate s2 values to get

min
x4,x3,x2,x1

f(x) = min
x4

u3(x4, x5) = u4(x5)

54

3

2

1

Minimize over x5: enumerate s values to get final answer

min
x
f(x) = min

x5
u4(x5)
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Example

• the algorithm can be summarized as a nested minimization formula

min
x
f(x) = min

x5
min
x4

min
x3

(
min
x1

(f1(x1, x4, x5) + f2(x1, x3))

+ min
x2

(f3(x2, x5) + f4(x2, x4))

)

• cost is s4 because largest clique in elimination graph has size 4

1

2

3

4 5
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Example

consider the elimination order σ = (5, 1, 2, 3, 4)

min
x
f(x) = min

x
(f(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4))

= min
x4

min
x3

(
min
x1

(
min
x5

f1(x1, x4, x5) + f2(x1, x3)

)
+ min

x2
(f3(x2, x3) + f4(x2, x4))

)

1

2

3

4 5

complexity is s3
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Probabilistic networks

the ‘min-sum’ algorithm for min
l∑

k=1

fk(xβk) is easily adapted to a ‘sum-product’

∑
x∈X

l∏
k=1

fk(xβk)

• used for inferencing in probabilistic networks

•
∏
k fk(xβk) is a discrete probability distribution

• interaction graph shows conditional independence relations

• complexity is exponential in the size of the largest clique

• ordering heuristics that yield small cliques are important
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II. Sparse matrices

• symmetric sparse matrices

• positive semidefinite matrices

– Cholesky factorization
– clique decomposition
– multifrontal factorization
– projected inverse
– logarithmic barrier

• positive semidefinite completion

– clique decomposition
– minimum rank positive semidefinite completion
– maximum determinant completion
– logarithmic barrier

• Euclidean distance matrix completion

– Euclidean distance matrices
– clique decomposition
– minimum dimension completion



Symmetric sparsity pattern

• sparsity pattern E (of order n) is a set

E ⊆ {{i, j} | i, j ∈ {1, 2, . . . , n}}

• symmetric matrix A of order n has sparsity pattern E if

i 6= j, {i, j} 6∈ E =⇒ Aij = Aji = 0

notation: A ∈ SnE

• the graph G = (V,E) with V = {1, 2, . . . , n} is called the sparsity graph

A =


A11 A12 A13 0 A15

A21 A22 0 A24 0
A31 0 A33 0 A35

0 A42 0 A44 A45

A51 0 A53 A54 A55


1 2

3 4

5
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Chordal sparsity patterns

Sparsity pattern of a Cholesky factor

: nonzeros in positive definite matrix A

: nonzeros in L+ LT , where A = LDLT

this is a chordal extension of the pattern of A

Simple examples
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Ordering

when discussing chordal patterns, we make the assumptions of page 47

• σ = (1, 2, . . . , n) is a perfect elimination ordering

• indices in maximal supernodes (clique residuals) are numbered consecutively

• if snd(i) is the parent of snd(j) in the supernodal elimination tree, then i > j

• hence, indices in clique separator col(i) \ snd(i) follow those in snd(i)

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

6

7

2

9

12

14

15

16

17

5 4

8 3

1 11

13

10
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Example

the full clique tree for the example

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

6, 7

4

8, 10

5, 6, 7

9, 16

3

9, 10

1, 2

10, 16

8, 9

14, 15, 17

11, 12

16, 17

10

13, 14, 15, 16, 17

• maximal supernodes (bottom rows) numbered consecutively

• clique representatives (first element of each block) numbered before parent

• clique residuals (top rows): numbers follow indices in bottom row
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Overlapping diagonal blocks

• the simplest non-complete chordal pattern has two overlapping diagonal blocks

p

q

• the clique tree

n− q + 1, n− q + 2, . . ., p
1, 2, . . ., n− q

n− q + 1, n− q + 2, . . . , n

• results for this pattern can often be generalized using properties of clique trees
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Band pattern

band pattern with bandwidth 2w + 1 and clique tree

w

2, 3, . . ., w + 1

1

3, 4, . . ., w + 2

2

n− w, n− w + 1, . . ., n− 1

n− w − 1

n− w, n− w + 1, . . ., n
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Block arrow pattern

block arrow pattern with block width w and clique tree

w

n− w + 1, . . . , n
1

n− w + 1, . . ., n
2

n− w + 1, . . ., n
n− w − 1

• • •

n− w, n− w + 1, . . ., n
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Indexing subvectors and submatrices

Index set: an ordered list of distinct elements of V = {1, 2, . . . , n}

Selection matrix:

if β = (β1, . . . , βr) is an index set, then Pβ stands for the r × n matrix

(Pβ)ij = 1 if j = βi, (Pβ)ij = 0 otherwise

• this is a permutation matrix if r = n

• used to select subvectors or principal submatrices:

Pβ x = xβ, PβXP
T
β = Xββ

• adjoint defines subvector or submatrix in otherwise zero vector or matrix

(PTβ y)i =

{
yj j = βi
0 j 6∈ β, (PTβ Y Pβ)kl =

{
Yij i = βk, j ∈ β(l)
0 (i, j) 6∈ β × β
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Example

n = 5, β = (2, 4, 5), Pβ =

 0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


• for x ∈ R5 and X ∈ S5,

Pβx = xβ =

 x2
x4
x5

 , PβXP
T
β = Xββ =

 X22 X24 X25

X42 X44 X45

X52 X54 X55


• for y ∈ R3 and Y ∈ S3,

PTβ y =


0
y1
0
y2
y3

 , PTβ Y Pβ =


0 0 0 0 0
0 Y11 0 Y12 Y13
0 0 0 0 0
0 Y21 0 Y22 Y23
0 Y31 0 Y32 Y33
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Index sets for monotone neighborhoods

for i = 1, . . . , n, index set γi contains elements of col(i), in numerical order

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

γ1 = (1, 2, 9, 10)

γ2 = (2, 9, 10)

γ3 = (3, 9, 16)

γ4 = (4, 6, 7)

γ5 = (5, 6, 7, 8, 10)

...
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Index sets for (supernodal) elimination trees

all algorithms will use recursions (in topological or inverse topological order) over

• the (nodal) elimination tree,

• or a supernodal elimination tree (clique tree)

the following notation will make the algorithm descriptions almost identical

Recursions over elimination tree

• νi = i for i ∈ V = {1, 2, . . . , n}

• αi: index set with elements of col(i) \ {i} in numerical order

Recursions over supernodal elimination tree

• V c ⊂ V is set of clique representatives

• νi for i ∈ V c: index set with elements of snd(i) in numerical order

• αi: index set with elements of col(i) \ snd(i) in numerical order
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Example: recursion over elimination tree

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

6

7

2

9

12

14

15

16

17

5 4

8 3

1 11

13

10

• in a recursion over the vertices of the elimination tree:

ν5 = 5, α5 = (6, 7, 8, 10), γ5 = (5, 6, 7, 8, 10)

• elements of αi are ancestors of vertex i
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Example: recursion over supernodal elimination tree

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17 4

5, 6, 7 3 1, 2

8, 9

11, 1210

13, 14, 15, 16, 17

• in a recursion over the supernodes of the supernodal elimination tree:

ν5 = (5, 6, 7), α5 = (8, 10), γ5 = (5, 6, 7, 8, 9)

• elements of αi are in supernodes νj that are ancestors of νi
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II. Sparse matrices

• symmetric sparse matrices

• positive semidefinite matrices

– Cholesky factorization
– clique decomposition
– multifrontal factorization
– projected inverse
– logarithmic barrier

• positive semidefinite completion

– clique decomposition
– minimum rank positive semidefinite completion
– maximum determinant completion
– logarithmic barrier

• Euclidean distance matrix completion

– Euclidean distance matrices
– clique decomposition
– minimum dimension completion



Sparse Cholesky factorization

PσAP
T
σ = LDLT

• A is positive definite

• Pσ is a permutation matrix

• L is unit lower triangular, D positive diagonal

• can be defined for singular positive semidefinite A if we allow zero Dii

Sparsity pattern

PTσ (L+ LT )Pσ ∈ SnE′

• E′ = E∗σ is the edge set of the elimination graph of (V,E, σ) (see page 51)

• fill-in E′ \ E determines positions of added nonzeros
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Cholesky factorization and chordal sparsity

Chordal pattern

if A ∈ SnE is positive definite and σ is a perfect elimination ordering for E, then

PTσ (L+ LT )Pσ ∈ SnE

A has a ‘zero fill’ Cholesky factorization

Non-chordal pattern

if E is not chordal, then for every σ there exist positive definite A ∈ SnE for which

PTσ (L+ LT )Pσ 6∈ SnE

(Rose 1970)
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Sparse positive semidefinite matrix cone

we denote the set of positive semidefinite matrices with sparsity pattern E as

Sn+ ∩ SnE = {X ∈ SnE | X � 0}

Properties

• a closed convex cone: intersection of closed convex cone (Sn+) and subspace

• nonempty interior with respect to SnE: identity matrix I is in the interior

• pointed: X ∈ Sn+ ∩ SnE and −X ∈ Sn+ ∩ SnE only if X = 0

these properties hold for general sparsity patterns E
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Positive semidefinite matrices with chordal sparsity

Decomposition theorem (for chordal E)

A ∈ SnE is positive semidefinite if and only if it can be expressed as

A =
∑
i∈V c

PTγiHiPγi with Hi � 0

(recall definition of Pβ on page 73 and of γi on page 75)

Example: three overlapping dense diagonal blocks

1

j

k
= + +

A � 0 PTγ1H1Pγ1 � 0 PTγjHjPγj � 0 PTγkHkPγk � 0

(Griewank and Toint 1984, Agler, Helton, McCullough, Rodman 1988)
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Proof (two cliques)

j
=

H1
+

Hj

H1 and Hj follow by combining columns in Cholesky factorization

= +
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Proof (general chordal pattern)

A = LDLT =

n∑
j=1

DjjLjL
T
j

group outer products per maximal supernode snd(i):

A =
∑
i∈V c

∑
j∈snd(i)

DjjLjL
T
j

=
∑
i∈V c

∑
j∈snd(i)

DjjP
T
γj
LγjjLγjjPγj

=
∑
i∈V c

PTγi

 ∑
j∈snd(i)

DjjLγijLγij

Pγi

=
∑
i∈V c

PTγiHiPγi

line 3 follows because γj ⊂ γi for j ∈ snd(i)
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Multifrontal Cholesky factorization

• a recursion over elimination tree in topological order (Duff and Reid 1983)

• we assume the sparsity pattern is chordal (or a chordal extension)

Factorization and elimination tree: nonzeros in column j of A = LDLT[
Ajj
Aαjj

]
= Djj

[
1
Lαj

]
+
∑
k<j

DkkLjk

[
Ljk
Lαjk

]

= Djj

[
1
Lαj

]
+

∑
strict descendants

k of j

DkkLjk

[
Ljk
Lαjk

]

• αj is index set with nonzeros below diagonal (page 76)

• no sum over k > j on first line because Ljk = 0 for k < j

• second line because Ljk = 0 if k is not a descendant of j in elimination tree

• algorithm propagates intermediate variable for efficient computation of the sum
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Update matrix

for each vertex j, (temporarily) store a dense update matrix

Uj =
∑
k∈Tj

DkkLαjjL
T
αjj

Tj is the set of descendants of j in the elimination tree (a subtree with root j)

Recursion: Uj, Djj, Lγjj can be computed from[
Ajj ATαjj
Aαjj Uj

]
= Djj

[
1

Lαjj

] [
1

Lαjj

]T
+Pγj

 ∑
i is child of j

PTαiUiPαi

PTγj

given Ajj, Aαj,j and the update matrices Ui for the children of j,

• we compute Djj from the 1,1 element of equation

• Lαjj from the 2,1 block

• Uj from the 2,2 block
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Multifrontal algorithm

enumerate the vertices of the elimination tree in topological order

• at vertex j, first form the frontal matrix

[
F11 F12

F21 F22

]
=

[
Ajj ATαjj
Aαjj 0

]
− Pγj

( ∑
children i of j

PTαiUiPαi

)
PTγj

• then solve the equation

[
F11 F12

F21 F22

]
= Djj

[
1

Lαjj

] [
1

Lαjj

]T
+

[
0 0
0 Uj

]
to find column j of the factorization and the update matrix Uj:

Djj = F11, Lαjj =
1

Djj
F21, Uj = −F22 +DjjLαjjL

T
αjj
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Example

5
4

6
7
8

3

1
2

9

11
12
13
14
15

10

16
17

6

7

2

9

12

14

15

16

17

5 4

8 3

1 11

13

10

frontal matrix for index 9:

F =

 A99 A9,10 A9,16

A10,9 0 0

A16,9 0 0

−
 (U8)11 (U8)12 (U8)13

(U8)21 (U8)22 (U8)23
(U8)31 (U8)32 (U8)33


−

 (U3)11 0 (U3)12
0 0 0

(U3)21 0 (U3)22

−
 (U2)11 (U2)21 0

(U2)21 (U2)22 0

0 0 0
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Block Cholesky factorization

A = LDLT

• D block diagonal, with positive definite diagonal blocks Dνjνj for j ∈ V c

• L lower triangular with Lνjνj = I , nonzero blocks Lαjνj

5
4

6
7

8

3

1
2

9

11
12

13
14

15

10

16
17

6, 7

4

8, 10

5, 6, 7

9, 16

3

9, 10

1, 2

10, 16

8, 9

14, 15, 17

11, 12

16, 17

10

13, 14, 15, 16, 17
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Supernodal multifrontal algorithm

enumerate the vertices of the supernodal elimination tree in topological order

• at vertex j ∈ V c, form the supernodal frontal matrix

[
F11 F12

F21 F22

]
=

[
Aνjνj ATαjνj
Aαjνj 0

]
− Pγj

( ∑
children i of j

PTαiUiPαi

)
PTγj

• then solve the equation

[
F11 F12

F21 F22

]
=

[
I

Lαjνj

]
Dνjνj

[
I

Lαjνj

]T
+

[
0 0
0 Uj

]
to find block column νj of the factorization and the update matrix Uj:

Dνjνj = F11, Lαjj = F21D
−1
νjνj

, Uj = −F22 + LαjνjDνjνjL
T
αjνj
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Example

5
4

6
7
8

3

1
2

9

11
12
13
14
15

10

16
17 4

5, 6, 7 3 1, 2

8, 9

11, 1210

13, 14, 15, 16, 17

frontal matrix in step for supernode {8, 9}:

F =


A88 A89 A8,10 A8,16

A99 A99 A9,10 A9,16

A10,8 A10,9 0 0

A16,8 A16,9 0 0

−


(U5)11 0 (U5)12 0

0 0 0 0

(U5)21 0 (U5)22 0

0 0 0 0



−


0 0 0 0

0 (U3)11 0 (U3)12
0 0 0 0

0 (U3)21 0 (U3)22

−


0 0 0 0

0 (U1)11 (U1)12 0

0 (U1)21 (U1)22 0

0 0 0 0
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Comparison

100 101 102 103 104 105 106
100

101
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Problem statistics

10−510−410−310−210−1 100 101
10−5

10−4

10−3
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Cholesky factorization
Su

pe
rn
od

al
C
ho

le
sk
y
fa
ct
or
iz
at
io
n

Time comparison

• 667 patterns from University of Florida Sparse Matrix Collection

• time in seconds for supernodal and nodal Cholesky factorization

• code at cvxopt.github.io/chompack
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Projected inverse

we consider the problem of computing

ΠE(A−1)

for a positive definite matrix A ∈ SnE with chordal pattern E

• ΠE denotes projection on SnE:

ΠE(X) =

{
Xij i = j or {i, j} ∈ E
0 otherwise

• the complete inverse A−1 is usually dense and expensive to compute

• we are interested in computing ΠE(A−1) without computing the entire inverse
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Projected inverse from Cholesky factorization

we assume the sparsity pattern of A is chordal

• from Cholesky factorization A = LDLT :

A−1L = L−TD−1

• block γj × γj of projected inverse B = ΠE(A−1) satisfies

[
Bjj BTαjj
Bαjj Bαjαj

] [
1

Lαjj

]
=

[
1/Djj

0

]

right-hand side follows because L−T is unit upper triangular

• this equation allows us to compute Bαjj and Bjj from Bαjαj (and L, D)

• the elements of αj are ancestors of j in the elimination tree

hence B can be computed, column by column, in an inverse topological order
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Example

[
Bjj BTαjj
Bαjj Bαjαj

] [
1

Lαjj

]
=

[
1/Djj

0

]

7

7

8

8

5

5

1 = D−155

1

2 3

4

67

8

9

5

• filled circles: entries that are known or to be computed

• open circles: nonzero but unknown or irrelevant
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‘Multifrontal’ algorithm for projected inverse

[
Bjj BTαjj
Bαjj Bαjαj

] [
1

Lαjj

]
=

[
1/Djj

0

]

Algorithm: recursion over elimination tree in inverse topological order

• at vertex j, compute

Bαjj = −UjLαjj, Bjj =
1

Djj
−BTαjjLαjj

Uj = Bαjαj is dense ‘update matrix’

• for each child i of j, form

Ui = PαiP
T
γj

[
Bjj BTαjj
Bαjj Uj

]
PγjP

T
αi

main step is dense matrix-vector multiplication UjLαjj
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Supernodal algorithm for projected inverse

[
Bνjνj BTαjνj
Bαjνj Bαjαj

] [
I

Lαjνj

]
=

[
D−1νjνj

0

]

Algorithm: recrusion over supernodal elimination tree in inverse topological order

• at vertex j ∈ V c, compute

Bαjνj = −UjLαjνj, Bνjνj = D−1νjνj −B
T
αjνj

Lαjνj

• for each child i of j, form

Ui = PαiP
T
γj

[
Bνjνj BTαjνj
Bαjνj Uj

]
PγjP

T
αi
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Projected inverse versus Cholesky factorization

10−5 10−4 10−3 10−2 10−1 100 101
10−5

10−4

10−3

10−2

10−1

100

101

Cholesky factorization
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d
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ve
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e

• 667 test patterns from page 92

• time in seconds for projected inverse and Cholesky factorization

• code at cvxopt.github.io/chompack
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Logarithmic barrier for positive semidefinite cone

Definition: the function φ : SnE → R with

φ(S) = − log detS, domφ = {S ∈ SnE | S � 0}

Value: efficiently computed from Cholesky factorization S = LDLT

Gradient: the negative of the projected inverse

∇φ(S) = −ΠE(S−1)

Hessian: for arbitrary Y ∈ SnE,

∇2φ(S)[Y ] =
d

dt
∇φ(S + tY )

∣∣∣∣
t=0

= ΠE

(
S−1Y S−1

)
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Hessian

Gradient evaluation: for chordal E, computing

∇φ(S) = −ΠE(S−1)

requires two recursions over elimination tree

• Cholesky factorization S = LDLT (recursion in topological order)

• projected inverse from D, L (recursion in inverse topological order)

Algorithm for Hessian evaluation:

linearize the recursions in the gradient algorithm to compute

∇2φ(S)[Y ] = ΠE(S−1Y S−1) = − d
dt

ΠE(S + tY )−1
∣∣∣∣
t=0

two recursions: one in topological, one in inverse topological order
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Factorization of Hessian

the linearized recursions in the evaluation of ∇2φ(S)[Y ] turn out to be adjoints

• this gives a factorization ∇2φ(S) = R∗S ◦ RS:

∇2φ(S)[Y ] = R∗S(RS(Y ))

• RS(Y ) andRS(Y )−1 can be computed by a recursion in topological order

• R∗S(Y ) and (R∗S)−1(Y ) computed by a recursion in inverse topological order

• this also provides an algorithm for applying the inverse Hessian

∇2φ(S)−1[Y ] = R−1S ((R∗S)−1(Y ))

(Andersen, Dahl, Vandenberghe 2012)
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II. Sparse matrices

• symmetric sparse matrices

• positive semidefinite matrices

– Cholesky factorization
– clique decomposition
– multifrontal factorization
– projected inverse
– logarithmic barrier

• positive semidefinite completion

– clique decomposition
– minimum rank positive semidefinite completion
– maximum determinant completion
– logarithmic barrier

• Euclidean distance matrix completion

– Euclidean distance matrices
– clique decomposition
– minimum dimension completion



Positive semidefinite completable matrix cone

we denote the set of matrices in SnE that have a positive semidefinite completion by

ΠE(Sn+) = {ΠE(X) | X ∈ Sn+}

Properties

• a convex cone: the projection of a convex cone on a subspace

• has nonempty interior (relative to SnE): the identity matrix is in the interior

• pointed: if A = ΠE(X) and −A = ΠE(Y ) for some X,Y � 0, then

ΠE(X + Y ) = 0 =⇒ diag(X) = diag(Y ) = 0

=⇒ X = Y = 0

• closed because ΠE(X) = 0, X � 0 only if X = 0
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Duality

the positive semidefinite and positive semidefinite completable cones are duals

Dual of positive semidefinite completable cone

(ΠE(Sn+))∗ = {B ∈ SnE | tr(AB) ≥ 0 ∀A ∈ ΠE(Sn+)}
= {B ∈ SnE | tr (ΠE(X)B) ≥ 0 ∀X � 0}
= {B ∈ SnE | tr(XB) ≥ 0 ∀X � 0}
= Sn+ ∩ SnE

Dual of positive semidefinite cone

(Sn+ ∩ SnE)∗ = cl(ΠE(Sn+)) = ΠE(Sn+)

• step 1: the dual of the dual of a convex coneK is the closure ofK

• step 2: we have seen that ΠE(Sn+) is closed
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Positive semidefinite completable cone with chordal sparsity

Decomposition theorem (for chordal E)

A ∈ SnE has a positive semidefinite completion if and only if

Aγiγi � 0, i ∈ Vc

(recall that γi for i ∈ V c are the cliques; see page 75)

Example: three overlapping dense diagonal blocks

PSD completable A

1

j

k

Aγ1γ1 � 0

Aγjγj � 0

Aγkγk � 0

(Grone, Johnson, Sá, Wolkowicz, 1984)
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Proof from duality

• positive semidefinite and PSD completable cones are dual cones:

A ∈ ΠE(Sn+) ⇐⇒ tr(AB) ≥ 0 ∀B ∈ Sn+ ∩ SnE

• decomposition theorem (page 82): every B ∈ Sn+ ∩ SnE can be written as

B =
∑
i∈V c

PTγiHiPγi, with Hi � 0

• therefore A ∈ ΠE(SN+ ) if and only if

0 ≤ tr

(
A
∑
i∈V c

PTγiHiPγi

)
=
∑
i∈V c

tr
(
PγiAP

T
γi
Hi

)
∀Hi � 0

• this is equivalent to PγiAP
T
γi
� 0 for all i ∈ V c
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Minimum rank positive semidefinite completion

Positive semidefinite completion problem: given A ∈ ΠE(Sn+), find X s.t.

A = ΠE(X), X � 0

Minimum rank completion: if E is chordal, then there is a completion with

rank(X) = max
i∈V c

rankAγiγi

(Dancis 1992)

• this is the minimum possible rank, since for any PSD completion X ,

rank(X) ≥ max
i∈V c

rankAγiγi

• to show the result we first consider the simple two-block completion problem

?

?
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Two-block completion problem

find the minimum rank positive semidefinite completion of

A =

 A11 A12 0
A21 A22 A23

0 A32 A33


• a completion exists if and only if[

A11 A12

A21 A22

]
� 0,

[
A22 A23

A32 A33

]
� 0

• define r = max{r1, r2} where

rank

[
A11 A12

A21 A22

]
= r1, rank

[
A22 A23

A32 A33

]
= r2
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Two-block completion algorithm

• compute matrices U , V , Ṽ ,W of column dimension r such that[
A11 A12

A21 A22

]
=

[
U
V

] [
U
V

]T
,

[
A22 A23

A32 A33

]
=

[
Ṽ
W

] [
Ṽ
W

]T

• since V V T = Ṽ Ṽ T , the matrices V and Ṽ have SVDs

V = PΣQT1 , Ṽ = PΣQT2

hence V = Ṽ Q with Q = Q2Q
T
1 an orthogonal r × r matrix

• a completion of rank r is given by UQT

Ṽ
W

 UQT

Ṽ
W

T =

 A11 A12 UQTWT

A21 A22 A23

WQUT A32 A33
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Minimum rank completion for general chordal pattern

we compute an n× r matrix Y with ΠE(Y Y T ) = A and

r = max
i∈V c

rank(Aγiγi)

• the block rows Yνj are computed in inverse topological order

• hence Yαj is known when we compute Yνj

Algorithm: enumerate supernodes in inverse topological order

• at vertex j ∈ V c, compute matrices Uj, Vj with column dimension r such that

[
Aνjνj Aνjαj
Aαjνj Aαjαj

]
=

[
Uj
Vj

] [
Uj
Vj

]T

• if j is the root of the supernodal elimination tree, set Yνj = Uj

• otherwise, compute orthogonal Q such that Vj = YαjQ and set Yνj = UjQ
T
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Outline of proof

suppose that when we visit vertex j, the already computed part of Y satisfies

YγiY
T
γi

= Aγiγi

for all i ∈ V c that are ancestors of j in the supernodal elimination tree

• by assumption, Yαj is known when we visit supernode j, and satisfies

YαjY
T
αj

= Aαjαj = VjV
T
j

• hence, there exists an orthogonal Q such that Vj = YαjQ

• the matrix Yνj = UjQ
T satisfies

[
Yνj
Yαj

] [
Yνj
Yαj

]T
=

[
UjU

T
j UjQ

TY Tαj
YαjQU

T
j YαjY

T
αj

]
=

[
Aνjνj Aνjαj
Aαjνj Aαjαj

]
= Aγjγj
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Maximum determinant positive definite completion

Maximum determinant completion problem: for A in the interior of ΠE(Sn+),

maximize log detW
subject to ΠE(W ) = A

with variableW ∈ Sn

• we implicitly assume that the domain of the objective is Sn++

• also known as the maximum entropy completion:

1

2
(log detW + n log(2π) + n)

is the entropy of the normal distribution N(0,W )
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Optimality conditions

the maximum determinant positive definite completion is the solution of

minimize − log detW
subject to ΠE(W ) = A

Lagrangian (using a Lagrange multiplier Y ∈ SnE):

L(W,Y ) = − log detW + tr(Y (ΠE(W )−A))

= − log detW + tr(Y (W −A))

Optimality conditions

• feasibility: W � 0 and ΠE(W ) = A

• gradient of Lagrangian with respect toW is zero: W−1 = Y

• henceW−1 is sparse, with sparsity pattern E
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Dual of maximum determinant completion

Primal: minimize − log detW
subject to ΠE(W ) = A

Dual: maximize − tr(AY ) + log detY + n

dual variable is sparse matrix Y ∈ SnE

Statistics interpretation

Σ̂ = Y −1 is maximum likelihood estimate of x ∼ N(0,Σ), given:

• projection ΠE(A) of sample covariance

• sparsity constraints that express conditional independence relations:

{i, j} 6∈ E ⇐⇒ (Σ−1)ij = 0

⇐⇒ xi, xj are conditionally independent
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Maximum determinant completion with chordal sparsity

maximize log detW
subject to ΠE(W ) = A

• for general E, can be solved by convex optimization methods

• for chordal E, explicit expressions

Cholesky factorization of inverse

• factors inW−1 = LDLT satisfyWL = L−TD−1

• block γj × γj in this equation is[
Ajj ATαjj
Aαj Aαjαj

] [
1

Lαjj

]
=

[
1/Djj

0

]

• solution is

Lαjj = −A−1αjαjAαjj, Djj = (Ajj +ATαjjLαjj)
−1
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Algorithm for maximum determinant completion

enumerate the vertices of elimination tree in inverse topological order

• at vertex j, compute

Lαjj = −U−1j Aαjj, Djj = (Ajj −ATαjjLαjj)
−1

• for each child i of j, form

Ui = PTαiP
T
γj

[
Ajj ATαjj
Aαjj Uj

]
PγjP

T
αi

Comments

• Ui is simply Aαiαi, stored and updated as a dense matrix

• main step is solution of dense system UjLαjj = −Aαjj
• an improvement is to propagate factorization of Uj and make low-rank updates
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Comparison with Cholesky factorization
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• 667 test patterns from page 92

• supernodal version of algorithm on previous page vs. Cholesky factorization

• code at cvxopt.github.io/chompack
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Barrier for positive semidefinite completable cone

φ∗(X) = sup
S∈Sn++∩S

n
E

(− tr(XS) + log detS)

with domain domφ∗ = {X = ΠE(Y ) | Y � 0}

• this is the conjugate of the barrier φ(S) = − log detS for sparse PSD cone

• optimization problem in the definition is the dual of the completion problem

minimize − log detZ
subject to ΠE(Z) = X

(see page 113); optimal Ŝ in definition of φ∗(S) is Ŝ = Z−1

• for general E, barrier φ∗(X) must be computed by numerical optimization

• for chordal E, φ∗(X) can be computed by algorithms discussed earlier
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Barrier φ∗ for chordal sparsity pattern

suppose E is chordal and X is in the interior of ΠE(Sn+)

• to evaluate φ∗(X), we compute the (sparse) inverse of the solution of

minimize − log detZ
subject to ΠE(Z) = X

the algorithm of p.115 computes the inverse in factored form Ŝ = LDLT

• the value of the barrier is

φ∗(X) = log det Ŝ − n

• gradient and Hessian of φ∗ at X are

∇φ∗(X) = −Ŝ, ∇2φ∗(X) = ∇2φ(Ŝ)−1
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II. Sparse matrices

• symmetric sparse matrices

• positive semidefinite matrices

– Cholesky factorization
– clique decomposition
– multifrontal factorization
– projected inverse
– logarithmic barrier

• positive semidefinite completion

– clique decomposition
– minimum rank positive semidefinite completion
– maximum determinant completion
– logarithmic barrier

• Euclidean distance matrix completion

– Euclidean distance matrices
– clique decomposition
– minimum dimension completion



Euclidean distance matrix

Euclidean distance matrix (EDM): a symmetric matrix A that can be written as

Aij = ‖yi − yj‖22, i, j = 1, . . . , n

for some vectors y1, . . . , yn

• we call the matrix Y with rows yTi a realization of A:

Aij = yTi yi − 2yTi yj + yTj yj

= (Y Y T )ii − 2(Y Y T )ij + (Y Y T )jj

• Y is not unique: if Y is a realization of A, then

Ỹ = Y QT + 1aT

=
[
Qy1 + a Qy2 + a · · · Qyn + a

]T
is a realization, for any orthogonal Q and any a

Sparse matrices 119



Schoenberg characterization

a symmetric n× n matrix A is a Euclidean matrix if and only if

diag(A) = 0, PTAP � 0

where P is any matrix whose columns span the orthogonal complement of 1
(Schoenberg 1935, 1938)

• second condition means that xTAx ≤ 0 if 1Tx = 0

• a realization A can be computed from a factorization PTAP = −Y Y T

• a useful choice is

P = I − ek1T =

column k I 0 0
−1T 0 −1T row k

0 0 I

factorizing PTAP = −Y Y T gives a realization that satisfies yk = 0

• we will use the notation dim(A) = rank(PTAP )

• if dim(A) = m there is a realization in Rm (with points yi in Rm)
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Euclidean distance matrix completion

EDM completion problem: given A ∈ SnE find an EDM X such that

A = ΠE(X)

(or determine that no such completion exists)

• this is an SDP feasibility problem: find X such that

A = ΠE(X), PTXP � 0

for any P whose columns span 1⊥

• in many applications one is interested in the solution that minimizes

dim(X) = rank(PTXP ),

to obtain a realization in the lowest-dimensional space
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EDM completion for chordal sparsity pattern

Decomposition theorem (for chordal E)

A ∈ SnE has an EDM completion if and only if Aγiγi is EDM for all i ∈ V c

(Bakonyi and Johnson 1995)

Example

EDM completable A

1

j

k

Aγ1γ1 is EDM

Aγjγj is EDM

Aγkγk is EDM

Minimum dimension completion: there exists a completion with

dim(X) = max
i∈V c

dim(Aγiγi)
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Minimum-dimension EDM completion for chordal patterns

we only consider the simple pattern with two overlapping diagonal blocks

A =

p q r A11 A12 0 p

A21 A22 A23 q

0 A32 A33 r

• from the decomposition theorem, a solution exists if

C1 =

[
A11 A12

A21 A22

]
is an EDM, C2 =

[
A22 A23

A32 A33

]
is an EDM

• we compute a completion with dimensionm = max {dim(C1),dim(C2)}

for general E, use the 2-block algorithm and a recursion on the clique tree in
inverse topological order
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Two-block EDM completion

• define matrices

P1 = I − ep+11
T ∈ R(p+q)×(p+q), P2 = I − e11T ∈ R(q+r)×(q+r)

and compute matrices U , V , Ṽ ,W with column dimensionm such that

PT1

[
A11 A12

A21 A22

]
P1 = −

[
U
V

] [
U
V

]T
PT2

[
A22 A23

A32 A33

]
P2 = −

[
Ṽ
W

] [
Ṽ
W

]T

• since V V T = Ṽ Ṽ T there exists an orthogonal Q such that V = Ṽ Q

• the matrix

Y =

 UQT

Ṽ
W


is a realization of an EDM completion of A
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III. Applications in convex optimization

• nonsymmetric interior-point methods

• partial separability and decomposition

– partial separability
– first order methods
– interior-point methods



Conic linear optimization

primal: minimize cTx
subject to Ax = b

x ∈ C

dual: maximize bTy
subject to ATy + s = c

s ∈ C∗

• C is a proper cone (convex, closed, pointed, with nonempty interior)

• C∗ = {z | zTx ≥ 0 for all x ∈ C} is the dual cone

widely used in recent literature on convex optimization

• Interior-point methods

a convenient format for extending interior-point methods from linear
optimization to general convex optimization

• Modeling

a small number of ‘primitive’ cones is sufficient to model most convex
constraints encountered in practice
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Symmetric cones

most current solvers and modeling systems use three types of cones

• nonnegative orthant

• second-order cone

• positive semidefinite cone

these cones are not only self-dual but symmetric (self-scaled)

• symmetry is exploited in primal-dual symmetric interior-point methods

• large gaps in (linear algebra) complexity between the three cones

(see the examples on page 5–6)
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Sparse semidefinite optimization problem

Primal problem

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0

Dual problem
maximize bTy

subject to
m∑
i=1

yiAi + S = C

S � 0

Aggregate sparsity pattern

• the union of the patterns of C, A1, . . . , Am

• feasible X is usually dense, even for problems with aggregate sparsity

• feasible S is sparse with sparsity pattern E
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Equivalent nonsymmetric conic LPs

Primal problem

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ C

Dual problem
maximize bTy

subject to
m∑
i=1

yiAi + S = C

S ∈ C∗

• variables X and S are sparse matrices in SnE

• C = ΠE(Sn+) is cone of PSD completable matrices with sparsity pattern E

• C∗ = Sn+ ∩ SnE is cone of PSD matrices with sparsity pattern E

• C is not self-dual; no symmetric interior-point methods
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Nonsymmetric interior-point methods

minimize tr(CX)

subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ ΠE(Sn+)

• can be solved by nonsymmetric primal or dual barrier methods

• logarithmic barriers for cone ΠE(Sn+) and its dual cone Sn+ ∩ SnE:

φ∗(X) = sup
S

(− tr(XS) + log detS), φ(S) = − log detS

• fast evaluation of barrier values and derivatives if pattern is chordal

(Fukuda et al. 2000, Burer 2003, Srijungtongsiri and Vavasis 2004, Andersen et al. 2010)
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Primal path-following method

Central path: solution X(µ), y(µ), S(µ) of

tr(AiX) = bi, i = 1, . . . ,m
m∑
j=1

yjAj + S = C

µ∇φ∗(X) + S = 0

Search direction at iterate X , y, S: solve linearized central path equations

tr(Ai∆X) = ri, i = 1, . . . ,m
m∑
i=1

∆yiAi + ∆S = C

µ∇2φ∗(X)[∆X] + ∆S = −µ∇φ∗(X)− S
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Dual path-following method

Central path: an equivalent set of equations is

tr(AiX) = bi, i = 1, . . . ,m
m∑
j=1

yjAj + S = C

X + µ∇φ(S) = 0

Search direction at iterate X , y, S: solve linearized central path equations

tr(Ai∆X) = ri, i = 1, . . . ,m
m∑
i=1

∆yiAi + ∆S = C

∆X + µ∇2φ(S)[∆S] = −µ∇φ(S)−X
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Computing search directions

eliminating ∆X , ∆S from linearized equation gives

H∆y = g

• in a primal method Hij is the inner product of Ai and ∇2φ∗(X)[Aj]:

Hij = tr(Ai∇2φ∗(X)[Aj])

• in a dual method Hij is the inner product of Ai and ∇2φ(S)[Aj]:

Hij = tr(Ai∇2φ(S)[Aj])

• the algorithms from lecture 2 can be used to evaluate gradient and Hessians

• the system H∆y = g is solved via dense Cholesky or QR factorization
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Sparsity patterns

• sparsity patterns from University of Florida Sparse Matrix Collection

• m = 200 constraints

• random data with 0.05% nonzeros in Ai relative to |E|

500 1000 1500

500

1000

1500

500 1000 1500 2000

500

1000

1500

2000
500 1000 1500 2000 2500 3000

500

1000

1500

2000

2500

3000
1000 2000 3000 4000

1000

2000

3000

4000

rs228
n = 1,919

rs35
n = 2,003

rs200
n = 3,025

rs365
n = 4,704

1000 2000 3000 4000 5000 6000 7000

1000

2000

3000

4000

5000

6000

7000

2000 4000 6000 8000 10000

2000

4000

6000

8000

10000

2000 4000 6000 8000 100001200014000

2000

4000

6000

8000

10000

12000

14000

5000 10000 15000 20000 25000 30000

5000

10000

15000

20000

25000

30000

rs1555
n = 7,479

rs828
n = 10,800

rs1184
n = 14,822

rs1288
n = 30,401

Applications in convex optimization 134



Results

n DSDP SDPA SDPA-C SDPT3 SeDuMi SMCP

1919 1.4 30.7 5.7 10.7 511.2 2.3
2003 4.0 34.4 41.5 13.0 521.1 15.3
3025 2.9 128.3 6.0 33.0 1856.9 2.2
4704 15.2 407.0 58.8 99.6 4347.0 18.6

n DSDP SDPA-C SMCP

7479 22.1 23.1 9.5
10800 482.1 1812.8 311.2
14822 791.0 2925.4 463.8
30401 mem 2070.2 320.4

• average time per iteration for different solvers

• SMCP uses nonsymmetric matrix cone approach (Andersen et al. 2010)

• code and more benchmarks at github.com/cvxopt/smcp
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Band pattern

SDPs of order n with bandwidth 11 andm = 100 equality constraints

102 103 104

n

10-2

10-1

100

101

102

103

104

T
im

e
 p

e
r 

it
e
ra

ti
o
n

M1
M2
CSDP
DSDP
SDPA
SDPA-C
SDPT3
SeDuMi

nonsymmetric solver SMCP (two variants M1, M2): complexity is linear in n

(Andersen et al. 2010)
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Arrow pattern

• matrix norm minimization of page 6

• matrices of size p× q with q = 10 withm = 100 variables
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nonsymmetric solver SMCP (M1, M2): complexity linear in p
Applications in convex optimization 137



III. Applications in convex optimization

• nonsymmetric interior-point methods

• partial separability and decomposition

– partial separability
– first order methods
– interior-point methods



Partial separability

Partially separable function (Griewank and Toint 1982)

f(x) =

l∑
k=1

fk(Pβkx)

x is an n-vector; β1, . . . , βl are (small) overlapping index sets in {1, 2, . . . , n}

Example:

f(x) = f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4)

Partially separable set

C = {x ∈ Rn | xβk ∈ Ck, k = 1, . . . , l}

the indicator function is a partially separable function
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Interaction graph

• vertices V = {1, 2, . . . , n},

{i, j} ∈ E ⇐⇒ i, j ∈ βk for some k

• if {i, j} 6∈ E, then f is separable in xi and xj if other variables are fixed:

f(x+ sei + tej) = f(x+ sei) + f(x+ tej)− f(x) ∀x ∈ Rn, s, t ∈ R

Example: f(x) = f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4)

1

2

3

4 5
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Example: PSD completable cone with chordal pattern

• for chordal E, the cone ΠE(Sn+) is partially separable (see page 104)

ΠE(Sn+) = {X ∈ SnE | Xγiγi � 0 for all cliques γi}

• the interaction graph is chordal

Example: chordal sparsity pattern, clique tree, clique tree of interaction graph
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Partially separable convex optimization

minimize f(x) =

l∑
k=1

fk(Pβkx)

Equivalent problem

minimize
l∑

k=1

fk(x̃k)

subject to x̃ = Px

• we introduced ‘splitting’ variables x̃k to make cost function separable

• P , x̃ are stacked matrix and vector

P =

 Pβ1...
Pβl

 , x̃ =

 x̃1
...
x̃l

 ,
• PTP is diagonal ((PTP )ii is the number of sets βk that contain index i)
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Decomposition via first-order methods

Reformulated problem and its its dual (f∗k is conjugate function of fk)

minimize
l∑

k=1

fk(x̃k)

subject to x̃ ∈ range(P )

maximize −
l∑

k=1

f∗k(s̃k)

subject to s̃ ∈ nullspace(PT )

• cost functions are separable

• diagonal property of PTP makes projections on range inexpensive

Algorithms: many algorithms can exploit these properties, for example

• Douglas-Rachford (DR) splitting of the primal

• alternating direction method of multipliers (ADMM)
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Example: sparse nearest matrix problems

• find nearest sparse PSD-completable matrix with given sparsity pattern

minimize ‖X −A‖2F
subject to X ∈ ΠE(Sn+)

• find nearest sparse PSD matrix with given sparsity pattern

minimize ‖S +A‖2F
subject to S ∈ Sn+ ∩ SnE

these two problems are duals:

K = ΠE(Sn+)

−K∗ = −(Sn+ ∩ SnE) A
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Decomposition methods

from the decomposition theorems (pages 82 and 104), the problems can be written

primal: minimize ‖X −A‖2F
subject to Xγiγi � 0 for all cliques γi

dual: minimize ‖A+
∑
i∈V c

PTγiHiPγi‖2F

subject to Hi � 0 for all i ∈ V c

Algorithms

• Dykstra’s algorithm (dual block coordinate ascent)

• (fast) dual projected gradient algorithm (FISTA)

• Douglas-Rachford splitting, ADMM

sequence of projections on PSD cones of order |γi| (eigenvalue decomposition)
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Results

matrices from University of Florida sparse matrix collection

n density #cliques avg. clique size max. clique

20141 2.80e-3 1098 35.7 168
38434 1.25e-3 2365 28.1 188
57975 9.04e-4 8875 14.9 132
79841 9.71e-4 4247 44.4 337

114599 2.02e-4 7035 18.9 58

total runtime (sec) time/iteration (sec)

n FISTA Dykstra DR FISTA Dykstra DR

20141 2.5e2 3.9e1 3.8e1 1.0 1.6 1.5
38434 4.7e2 4.7e1 6.2e1 2.1 1.9 2.5
57975 > 4hr 1.4e2 1.1e3 3.5 5.7 6.4
79841 2.4e3 3.0e2 2.4e2 6.3 7.6 9.7

114599 5.3e2 5.5e1 1.0e2 2.6 2.2 4.0

(Sun and Vandenberghe 2015)
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Conic optimization with partially separable cones

minimize cTx
subject to Ax = b

x ∈ C

• assume C is partially separable:

C = {x ∈ Rn | Pβkx ∈ Ck, k = 1, . . . , l}

• most important application is sparse semidefinite programming

(C is vectorized PSD completable cone)

• bottleneck in interior-point methods is Schur complement equation

AH−1AT∆y = r

(in a primal barrier method, H is the Hessian of the barrier for C)

• coefficient of Schur complement equation is often dense, even for sparse A
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Reformulation

minimize cTx
subject to Ax = b

Pβkx ∈ Ck, k = 1, . . . , l

• introduce l splitting variables x̃k = Pγkx and add consistency constraints

x̃ ∈ range(P ) where x̃ =

 x̃1
...
x̃l

 , P =

 P1
...
Pl


• choose c̃, Ã such that ÃP = A and c̃TP = cT

Converted problem

minimize c̃T x̃

subject to Ãx̃ = b
x̃ ∈ C1 × · · · × Cl
x̃ ∈ range(P )
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Chordal structure in interaction graph

suppose the interaction graph is chordal, and the sets βk are cliques

• the cliques βk that contain a given index j form a subtree of the clique tree

• therefore the consistency constraint x̃ ∈ range(P ) is equivalent to

Pαj(P
T
βk
x̃k − PTβjx̃j) = 0

for each vertex j and its parent k in a clique tree

αj

βj \ αj
x̃j ∈ Cj

αk

βk \ αk
x̃k ∈ Ck

αi

βi \ αi
x̃i ∈ Ci

Pαj(P
T
βj
x̃j − ET

βk
x̃k)=0

Eαk(E
T
βk
x̃k − ET

βi
x̃i)=0

· · · · · ·

· · ·

· · ·

αi is the intersection of βi and its parent
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Schur complement system of converted problem

minimize c̃T x̃

subject to Ãx̃ = b
x̃ ∈ C1 × · · · × Cl
Bx̃ = 0 (consistency eqs.)

• Schur complement equation in interior-point method[
ÃH−1ÃT ÃH−1BT

BH−1ÃT BH−1BT

] [
∆y
∆u

]
=

[
r1
r2

]

• H is block-diagonal (in primal barrier method, the Hessian of C1 × · · · × Ck)

• larger than Schur complement system before conversion

• however 1,1 block is often sparse

for semidefinite optimization, this is known as the ‘clique-tree conversion’ method

(Fukuda et al. 2000, Kim et al. 2011)
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Example
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a 6× 6 matrixX with this pattern is positive semidefinite if and only if the matrices

Xγ1γ1 =

 X11 X13 X14

X31 X33 X34

X41 X43 X44

 , Xγ2γ2 =

[
X22 X24

X42 X44

]
,

Xγ3γ3 =

 X33 X34 X35

X43 X44 X45

X53 X54 X55

 , Xγ4γ4 =

[
X55 X56

X65 X66

]
are positive semidefinite
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Example
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• define a splitting variable for each of the four submatrices

X̃1 ∈ S4, X̃2 ∈ S2, X̃3 ∈ S4, X̃4 ∈ S2

• add consistency constraints[
X̃1,22 X̃1,23

X̃1,32 X̃1,33

]
=

[
X̃3,11 X̃3,12

X̃3,21 X̃3,22

]
, X̃2,22 = X̃3,22, X̃3,33 = X̃4,11
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Summary: sparse semidefinite optimization
• sparse SDPs with chordal sparsity are partially separable

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

Xγkγk � 0 k = 1, . . . , l

• introducing splitting variables one can reformulate this as

minimize
l∑

k=1

tr(C̃kX̃k)

subject to
l∑

k=1

tr(ÃikX̃k) = bi, i = 1, . . . ,m

X̃k � 0, k = 1, . . . , l
consistency constraints

• this was first proposed as a technique for speeding up interior-point methods

• also useful in combination with first-order splitting methods
(Lu et al. 2007, Lam et al. 2011, Dall’Anese et al. 2013, Sun et al. 2014, . . . )

• useful for distributed algorithms (Pakazad et al. 2014)
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